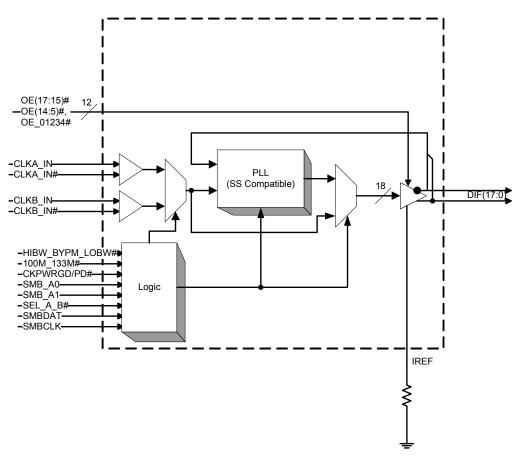


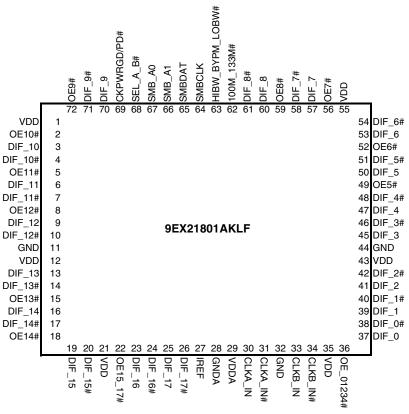
18 Output PCle G2/QPI Differential Buffer with 2:1 input mux 9EX21801A

Description

The **9EX21801** provides 18 output clocks for PCIe Gen2 (100MHz) or QPI (133MHz) applications. The **9EX21801** has 4 selectable SMBus addresses, and dedicated CKPWRGD/PD# and VDDA pins for easy board design. A differential CPU clock from a CK410B+ main clock generator, such as the **932S421**, drives the **9EX21801**. In fanout mode, the **9EX21801** provides outputs up to 400MHz.


Key Specifications

- DIF output cycle-to-cycle jitter < 50ps
- DIF output-to-output skew < 150 ps
- PCIe Gen2 compliant phase noise
- QPI 133MHz compliant phase noise


Features/Benefits

- Supports output clock frequencies up to 400 MHz
- 4 Selectable SMBus addresses
- SMBus address is independent of PLL operating mode
- Dedicated CKPWRGD/PD# and VDDA pins ease board design
- Available in industrial temperature range (-40°C to +85°C)

Functional Block Diagram

Pin Configuration

72-pin MLF

Frequency/Functionality Table

1 ToqueTioy/T	anotionant	, i abic			
Byte 0, bit 2 (100_133M# Latch)	Byte 0, bit 1 FSB	Byte 0, bit 0 FSA	Input MHz	DIF_x MHz	Notes
1	0	1	100.00	100.00	1
0	0	1	133.33	133.33	1
0	1	1	166.67	166.67	2
0	1	0	200.00	200.00	2
0	0	0	266.67	266.67	2
1	0	0	333.33	333.33	2
1	1	0	400.00	400.00	2
1	1	1		Reserved	<u> </u>

Notes:100M_133M#

- Latch selects between 100 and 133 MHz.
 This is equivalent to FSC in CK410B+/CK509B FS table.
- 2. Writing Byte 0 bits (2:0) can select other frequencies. These frequencies are not characterized in PLL Mode

HIBW_BYPM_LOBW# Selection (Pin 63)

State	Voltage	Mode
Low	<0.8V	Low BW
Mid	1.2 <vin<1.8v< td=""><td>Bypass</td></vin<1.8v<>	Bypass
High	Vin > 2.0V	High BW

Power Groups

Pin Num	Description			
VDD	GND	- Description		
29	28	Main PLL, Analog		
1,12,21,35,43,55	11,32,44	DIF clocks		

Power Down Functionality

INPUT	S	OUTPUTS	PLL State		
CKPWRGD/PD#	Input	DIF_x	PLL State		
1	Running	Running	ON		
0	Χ	Hi-Z	OFF		

