

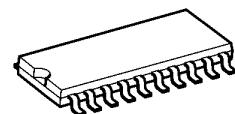
TC74LVX573F,TC74LVX573FW,TC74LVX573FT

Octal D-Type Latch with 3-State Output

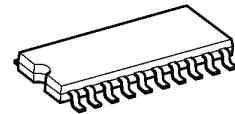
The TC74LVX573F/ FW/ FT is a high-speed CMOS octal latch with 3-state output fabricated with silicon gate CMOS technology. Designed for use in 3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

This device is suitable for low-voltage and battery operated systems.

This 8 bit D-type latch is controlled by a latch enable input (LE) and a output enable input (\overline{OE}). When the \overline{OE} input is high, the eight outputs are in a high-impedance state.

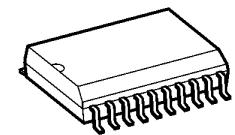

An input protection circuit ensures that 0 to 5.5V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

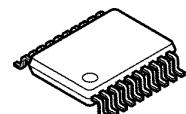

- High speed: $t_{pd} = 6.4$ ns (typ.) ($V_{CC} = 3.3$ V)
- Low-power dissipation: $I_{CC} = 4$ μ A (max) ($T_a = 25^\circ C$)
- Input voltage level: $V_{IL} = 0.8$ V (max) ($V_{CC} = 3$ V)
 $V_{IH} = 2.0$ V (min) ($V_{CC} = 3$ V)
- Power-down protection provided on all inputs
- Balanced propagation delays: $t_{pLH} \approx t_{pHL}$
- Low noise: $V_{OLP} = 0.8$ V (max)
- Pin and function compatible with 74HC573

Note: xxxFW (JEDEC SOP) is not available in Japan.

