

MOTOROLA

1.1 GHz Super Low Power Dual Modulus Prescaler

The MC12052A is a super low power dual modulus prescaler used in phase-locked loop applications. Motorola's advanced Bipolar MOSAIC™ V technology is utilized to achieve low power dissipation of 2.7 mW at a minimum supply voltage of 2.7 V.

The MC12052A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of a 64/65 or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 1.1 GHz Toggle Frequency
- The MC12052 is Pin and Functionally Compatible with the MC12022
- Low Power 1.0 mA Typical
- 2.0 mA Maximum, -40 to 85°C, $V_{CC} = 2.7$ to 5.5 Vdc
- Short Setup Time (t_{set}) 16 ns Maximum @ 1.1 GHz
- Modulus Control Input Level is Compatible with Standard CMOS and TTL
- Maximum Input Voltage Should Be Limited to 6.5 Vdc

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. SW: H = V_{CC} , L = Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.

2. MC: H = 2.0 V to V_{CC} , L = GND to 0.8 V.

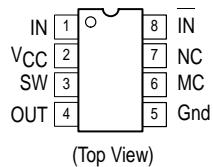
MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_A	-40 to 85	°C
Storage Temperature Range	T_{stg}	-65 to 150	°C
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

MC12052A

MECL PLL COMPONENTS ÷64/65, ÷128/129 LOW POWER DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA



D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

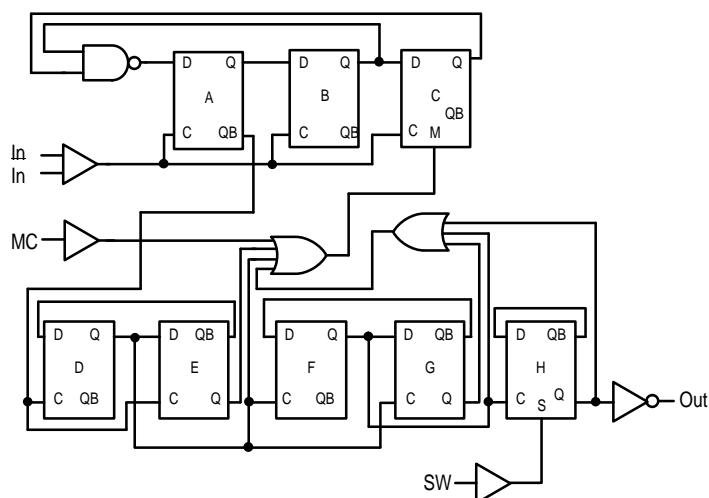
SD SUFFIX
PLASTIC PACKAGE
CASE 940
(SSOP-8)

PIN CONNECTIONS

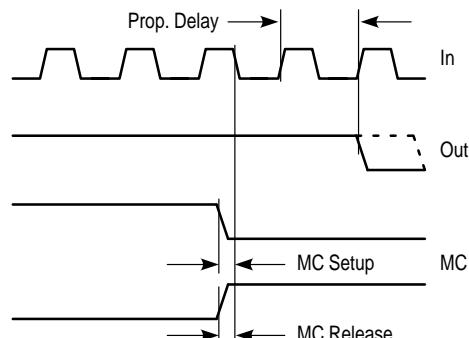
ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12052AD	$T_A = -40^\circ$ to $+85^\circ$ C	SO-8
MC12052ASD		SSOP-8

MC12052A


ELECTRICAL CHARACTERISTICS ($V_{CC} = 2.7$ to 5.5 VDC, $T_A = -40$ to 85°C , unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_t	0.1	1.4	1.1	GHz
Supply Current (Pin 2)	I_{CC}	–	1.0	2.0	mA
Modulus Control Input High (MC)	V_{IH1}	2.0	–	$V_{CC} + 0.5$ V	V
Modulus Control Input Low (MC)	V_{IL1}	Gnd	–	0.8	V
Divide Ratio Control Input High (SW)	V_{IH2}	$V_{CC} - 0.5$ V	V_{CC}	$V_{CC} + 0.5$ V	VDC
Divide Ratio Control Input Low (SW)	V_{IL2}	Open	Open	Open	–
Output Voltage Swing (Note 2) ($C_L = 8.0$ pF, $R_L = 3.3$ k Ω)	V_{out}	0.8	1.1	–	V _{PP}
Modulus Setup Time MC to Out @ 1100 MHz	t_{set}	–	11	16	ns
Input Voltage Sensitivity 250–1100 MHz 100–250 MHz	V_{in}	100 400	–	1000 1000	mV _{PP}
Output Current (Note 1) $V_{CC} = 2.7$ V, $C_L = 8.0$ pF, $R_L = 3.3$ k Ω $V_{CC} = 5.0$ V, $C_L = 8.0$ pF, $R_L = 7.2$ k Ω	I_O	– –	0.5 0.5	3.0 3.0	mA