SMBus Address Selection (pins 66, 67)

SMB_A1	SMB_A0	Address
0	0	D4
0	1	D6
1	0	D8
1	1	DA

Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
	0540"	18.1	Active low input for enabling DIF pair 10.
2	OE10#	IN	1 = tri-state outputs, 0 = enable outputs
3	DIF_10	OUT	0.7V differential true clock output
4	DIF_10#	OUT	0.7V differential complement clock output
_			Active low input for enabling DIF pair 11.
5	OE11#	IN	1 = tri-state outputs, 0 = enable outputs
6	DIF_11	OUT	0.7V differential true clock output
7	 DIF_11#	OUT	0.7V differential complement clock output
			Active low input for enabling DIF pair 12.
8	OE12#	IN	1 = tri-state outputs, 0 = enable outputs
9	DIF_12	OUT	0.7V differential true clock output
10	DIF_12#	OUT	0.7V differential complement clock output
11	GND	PWR	Ground pin.
12	VDD	PWR	Power supply, nominal 3.3V
13	DIF_13	OUT	0.7V differential true clock output
14	DIF_13#	OUT	0.7V differential complement clock output
			Active low input for enabling DIF pair 13.
15	OE13#	IN	1 = tri-state outputs, 0 = enable outputs
16	DIF_14	OUT	0.7V differential true clock output
17	DIF_14#	OUT	0.7V differential complement clock output
17		001	Active low input for enabling DIF pair 14.
18	OE14#	IN	1 = tri-state outputs, 0 = enable outputs
19	DIF_15	OUT	0.7V differential true clock output
20	DIF_15#	OUT	0.7V differential true clock output
21	VDD	PWR	Power supply, nominal 3.3V
21	VUU	FWN	Active low input for enabling DIF pairs 15, 16 and 17
22	OE15_17#	IN	1 = tri-state outputs, 0 = enable outputs
23	DIF_16	OUT	0.7V differential true clock output
24	DIF_16#	OUT	0.7V differential true clock output
	DIF_16#	OUT	0.7V differential complement clock output
25 26	DIF_17#	OUT	0.7V differential true clock output
20	DIF_17#	001	
07	IDEE	OUT	This pin establishes the reference current for the differential current-mode output pairs. This pin
27	IREF	OUT	requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475
	ONDA	DIMD	ohms is the standard value.
28	GNDA	PWR	Ground pin for the PLL core.
29	VDDA	PWR	3.3V power for the PLL core.
30	CLKA_IN	IN	True Input for differential reference clock.
31	CLKA_IN#	IN	Complement Input for differential reference clock.
32	GND	PWR	Ground pin.
33	CLKB_IN	IN	True Input for differential reference clock.
34	CLKB_IN#	IN	Complement Input for differential reference clock.
35	VDD	PWR	Power supply, nominal 3.3V
36	OE_01234#	IN	Active low input for enabling DIF pairs 0, 1, 2, 3 and 4.
	_		1 = tri-state outputs, 0 = enable outputs

Pin Description (continued)