TC74LVX573F



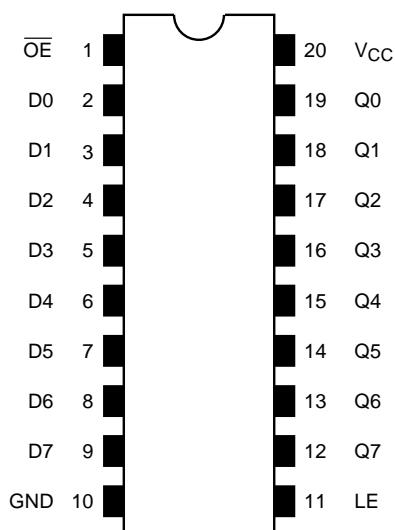
SOP20-P-300-1.27A


SOP20-P-300-1.27

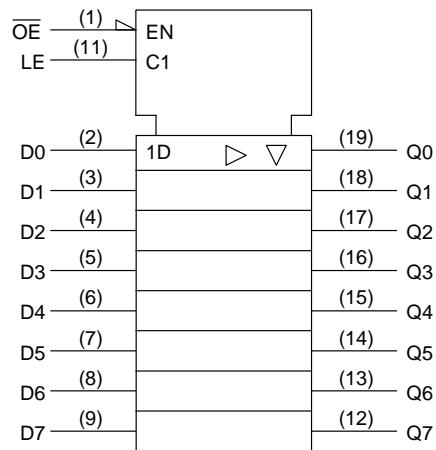
TC74LVX573FW

SOL20-P-300-1.27

TC74LVX573FT



TSSOP20-P-0044-0.65A

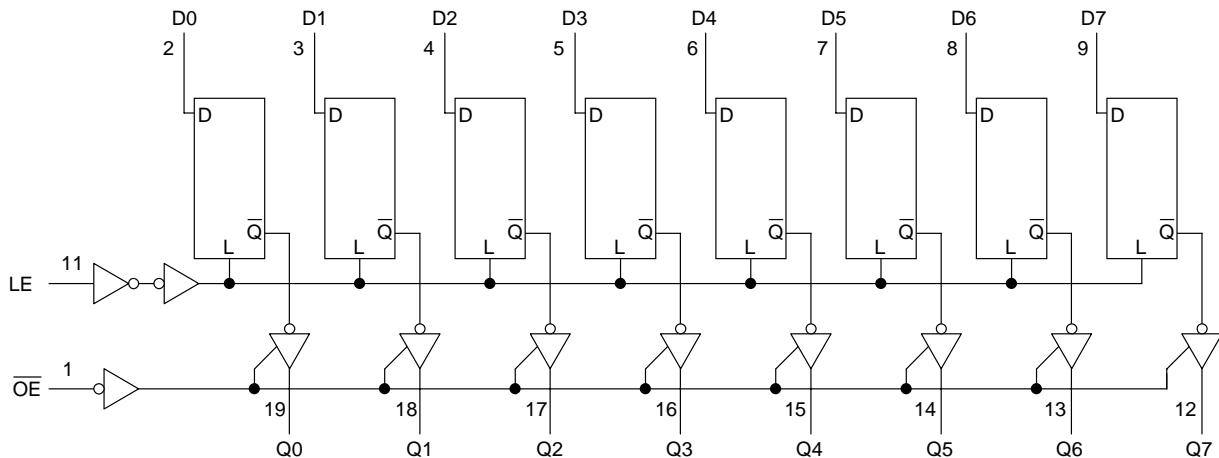

Weight

SOP20-P-300-1.27A	: 0.22 g (typ.)
SOP20-P-300-1.27	: 0.22 g (typ.)
SOL20-P-300-1.27	: 0.46 g (typ.)
TSSOP20-P-0044-0.65A	: 0.08 g (typ.)

Pin Assignment (top view)

IEC Logic Symbol

Truth Table


Inputs			Outputs
\overline{OE}	LE	D	
H	X	X	Z
L	L	X	Q_n
L	H	L	L
L	H	H	H

X: Don't care

Z: High impedance

 Q_n : Q outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V_{CC}	-0.5 to 7.0	V
DC input voltage	V_{IN}	-0.5 to 7.0	V
DC output voltage	V_{OUT}	-0.5 to $V_{CC} + 0.5$	V
Input diode current	I_{IK}	-20	mA
Output diode current	I_{OK}	± 20	mA
DC output current	I_{OUT}	± 25	mA
DC V_{CC} /ground current	I_{CC}	± 75	mA
Power dissipation	P_D	180	mW
Storage temperature	T_{stg}	-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	2.0 to 3.6	V
Input voltage	V_{IN}	0 to 5.5	V
Output voltage	V_{OUT}	0 to V_{CC}	V
Operating temperature	T_{opr}	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 100	ns/V

Note: The recommended operating conditions are required to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Electrical Characteristics

DC Characteristics

Characteristics		Symbol	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit	
					V _{CC} (V)	Min	Typ.	Max	Min		
Input voltage	H-level	V _{IH}	—	—	2.0	1.5	—	—	1.5	—	
					3.0	2.0	—	—	2.0	—	
					3.6	2.4	—	—	2.4	—	
	L-level	V _{IL}	—	—	2.0	—	—	0.5	—	0.5	
					3.0	—	—	0.8	—	0.8	
					3.6	—	—	0.8	—	0.8	
Output voltage	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = 50 µA	2.0	1.9	2.0	—	1.9	—	
				I _{OH} = 50 µA	3.0	2.9	3.0	—	2.9	—	
				I _{OH} = 4 mA	3.0	2.58	—	—	2.48	—	
	L-level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 µA	2.0	—	0	0.1	—	0.1	
				I _{OL} = 50 µA	3.0	—	0	0.1	—	0.1	
				I _{OL} = 4 mA	3.0	—	—	0.36	—	0.44	
3-state output	I _{OZ}	V _{IN} = V _{IH} or V _{IL}		3.6	—	—	±0.25	—	±2.5	µA	
Off-state current	I _{IN}	V _{IN} = 5.5 V or GND		3.6	—	—	±0.1	—	±1.0	µA	
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND		3.6	—	—	4.0	—	40.0	µA	

Timing Requirements (input: t_r = t_f = 3 ns)

