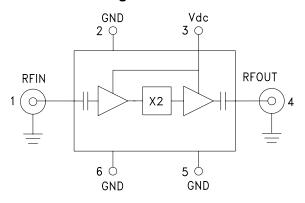


GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER MODULE, 24 - 33 GHz OUTPUT



Typical Applications

The HMC-C033 is suitable for:

- Clock Generation Applications: SONET OC-192 & SDH STM-64
- Point-to-Point & VSAT Radios
- Military EW/Radar
- Space

Functional Diagram

Features

High Output Power: +17 dBm

Low Input Power Drive: 0 to +6 dBm

100 KHz SSB Phase Noise: -132 dBc/Hz

Single Supply: +5V @ 81 mA Hermetically Sealed Module

Field Replaceable 2.92mm Connectors

-55 °C to +85 °C Operating Temperature

General Description

The HMC-C033 is a x2 active broadband frequency multiplier utilizing GaAs PHEMT technology in a miniature hermetic module. When driven by a 3 dBm signal, the multiplier provides +17 dBm typical output power from 24 to 33 GHz. The Fo and 3Fo isolations are >20 dBc and >30 dBc respectively at 28 GHz with respect to output signal level. This frequency multiplier features DC blocked I/O's, and is ideal for use in LO multiplier chains for Pt to Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -132 dBc/Hz at 100 kHz offset helps maintain good system noise performance.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdc = +5V, 3 dBm Drive Level

Parameter	Min.	Тур.	Max.	Units
Frequency Range, Input		12 - 16.5		GHz
Frequency Range, Output		24 - 33		GHz
Output Power 14 17				dBm
Fo Isolation (with respect to output level)		20		dBc
3Fo Isolation (with respect to output level)	30		dBc	
Input Return Loss		13		dB
Output Return Loss		20		dB
SSB Phase Noise (100 kHz Offset)		-132		dBc/Hz
Supply Current		81		mA

HMC-C033* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

• HMC-C033 Data Sheet

REFERENCE MATERIALS •

Technical Articles

 Hittite Launches HMC-T2100 10 MHz to 20 GHz Synthesized Signal Generator

DESIGN RESOURCES 🖳

- · HMC-C033 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC-C033 EngineerZone Discussions.

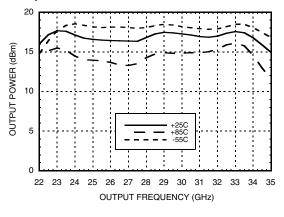
SAMPLE AND BUY 🖵

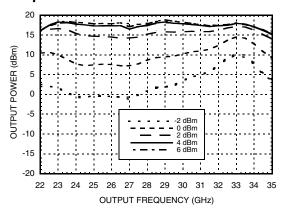
Visit the product page to see pricing options.

TECHNICAL SUPPORT

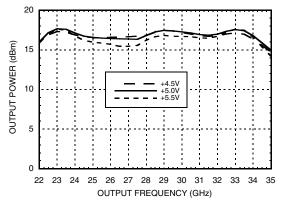
Submit a technical question or find your regional support number.

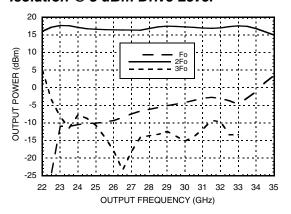
DOCUMENT FEEDBACK 🖳

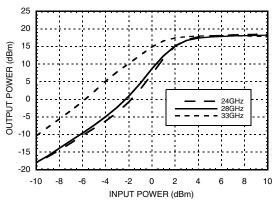

Submit feedback for this data sheet.



GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER MODULE, 24 - 33 GHz OUTPUT

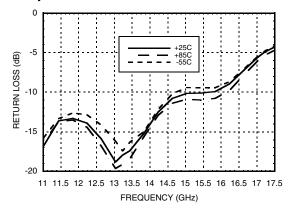

Output Power vs. Temperature @ 3 dBm Drive Level

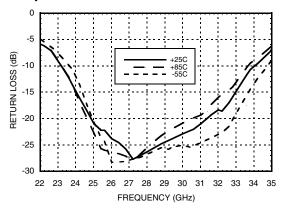

Output Power vs. Drive Level


Output Power vs. Supply Voltage @ 3 dBm Drive Level

Isolation @ 3 dBm Drive Level

Output Power vs. Input Power





GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER MODULE, 24 - 33 GHz OUTPUT

Input Return Loss vs. Temperature @ 0 dBm Drive Level

Output Return Loss vs. Temperature @ 0 dBm Drive Level

Absolute Maximum Ratings

RF Input (Vdc = +5V)	+13 dBm	
Bias Supply Voltage (Vdc)	+6 Vdc	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	

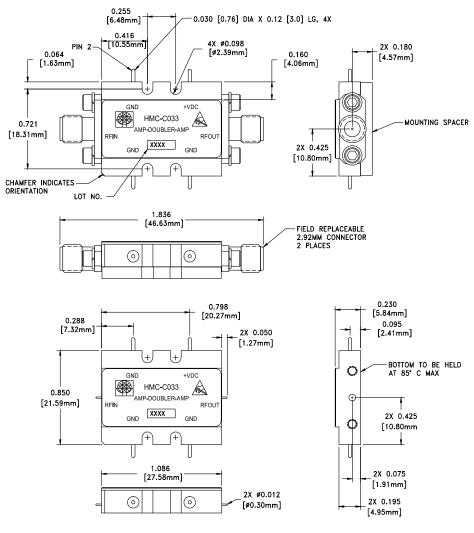
Typical Supply Current vs. Vdd

Vdd (Vdc)	Idd (mA)	
4.5	81	
5.0	81	
5.5	81	

Note:

Multiplier will operate over full voltage range shown above.

Pin Description


Pin Number	Function	Description	Interface Schematic
1	RFIN and RF Ground	Pin is AC coupled and matched to 50 Ohms. RFIN uses a female 2.92mm field replaceable connector.	RFINO———
2, 5, 6	GND	One of these pins must be connected to power supply ground.	GND =
3	Vdc	Power supply voltage for the amplifier includes a 7.5V zener diode for over voltage and negative voltage protection	7.5V
4	RFOUT and RF Ground	Pin is AC coupled and matched to 50 Ohms. RFOUT uses a female 2.92mm field replaceable connector.	→ → RFOUT

GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER MODULE, 24 - 33 GHz OUTPUT

Outline Drawing

VIEW SHOWN WITH CONNECTORS AND MOUNTING SPACER REMOVED

Package Information

Package Type	C-10	
Package Weight [1]	18.7 gms ^[2]	
Spacer Weight	3.3 gms ^[2]	

[1] Includes the connectors

[2] ±1 gms Tolerance

NOTES:

- 1. PACKAGE, LEADS, COVER MATERIAL: KOVAR™
- 2. FINISH: GOLD PLATE OVER NICKEL PLATE
- 3. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. TOLERANCES:
- $4.1 .XX = \pm 0.02$
- $4.2.XXX = \pm 0.010$
- 5. FIELD REPLACEABLE 2.92mm CONNECTORS TENSOLITE 231CCSF OR EQUIVALENT