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
37	DIF 0	OUT	0.7V differential true clock output
	DIF_0#	OUT	0.7V differential complement clock output
	DIF_1	OUT	0.7V differential true clock output
40	 DIF_1#	OUT	0.7V differential complement clock output
41	DIF_2	OUT	0.7V differential true clock output
42	DIF_2#	OUT	0.7V differential complement clock output
43	VDD	PWR	Power supply, nominal 3.3V
44	GND	PWR	Ground pin.
45	DIF_3	OUT	0.7V differential true clock output
46	DIF_3#	OUT	0.7V differential complement clock output
47	DIF_4	OUT	0.7V differential true clock output
48	DIF_4#	OUT	0.7V differential complement clock output
			Active low input for enabling DIF pair 5.
49	OE5#	IN	1 = tri-state outputs, 0 = enable outputs
50	DIF_5	OUT	0.7V differential true clock output
51	DIF_5#	OUT	0.7V differential true clock output
31	DIF_3#	001	Active low input for enabling DIF pair 6.
52	OE6#	IN	1 = tri-state outputs, 0 = enable outputs
FO	DIF_6	OUT	0.7V differential true clock output
53			
54	DIF_6#	OUT	0.7V differential complement clock output
55	VDD	PWR	Power supply, nominal 3.3V
56	OE7#	IN	Active low input for enabling DIF pair 7.
	DIE =	0.17	1 = tri-state outputs, 0 = enable outputs
57	DIF_7	OUT	0.7V differential true clock output
58	DIF_7#	OUT	0.7V differential complement clock output
59	OE8#	IN	Active low input for enabling DIF pair 8.
		a	1 = tri-state outputs, 0 = enable outputs
60	DIF_8	OUT	0.7V differential true clock output
61	DIF_8#	OUT	0.7V differential complement clock output
62	100M_133M#	IN	Input to select operating frequency. See Frequency/Functionality Table for functionality of this
			pin.
63	HIBW_BYPM_LOBW#	IN	Trilevel input to select High BW, Bypass Mode or Low BW.
			0 = Low BW Mode, Mid= Bypass Mode, 1 = High Bandwidth
64	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
65	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
66	SMB_A1	IN	SMBus address bit 1
67	SMB_A0	IN	SMBus address bit 0 (LSB)
68	SEL_A_B#	IN	Input to select differential input clock A or differential input clock B.
	OLL_A_D#	114	0 = Input B selected, 1 = Input A selected.
69	CKPWRGD/PD#	IN	Notifies the clock to sample latched inputs on the rising edge, and to power down on the falling
09		IIN	edge.
70	DIF_9	OUT	0.7V differential true clock output
71	DIF_9#	OUT	0.7V differential complement clock output
72	OE9#	IN	Active low input for enabling DIF pair 9.
12	UE9#	IIN	1 = tri-state outputs, 0 = enable outputs

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
							1
3.3V Core Supply Voltage	VDDA	Analog PLL Supply, referenced to GND	-0.5		4.6	V	ı
3.3V Logic Supply							1
Voltage	VDD	Main power supply , referenced to GND	-0.5		4.6	V	I
Storage Temperature	Ts		- 65		150	°C	1
Ambient Operating Temp	T _{COM}		0		70	°C	1
Ambient Operating Temp	T_IND		-40		85	°C	1
Case Temperature	Tcase				115	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = T_{COM}$ or T_{IND} ; Supply Voltage $V_{DD} = 3.3 \text{ V } +/-5\%$