Characteristics		Symbol	Test Condition		Ta = 25°C		Ta = -40 to 85°C		Unit
					V _{CC} (V)	Limit	Limit	Limit	
Minimum pulse width (LE)	t _W (H)		—	—	2.7	6.5	7.5	7.5	ns
					3.3 ± 0.3	5.0	5.0	5.0	
Minimum set-up time	t _s		—	—	2.7	5.0	5.0	5.0	ns
					3.3 ± 0.3	3.5	3.5	3.5	
Minimum hold time	t _h		—	—	2.7	1.5	1.5	1.5	ns
					3.3 ± 0.3	1.5	1.5	1.5	

AC Characteristics (input: $t_r = t_f = 3$ ns)

Characteristics	Symbol	Test Condition	Ta = 25°C			Ta = -40 to 85°C		Unit		
			V _{CC} (V)	C _L (pF)	Min	Typ.	Max			
Propagation delay time (LE-Q)	t _{pLH}	—	2.7	15	—	8.2	15.6	1.0	18.5	
				50	—	10.7	19.1	1.0	22.0	
	t _{pHL}	—	3.3 ± 0.3	15	—	6.4	10.1	1.0	12.0	
				50	—	8.9	13.6	1.0	15.5	
Propagation delay time (D-Q)	t _{pLH}	—	2.7	15	—	7.6	14.5	1.0	17.5	
				50	—	10.1	18.0	1.0	21.0	
	t _{pHL}	—	3.3 ± 0.3	15	—	5.9	9.3	1.0	11.0	
				50	—	8.4	12.8	1.0	14.5	
Output enable time	t _{pZL}	R _L = 1 kΩ	2.7	15	—	7.8	15.0	1.0	18.5	
				50	—	10.3	18.5	1.0	22.0	
	t _{pZH}		3.3 ± 0.3	15	—	6.1	9.7	1.0	12.0	
				50	—	8.6	13.2	1.0	15.5	
Output disable time	t _{pLZ}	R _L = 1 kΩ	2.7	50	—	12.1	19.1	1.0	22.0	
	t _{pHZ}		3.3 ± 0.3	50	—	10.1	13.6	1.0	15.5	
Output to output skew	t _{osLH}	(Note 1)	2.7	50	—	—	1.5	—	1.5	
	t _{osHL}		3.3 ± 0.3	50	—	—	1.5	—	1.5	
Input capacitance	C _{IN}	(Note 2)			—	4	10	—	10 pF	
Output capacitance	C _{OUT}	—			—	6	—	—	pF	
Power dissipation capacitance	C _{PD}	(Note 3)			—	29	—	—	pF	

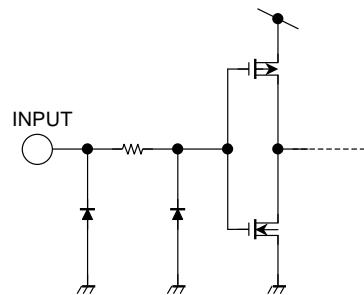
Note 1: Parameter guaranteed by design.

(tosLH = |t_{pLHm} - t_{pLHn}|, tosHL = |t_{pHLM} - t_{pHLn}|)

Note 2: Parameter guaranteed by design.

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption.