NOTES: 1. Divide ratio of $\div 64/65$ @ 1.1 GHz

2. Valid over voltage range 2.7 to 5.5 V: $R_L = 3.3 \text{ k}\Omega$ @ $V_{CC} = 2.7 \text{ V}$; $R_L = 7.2 \text{ k}\Omega$ @ $V_{CC} = 5.0 \text{ V}$

Figure 1. Logic Diagram (MC12052A)

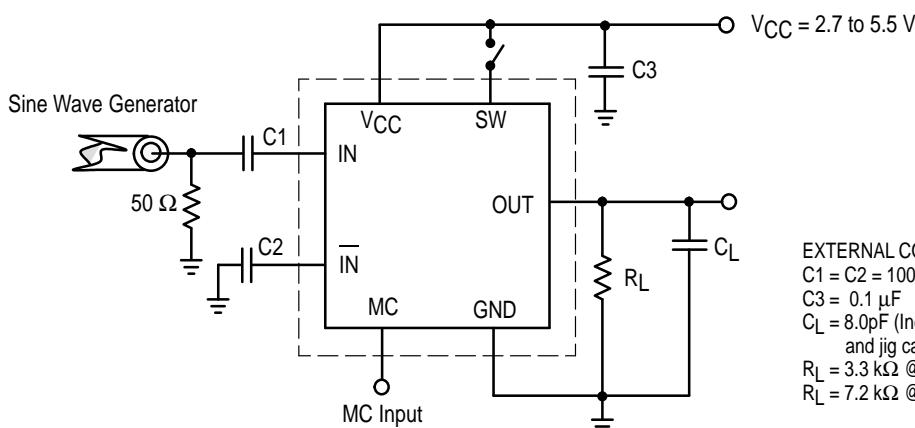
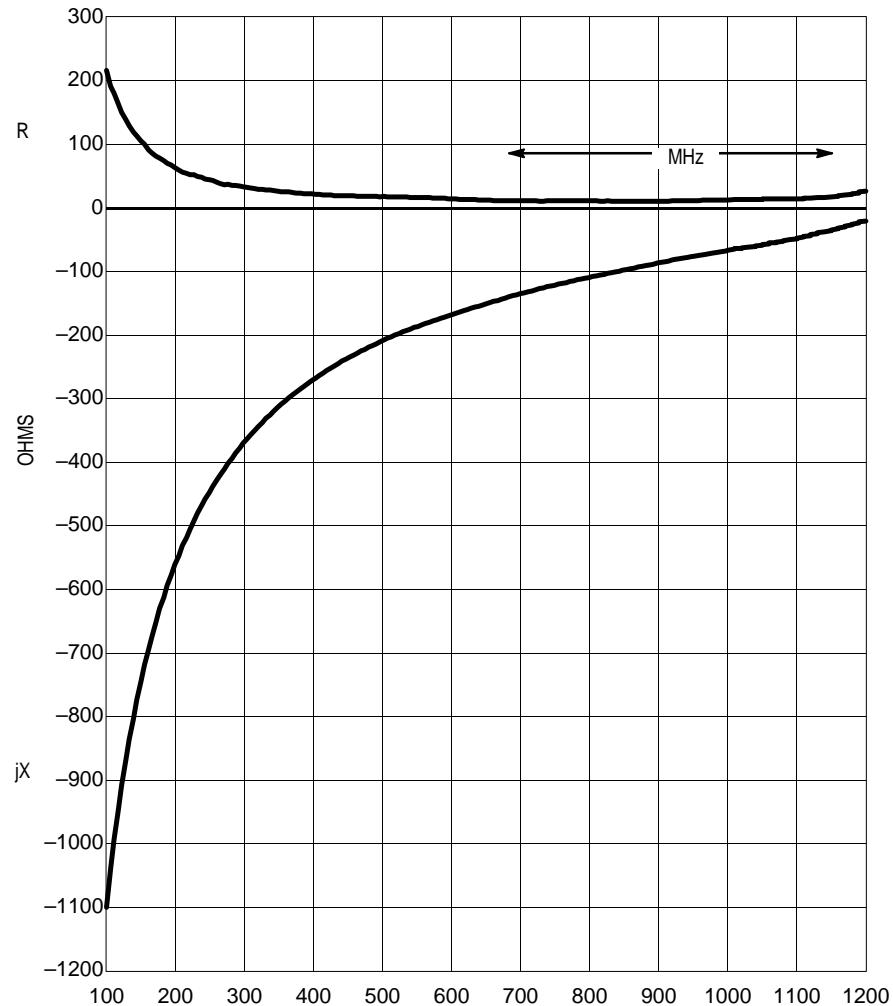


Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.