				1	_	
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
V_{IH}	3.3 V +/-5%, referenced to GND	2		3.6	V	
V_{IL}	3.3 V +/-5%, referenced to GND	-0.3		0.8	V	
I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
I _{IL1}	V _{IN} = 0 V; Inputs w/o pull-up resistors	-5			uA	
I _{IL2}	V _{IN} = 0 V; Inputs w/ pull-up resistors	-200			uA	
I _{DD3.3D}	VDD, Full Active, C _L = Full load;			450	mA	1
I _{DD3.3A}	VDDA, Full Active, C _L = Full load;			40	mA	1
I _{DD3.3DPD}	all differential pairs tri-stated			15	mA	1
I _{DD3.3APD}	all differential pairs tri-stated			20	mA	1
F _{iPLL}	100MHz PLL Mode	80		110	MHz	1
F _{iPLL}	133MHz PLL Mode	90		150	MHz	1
F _{iBYPASS}	Bypass Mode	33		400	MHz	1
L _{pin}				7	nΗ	1
C _{IN}	Logic Inputs	1.5		5	pF	1
C_OUT	Output pin capacitance	-		6	pF	1
T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1
f_{MOD}	Triangular Modulation	30		33	kHz	1,3
t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	cycles	1,2
t _{DRVPD}	DIF output enable after PD de-assertion			300	us	1,2
t _F	Fall time of OE#			5	ns	1
t _R	Rise time of OE#			5	ns	
	V _{IH} V _{IL} I _{IH} I _{IL1} I _{IL2} I _{DD3.3D} I _{DD3.3A} I _{DD3.3APD} I _{DD3.3APD} I _{DD3.3APD} F _{iPLL} F _{iPLL} F _{iBYPASS} L _{pin} C _{IN} C _{OUT} T _{STAB} I _{MOD} t _{LATOE#} t _{DRVPD}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IH} 3.3 V +/-5%, referenced to GND 2 V _{IL} 3.3 V +/-5%, referenced to GND -0.3 I _{IH} V _{IN} = V _{DD} -5 I _{IL1} V _{IN} = 0 V; Inputs w/o pull-up resistors -5 I _{IL2} V _{IN} = 0 V; Inputs w/ pull-up resistors -200 I _{DD3.3D} VDD, Full Active, C _L = Full load; I _{DD3.3A} VDDA, Full Active, C _L = Full load; I _{DD3.3APD} all differential pairs tri-stated I _{DD3.3APD} all differential pairs tri-stated F _{IPLL} 100MHz PLL Mode 80 F _{IPLL} 133MHz PLL Mode 90 F _{IBYPASS} Bypass Mode 33 L _{pin} Logic Inputs 1.5 C _{OUT} Output pin capacitance From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock f _{MOD} Triangular Modulation 30 t _{LATOE#} DIF start after OE# assertion DIF output enable after PD de-assertion 4 DIF output enable after PD de-assertion Fall time of OE#	V _{IH} 3.3 V +/5%, referenced to GND 2 3.6 V _{IL} 3.3 V +/-5%, referenced to GND -0.3 0.8 I _{IH} V _{IN} = V _{DD} -5 5 I _{IL1} V _{IN} = 0 V; Inputs w/o pull-up resistors -5 I _{IL2} V _{IN} = 0 V; Inputs w/ pull-up resistors -200 I _{DD3.3D} VDD, Full Active, C _L = Full load; 450 I _{DD3.3A} VDDA, Full Active, C _L = Full load; 40 I _{DD3.3APD} all differential pairs tri-stated 15 I _{DD3.3APD} all differential pairs tri-stated 20 F _{IPLL} 100MHz PLL Mode 80 110 F _{IPLL} 133MHz PLL Mode 90 150 F _{IBYPASS} Bypass Mode 33 400 L _{pin} 7 7 C _{IN} Logic Inputs 1.5 5 C _{OUT} Output pin capacitance 6 From V _{DD} Power-Up and after input to 1st clock 1 1 t _{OUT} Triangular Modulation 30 33 t _{LATOE#} DIF s	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹Guaranteed by design and characterization, not 100% tested in production.

²Time from deassertion until outputs are >200 mV

³For which spread spectrum tracking error spec will be met.

Electrical Characteristics - Clock Input Parameters

 $T_A = T_{COM}$ or T_{IND} ; Supply Voltage $V_{DD} = 3.3 \ V$ +/-5%

TA TOOM OF THE TOTAL							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage -	V _{IHDIF}	Differential inputs	600	800	1150	mV	1
DIF_IN	• Indir	(single-ended measurement)	000	000	1.00		·
Input Low Voltage -	V _{ILDIF}	Differential inputs	V _{SS} - 300	0	300	mV	1
DIF_IN	V IL DIF	(single-ended measurement)	V SS - 300	0	300	111 V	' '
Input Common Mode	V _{сом}	Common Mode Input Voltage	300		1000	mV	1
Voltage - DIF_IN	V COM	Common wode input voltage	300		1000	IIIV	ı
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value	300		1450	mV	1
mpar / impiriade	* SWING	1 oak to 1 oak vala o	000		1 100		·
Input Slew Rate - DIF IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
input elem riate Bit _int	av, ac	mode and amoremany	0.1		ŭ	7,110	.,_
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Duty Cycle	utin	ivie asurement nom dillerential wavenom	45		55	/0	ı
Input Jitter - Cycle to	1	Differential Measurement	0		125	no	1
Cycle	J_{DIFIn}	Dinerential Measurement	U		125	ps	I

Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - DIF 0.7V Current Mode Differential Pairs

 $T_A = T_{COM}$ or T_{IND} ; $V_{DD} = 3.3 \text{ V}$ +/-5%; $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $R_{REF} = 4.75\Omega$, 10 inch transmission lines

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended	660		850	mV	1,3
Voltage Low	VLow	signal using oscilloscope math function.	-150		150	IIIV	1,3
Max Voltage	Vovs	Measurement on single ended signal			1150	mV	1
Min Voltage	Vuds	using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V V_{OL} = 0.175V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Jitter, Cycle to cycle	t:	PLL mode			50	ps	1,5
onter, cycle to cycle	T _{jcyc-cyc}	BYPASS mode as additive jitter			50	ps	1,4

¹Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through Vswing min centered around differential zero

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+/CK509B accuracy requirements. The 9EX21801 itself does not contribute to ppm error.

 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7 \text{ W}$ @ $Z_{O} = 50\Omega$.

⁴ Applies to Bypass Mode Only

⁵ Measured from differential waveform

Electrical Characteristics - Skew and Differential Jitter Parameters

 $T_A = T_{COM}$ or T_{IND} ; Supply Voltage $V_{DD} = 3.3 \text{ V } +/-5\%$

Group	Parameter	Description	Min	TYP	Max	Units	Notes
CLK_IN, DIF[x:0]	TODO DILIAGONA	Input-to-Output Skew in PLL mode (1:1 only), nominal value @ 25°C, 3.3V, 100MHz	950	1000	1125	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	topo purcou	Input-to-Output Skew in PLL mode (1:1 only), nominal value @ 25°C, 3.3V, 133MHz	1100	1 125	1175	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	Inn nyn	Input-to-Output Skew in Bypass mode (1:1 only), nominal value @ 25°C, 3.3V	4	4.7	5.2	ns	1,2,3,5
CLK_IN, DIF [x:0]	8t _{SPO_PLL}	Input-to-Output Skew Variation in PLL mode (over specified voltage / temperature operating ranges)		12501	13501	ps	1,2,4,5,6, 10
CLK_IN, DIF [x:0]	8t _{PD_BYP}	Input-to-Output Skew Variation in Bypass mode (over specified voltage / temperature operating ranges)		18001	19001	ps	1,2,3,4,5, 6,10
DIF[17:0]	t _{SKEW_A19}	Output-to-Output Skew across all 18 outputs (Common to Bypass and PLL mode - all outputs at same gear)		100	150	ps	1,2,3
DIF[17:0]	t _{JPH}	Differential Phase Jitter (RMS Value)		2	10	ps	1,4,7
DIF[17:0]	t _{SSTERROR}	Differential Spread Spectrum Tracking Error (peak to peak)		20	80	ps	1,4,9

NOTES:

- 1. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
- 2. Measured from differential cross-point to differential cross-point
- 3. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
- 4. This parameter is deterministic for a given device
- 5. Measured with scope averaging on to find mean value.
- 6. Long-term variation from nominal of input-to-output skew over temperature and voltage for a single device.
- 7. This parameter is measured at the outputs of two separate ICS9EX21801 devices driven by a single CK410B+. The ICS9EX21801's must be set to high bandwidth. Differential phase jitter is the accumulation of the phase jitter not shared by the outputs (eg. not including the affects of spread spectrum). Target ranges of consideration are agents with BW of 1-22Mhz and 11-33Mhz.
- 8. t is the period of the input clock
- 9. Differential spread spectrum tracking error is the difference in spread spectrum tracking between two ICS9EX21801 devices. This parameter is measured at the outputs of two separate ICS9EX21801 devices driven by a single CK410B+ in Spread Spectrum mode. The ICS9EX21801's must be set to high bandwidth. The spread spectrum characteristics are: maximum of 0.5%, 30-33KHz modulation frequency, linear profile.
- 10. This parameter is an absolute value. It is not a double-sided figure.