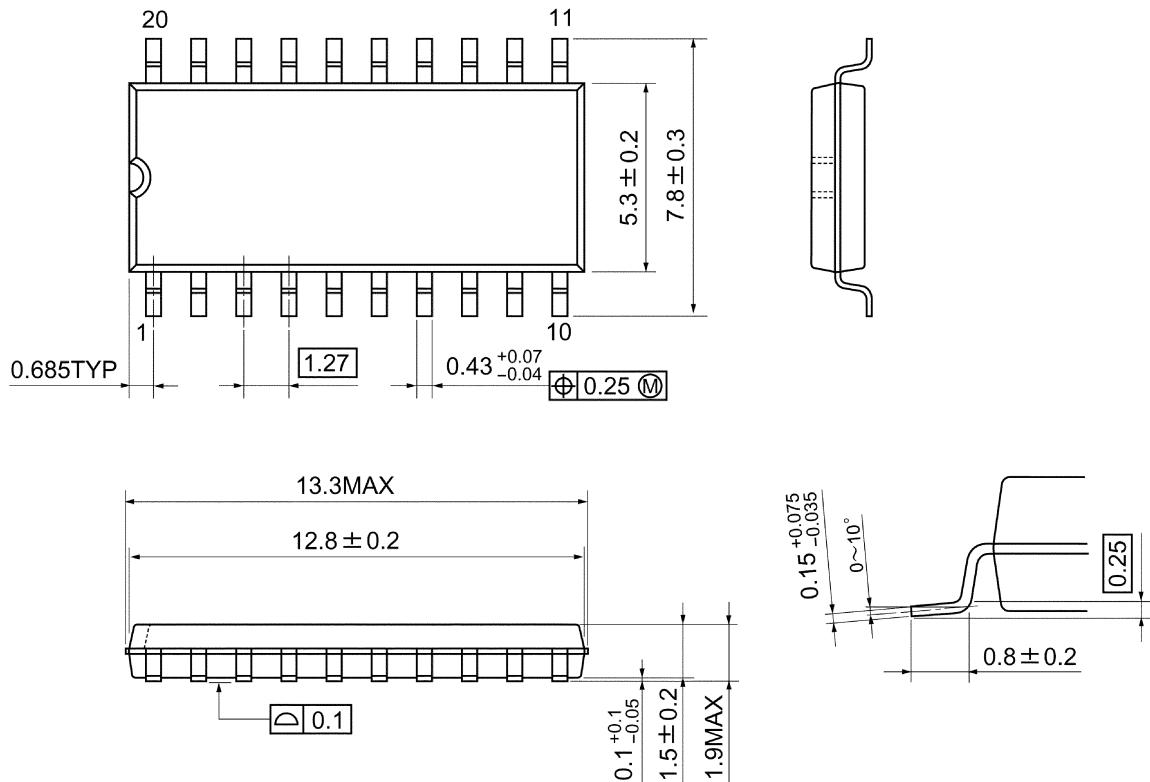
Average operating current can be obtained by the equation:


$$I_{CC} (\text{opr}) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per latch)}$$

And the total C_{PD} when n pcs. of Latch operate can be gained by the following equation:

$$C_{PD} (\text{total}) = 21 + 8 \cdot n$$

Noise Characteristics (Ta = 25°C, input: $t_r = t_f = 3$ ns, $C_L = 50$ pF)