Figure 3. AC Test Circuit

EXTERNAL COMPONENTS
 $C_1 = C_2 = 1000 \text{ pF}$
 $C_3 = 0.1 \mu\text{F}$
 $C_L = 8.0\text{pF}$ (Including Scope
 and jig capacitance)
 $R_L = 3.3 \text{ k}\Omega$ @ $V_{CC} = 2.7 \text{ V}$
 $R_J = 7.2 \text{ k}\Omega$ @ $V_{CC} = 5.0 \text{ V}$

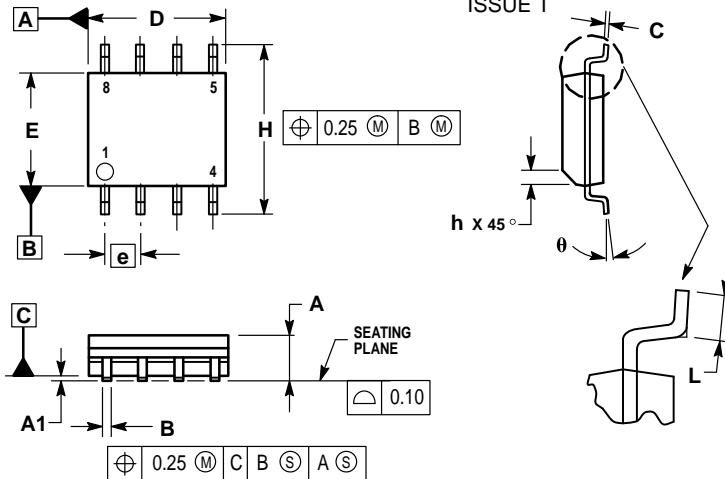
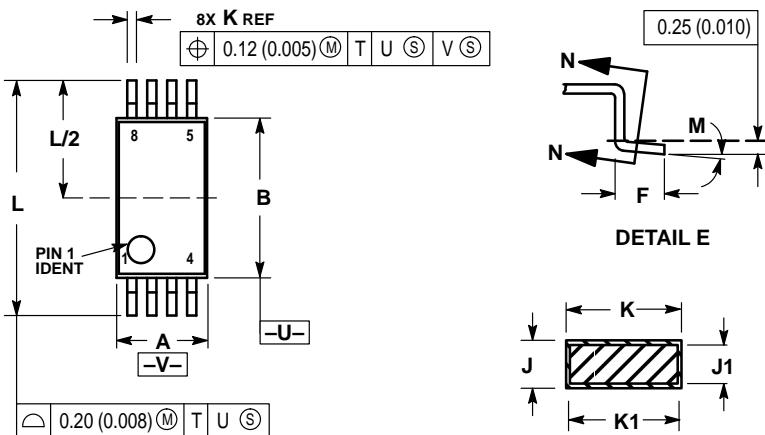
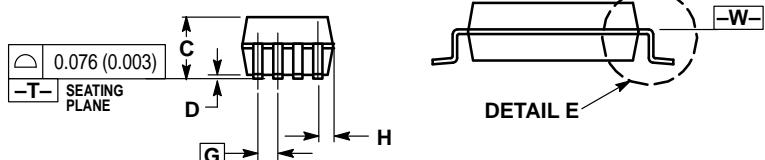
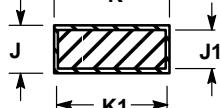

MC12052A

Figure 4. Typical Input Impedance versus Input Frequency



OUTLINE DIMENSIONS


D SUFFIX
PLASTIC PACKAGE
CASE 751-06
(SO-8)
ISSUE T


SD SUFFIX
PLASTIC PACKAGE
CASE 940-03
(SSOP-8)
ISSUE B

SECTION N-N

DETAIL E

SECTION N-N

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	2.87	3.13	0.113	0.123
B	5.20	5.38	0.205	0.212
C	1.73	1.99	0.068	0.078
D	0.05	0.21	0.002	0.008
F	0.63	0.95	0.024	0.037
G	0.65 BSC		0.026 BSC	
H	0.44	0.60	0.017	0.023
J	0.09	0.20	0.003	0.008
J1	0.09	0.16	0.003	0.006
K	0.25	0.38	0.010	0.015
K1	0.25	0.33	0.010	0.013
L	7.65	7.90	0.301	0.311
M	0°	8°	0°	8°

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

Mfax is a trademark of Motorola, Inc.

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609
Motorola Fax Back System – US & Canada ONLY 1-800-774-1848
– <http://sps.motorola.com/mfax/>

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: <http://motorola.com/sps/>

MOTOROLA

MC12052A/D