Electrical Characteristics - Phase Jitter (PLL Mode)

Licoti iodi Olidi dotci	otioo i ilaco	Oittoi (i EE iliodo)					_
PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP.	MAX	UNITS	NOTES
PLL Bandwidth	BWH	High Bandwidth Selected	2	3	4	MHz	
PLL Bandwidth	BWL	Low Bandwidth Selected	0.7	1	2	MHz	
PLL Jitter Peaking	jPKH	High Bandwidth Selected		2.5	3	dB	
PLL Jitter Peaking	jPKL	Low Bandwidth Selected		2	2.5	dB	
		PCIe Gen 1 (1.5 - 22 MHz)		36/42	108	ps	1,2
		PCIe Gen 2 (8-16 MHz, 5-16 MHz) Lo-band content (10kHz to 1.5MHz)		1.1/1.2	3	ps rms	1,2
	tjphase_LoBW	PCIe Gen 2 (8-16 MHz, 5-16 MHz) Hi-band content (1.5MHz to Nyquist)		2.0/2.1	3.1	ps rms	1,2
		QPI_133MHz (4.8Gb, 12 UI)		0.24/0.25	0.5	ps rms	2, 3
litta y Dhaga		QPI_133MHz (6.4Gb, 12 UI)		0.18/0.19	0.5	ps rms	2, 3
Jitter, Phase		PCIe Gen 1 (1.5 - 22 MHz)		28/32	86	ps	1,2
		PCIe Gen 2 (8-16 MHz, 5-16 MHz) Lo-band content (10kHz to 1.5MHz)		1.2/1.5	3	ps rms	1,2
	tjphase_HIBW	PCIe Gen 2 (8-16 MHz, 5-16 MHz) Hi-band content (1.5MHz to Nyquist)		2.6/2.7	3.1	ps rms	1,2
		QPI_133MHz (4.8Gb, 12 UI)		0.27/0.28	0.5	ps rms	2, 3
		QPI_133MHz (6.4Gb, 12 UI)		0.2/0.21	0.5	ps rms	2, 3

Notes on Phase Jitter: (Guaranteed by design and characterization, not tested in production)

¹ See http://www.pcisig.com for complete specs. First number is Spread Spectrum Off, second is Spread Spectrum On.

² Device driven by IDT CK410B+ (932S421CGLF) or CK509B (932S509EKLF) or equivalent

³ Calculated from Intel Supplied Clock Jitter Tool 1.5.1. First number is Spread Spectrum Off, second is Spread Spectrum On

General SMBus serial interface information for the 9EX21801A

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D4_(h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D4 (n)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block V	/rit	e Operation		
Cor	ntroller (Host)		ICS (Slave/Receiver)		
Т	starT bit				
Slave	Address D4 _(h) *				
WR	WRite				
			ACK		
Begi	nning Byte = N				
		ACK			
Data	Byte Count = X				
			ACK		
Begir	nning Byte N				
			ACK		
	O	Byte			
	O	X By	\diamond		
	O	\Diamond			
	•	\Diamond			
Byt	e N + X - 1				
	· · · · · · · · · · · · · · · · · · ·		ACK		
Р	stoP bit				

Ind	ex Block Rea	ad	Operation			
Con	troller (Host)	IC	S (Slave/Receiver)			
Т	starT bit					
Slave	Address D4 _(h) *					
WR	WRite					
			ACK			
Begii	nning Byte = N					
			ACK			
RT	Repeat starT					
Slave	Address D5 _(h) *					
RD	ReaD					
			ACK			
		Data Byte Count = X				
	ACK					
			Beginning Byte N			
	ACK					
		X Byte	\Diamond			
	\Q	B	\Q			
	\rightarrow	×	\Q			
	Q					
			Byte N + X - 1			
N	Not acknowledge					
Р	stoP bit					

Note: The address is selectable among 4 values (page 2).