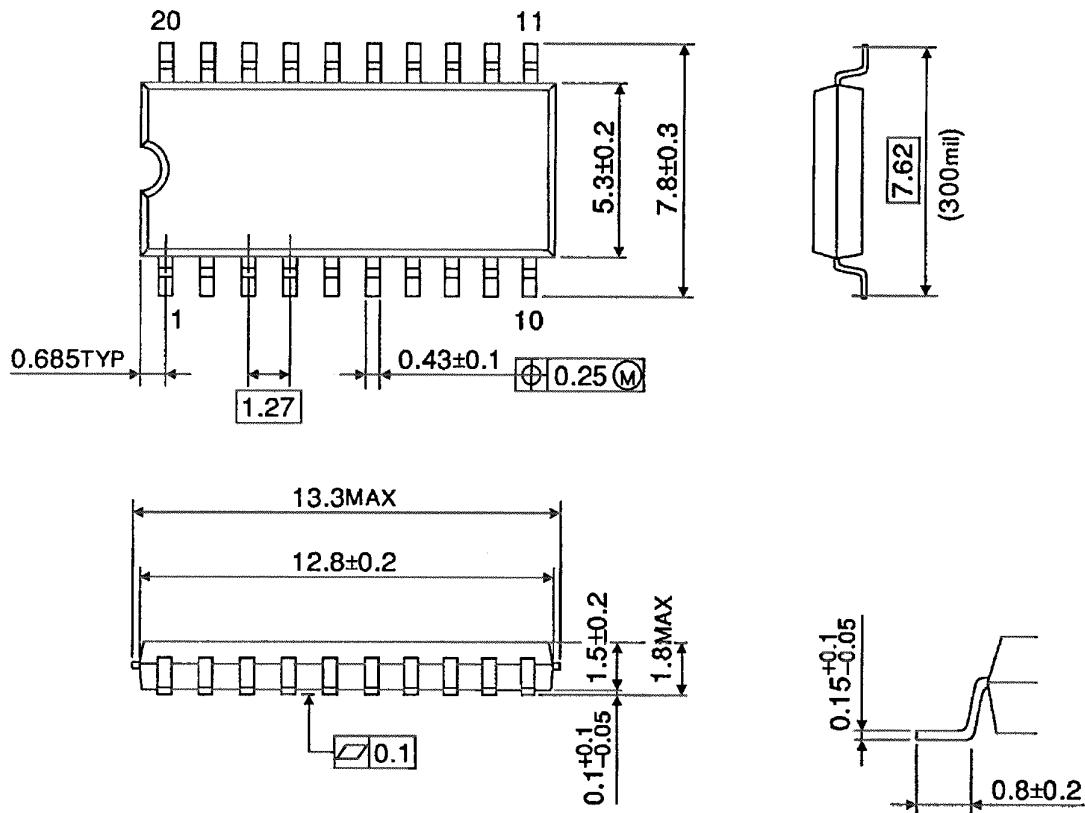

Characteristics	Symbol	Test Condition	V _{CC} (V)	Typ.	Limit	Unit
			3.3			
Quiet output maximum dynamic V _{OL}	V _{OLP}	—	3.3	0.5	0.8	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	—	3.3	-0.5	-0.8	V
Minimum high level dynamic input voltage V _{IH}	V _{IHD}	—	3.3	—	2.0	V
Maximum low level dynamic input voltage V _{IL}	V _{ILD}	—	3.3	—	0.8	V

Input Equivalent Circuit

Package Dimensions

SOP20-P-300-1.27A

Unit: mm

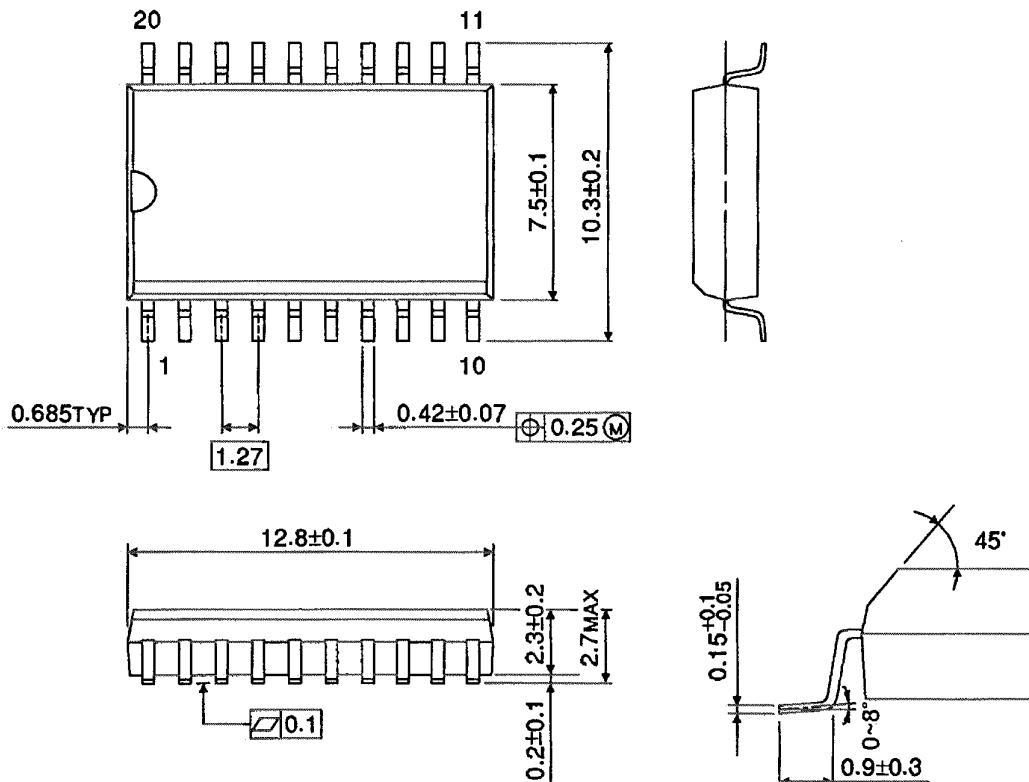


Weight: 0.22 g (typ.)

