

ON5520 N-channel TrenchMOS FET Rev. 01 — 24 March 2009

Product data sheet

Product profile

1.1 General description

N-channel enhancement mode Field-Effect Transistor (FET) in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package using TrenchMOS technology.

This type is a selection of the 2N7002 by the parameter $V_{GS(th)}$.

1.2 Features

- Logic level threshold compatible
- Surface-mounted package
- Very fast switching
- TrenchMOS technology

1.3 Applications

Logic level translator

High-speed line driver

1.4 Quick reference data

- $V_{DS} \le 60 \text{ V}$
- $\blacksquare \quad \mathsf{R}_{\mathsf{DSon}} \leq 5 \; \Omega$

- $I_D \le 300 \text{ mA}$
- $P_{tot} \le 0.83 \text{ W}$

2. Pinning information

Table 1. Pinning	Tab	le 1		Ρi	nı	ni	ng	1
------------------	-----	------	--	----	----	----	----	---

10010 11	9		
Pin	Description	Simplified outline	Graphic symbol
1	gate (G)		
2	source (S)	3	D
3	drain (D)	1 2	g

N-channel TrenchMOS FET

3. Ordering information

Table 2. Ordering information

Type number	Package			
	Name	Description	Version	
ON5520	TO-236AB	plastic surface-mounted package; 3 leads	SOT23	

4. Marking

Table 3. Marking codes

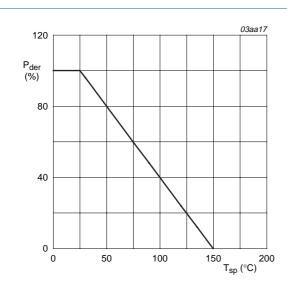
Type number	Marking code ^[1]
ON5520	RN*

^{[1] * = -:} made in Hong Kong

5. Limiting values

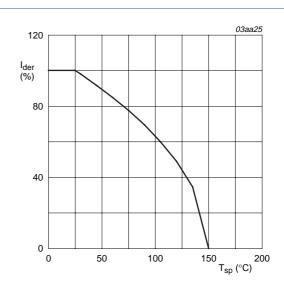
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$25~^{\circ}C \le T_j \le 150~^{\circ}C$	-	60	V
V_{DGR}	drain-gate voltage	25 °C \leq T _j \leq 150 °C; R _{GS} = 20 k Ω	-	60	V
V_{GS}	gate-source voltage		-	±30	V
V_{GSM}	peak gate-source voltage	$t_p \le 50 \ \mu s; \ pulsed; \ duty \ cycle = 25 \ \%$	-	±40	V
I _D	drain current	$T_{sp} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ see Figure 2 and 3	-	300	mA
		T _{sp} = 100 °C; V _{GS} = 10 V; see <u>Figure 2</u>	-	190	mA
I _{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 3	-	1.2	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 1</u>	-	0.83	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-65	+150	°C
Source-dr	ain diode				
Is	source current	T _{sp} = 25 °C	-	300	mA
I _{SM}	peak source current	$T_{sp} = 25 ^{\circ}C$; pulsed; $t_p \le 10 \mu s$	-	1.2	Α

^{* =} p: made in Hong Kong

^{* =} t: made in Malaysia


^{* =} W: made in China

N-channel TrenchMOS FET

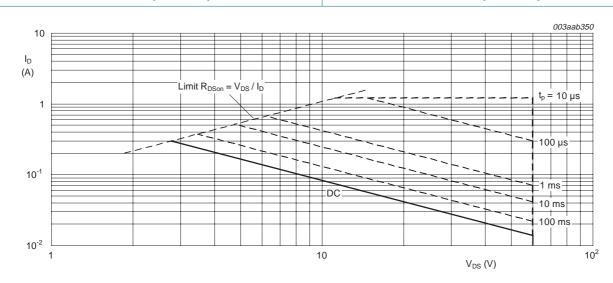

$$P_{der} = \frac{P_{tot}}{P_{tot(25\ ^{\circ}C)}} \times 100\ \%$$

Fig 1. Normalized total power dissipation as a function of solder point temperature

$$I_{der} = \frac{I_D}{I_{D(25\ ^{\circ}C)}} \times 100\ \%$$

Fig 2. Normalized continuous drain current as a function of solder point temperature

 T_{sp} = 25 °C; I_{DM} is single pulse

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

N-channel TrenchMOS FET

6. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j\text{-sp})}$	thermal resistance from junction to solder point	see Figure 4	-	-	150	K/W
R _{th(j-a)}	thermal resistance from junction to ambient		[1] -	-	350	K/W

^[1] Mounted on a Printed-Circuit Board (PCB); minimum footprint; vertical in still air.