9EX21801 SMBus Addressing

SMB_A(2:0) = 000 SMB Adr: D0 (DB1200G/GS) (DB1900G/GS)

SMB_A(2:0) = 001 SMB Adr: D2 (DB1200G/GS) (DB1900G/GS)

 $SMB_A(2:0) = 010$

OR

SMB Adr: D2 (CK410B+/CK509B)

SMB_A(1:0) = 00 SMB Adr: D4 9EX21801

OR SMB Adr: D4 (DB1200G/GS) (DB1900G/GS)

SMB_A(1:0) = 01 SMB Adr: D6 9EX21801 OR SMB_A(2:0) = 011 SMB Adr: D6 (DB1200G/GS) (DB1900G/GS)

SMB_A(1:0) = 10 SMB Adr: D8 9EX21801

OR SMB_A(2:0) = 100 SMB Adr: D8 (DB1200G/GS) (DB1900G/GS)

OR

SMB_A(1:0) = 11 SMB Adr: DA 9EX21801 SMB_A(2:0) = 101 SMB Adr: DA (DB1200G/GS) (DB1900G/GS)

> SMB_A(2:0) = 110 SMB Adr: DC (DB1200G/GS) (DB1900G/GS)

SMB Adr: DC 9DB403/803 (DB400E/800E)

SMB_A(2:0) = 111 SMB Adr: DE (DB1200G/GS) (DB1900G/GS) SMBusTable: Output, and PLL BW Control Register

Byte	e 0 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	4	PLL_B	PLL_BW# adjust		00 = Low BW (1MHz)		Latch
Bit 6	4	BYPASS# t	est mode / PLL	RW	10 = Bypass 11 = High BW (3MHz)		Latch
Bit 5		DIF_17	Output Control	RW	Hi-Z	Enable	1
Bit 4		DIF_16	Output Control	RW	Hi-Z	Enable	1
Bit 3			RESERVED				0
Bit 2	ı	100M_133M#	Frequency Select Bit C	RW	133MHz	100MHz	Latch
Bit 1	-	FSB	Frequency Select Bit B	RW	See Frequency Select		0
Bit 0	-	FSA	Frequency Select bit A	RW	Table		1

SMBusTable: Output Control Register

Byte 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		DIF_7	Output Control	RW	Hi-Z	Enable	1
Bit 6		DIF_6	Output Control	RW	Hi-Z	Enable	1
Bit 5		DIF_5	Output Control	RW	Hi-Z	Enable	1
Bit 4		DIF_4	Output Control	RW	Hi-Z	Enable	1
Bit 3		DIF_3	Output Control	RW	Hi-Z	Enable	1
Bit 2		DIF_2	Output Control	RW	Hi-Z	Enable	1
Bit 1		DIF_1	Output Control	RW	Hi-Z	Enable	1
Bit 0		DIF_0	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output Control Register

Cimbus rubic. Output Control ricgister							
Byte 2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		DIF_15	Output Control	RW	Hi-Z	Enable	1
Bit 6		DIF_14	Output Control	RW	Hi-Z	Enable	1
Bit 5		DIF_13	Output Control	RW	Hi-Z	Enable	1
Bit 4		DIF_12	Output Control	RW	Hi-Z	Enable	1
Bit 3		DIF_11	Output Control	RW	Hi-Z	Enable	1
Bit 2		DIF_10	Output Control	RW	Hi-Z	Enable	1
Bit 1		DIF_9	Output Control	RW	Hi-Z	Enable	1
Bit 0		DIF_8	Output Control	RW	Hi-Z	Enable	1

SMBusTable: Output Enable Readback Register

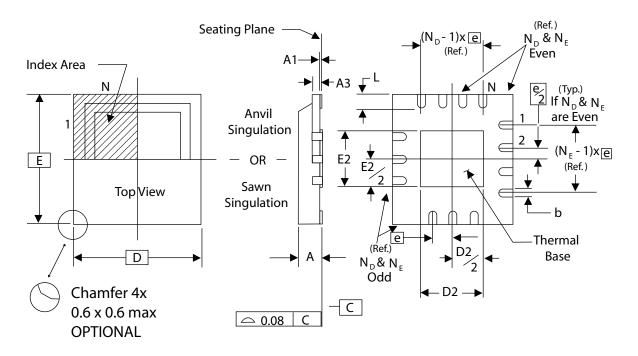
Byte	e 3 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	5	OE11# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 6	2	OE10# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 5	72	OE9# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 4	59	OE8# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 3	56	OE7# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 2	52	OE6# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 1	49	OE5# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 0	36	OE_01234# Input	Pin Readback	R	Pin Low	Pin Hi	Χ