Package Dimensions

SOP20-P-300-1.27

Unit : mm

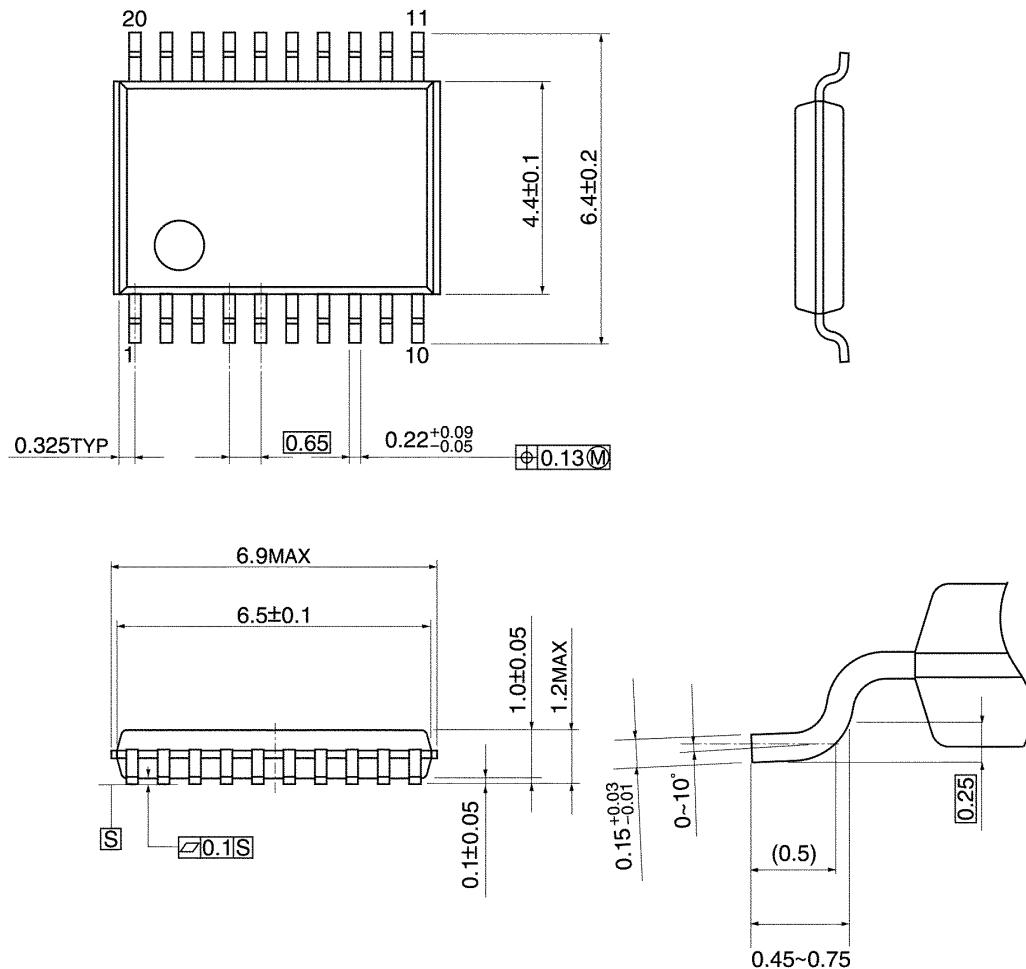


Weight: 0.22 g (typ.)

Package Dimensions (Note)

SOL20-P-300-1.27

Unit : mm


Note: This package is not available in Japan.

Weight: 0.46 g (typ.)

Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm

Weight: 0.08 g (typ.)

Note: Lead (Pb)-Free Packages**SOP20-P-300-1.27A TSSOP20-P-0044-0.65A****RESTRICTIONS ON PRODUCT USE**

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E