SMBusTable: Output Enable Readback Register

Byte	e 4 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7			RESERVED				0
Bit 6			RESERVED				0
Bit 5	62	100M_133M# Input	Pin Readback	R	133M	100M	Χ
Bit 4	68	SEL_A_B# Input	Pin Readback	R	Input B	Input A	Χ
Bit 3	22	OE15_17# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 2	18	OE14# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 1	15	OE13# Input	Pin Readback	R	Pin Low	Pin Hi	Χ
Bit 0	8	OE12# Input	Pin Readback	R	Pin Low	Pin Hi	Χ

Note: For an output to be enabled, BOTH the Output Enable Bit and the OE# pin must be enabled. This means that the Output Enable Bit must be '1' and the corresponding OE# pin must be '0'.

SMBusTable: Vendor & Revision ID Register


Byte 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1		R	-	-	0
Bit 4	-	RID0		R	-	-	1
Bit 3		VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDORID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBusTable: DEVICE ID

Byte	e 6 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	Device I	Device ID 7 (MSB)			_	
Bit 6	-	Devi	ce ID 6	R]		0
Bit 5	-	Devi	ce ID 5	R			0
Bit 4	-	Devi	ce ID 4	R	Device ID is 18 hex		1
Bit 3	-	Devi	ce ID 3	R	Device ID is 18 flex		1
Bit 2	-	Devi	Device ID 2				0
Bit 1	-	Device ID 1		R			0
Bit 0	-	Devi	ce ID 0	R			0

SMBusTable: Byte Count Register

Byte	e 7 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5	Mriting to this register	RW	-	-	0
Bit 4	-	BC4	Writing to this register	RW	-	-	0
Bit 3	-	BC3	configures how many	RW	-	-	0
Bit 2	-	BC2	bytes will be read back.	RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	72L
N	72
N_D	18
N _E	18

DIMENSIONS (mm)

SYMBOL	MIN.	MAX.	
Α	0.8 1.0		
A1	0	0 0.05	
A3	0.25 Reference		
b	0.18	0.18 0.3	
е	0.50 BASIC		
D x E BASIC	10.00 x 10.00		
D2 MIN. / MAX.	5.75	6.15	
E2 MIN. / MAX.	5.75	6.15	
L MIN. / MAX.	0.3	0.5	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9EX21801AKLF	Tray	72-pin MLF	0 to +70°C
9EX21801AKLFT	Tape and Reel	72-pin MLF	0 to +70°C
9EX21801AKILF	Tray	72-pin MLF	-40 to +85°C
9EX21801AKILFT	Tape and Reel	72-pin MLF	-40 to +85°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;A" is the device revision designator (will not correlate to the datasheet revision).

Revision History

	ricvision mistory		
Rev.	Is sue Date	Description	Page #
А	12/17/2008	1. Opdated PLL mode input frequency range 2. Noted that Modulation frequency is the Allowable Spread Modulation Frequency. Added foonote 3. 3. Corrected PCIe Gen1 Max phase jitter spec to be 86 ps instead of 108ps. 86ps is the derated limit when using ~160K cycles to calculate the value. Released to final - Rev A.	5,8
В	1/20/2010	1. Corrected Pin Description for Pin 62. 0 = 133M, 1 = 100M.	4
С	2/4/2010	1. Changed Pin Description for Pin 62. Instead of defining the functionality in the description, the description now refers to the Frequency Functionality Table for definition.	4
D	5/13/2011	Added separate input frequency spec for 100M and 133M.	5
Е	7/20/2011	Added I-temp information	Various

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/