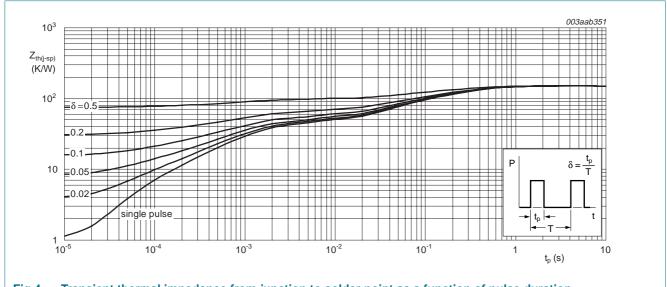


Fig 4. Transient thermal impedance from junction to solder point as a function of pulse duration

N-channel TrenchMOS FET

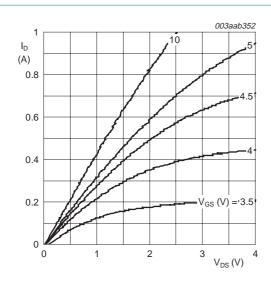
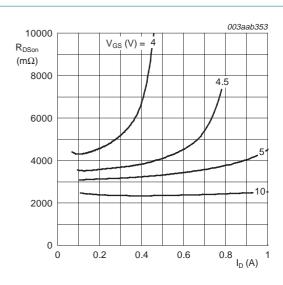

7. Characteristics

Table 6. Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS} drain-source breakdown		$I_D = 10 \mu A; V_{GS} = 0 V$				
voltage	voltage	T _j = 25 °C	60	-	-	V
		T _j = −55 °C	55	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 0.25$ mA; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
		T _j = 25 °C	1.6	2	2.1	V
		T _j = 150 °C	0.6	-	-	V
		T _j = −55 °C	-	-	2.75	V
I _{DSS}	drain leakage current	$V_{DS} = 48 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	0.01	1	μΑ
		T _j = 150 °C	-	-	10	μΑ
I _{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0 \text{ V}$	-	10	100	nΑ
R _{DSon} drain-source on-state resistance		$V_{GS} = 10 \text{ V};$ $I_D = 500 \text{ mA};$ see Figure 6 and 8				
		T _j = 25 °C	-	2.8	5	Ω
		T _j = 150 °C	-	-	9.25	Ω
		$V_{GS} = 4.5 \text{ V}; I_D = 75 \text{ mA};$ see Figure 6 and 8	-	3.8	5.3	Ω
Dynamic	characteristics					
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 10 \text{ V};$	-	31	50	pF
Coss	output capacitance	f = 1 MHz; see Figure 12	-	6.8	30	pF
C _{rss}	reverse transfer capacitance		-	3.5	10	pF
t _{on}	turn-on time	$V_{DS} = 50 \text{ V}; R_L = 250 \Omega;$	-	2.5	10	ns
t _{off}	turn-off time	V_{GS} = 10 V; R_G = 50 Ω ; R_{GS} = 50 Ω	-	11	15	ns
Source-d	rain diode					
V_{SD}	source-drain voltage	$I_S = 300 \text{ mA}$; $V_{GS} = 0 \text{ V}$; see Figure 11	-	0.85	1.5	V
t _{rr}	reverse recovery time	$I_S = 300 \text{ mA};$	-	30	-	ns
Q _r	recovered charge	$dI_S/dt = -100 A/\mu s;$ $V_{GS} = 0 V$	-	30	-	nC

N-channel TrenchMOS FET

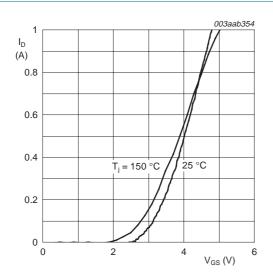

T_i = 25 °C

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

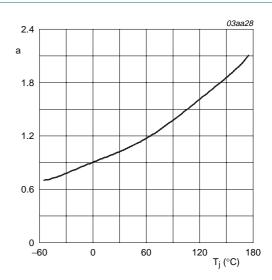
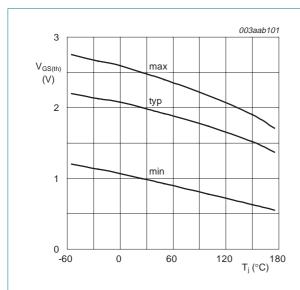
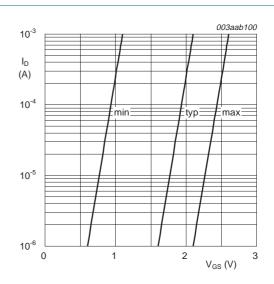

T_i = 25 °C

Fig 6. Drain-source on-state resistance as a function of drain current; typical values

 T_i = 25 °C and 150 °C; $V_{DS} > I_D \times R_{DSon}$


Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $a = \frac{R_{DSon}}{R_{DSon(25\,^{\circ}C)}}$


Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature

N-channel TrenchMOS FET

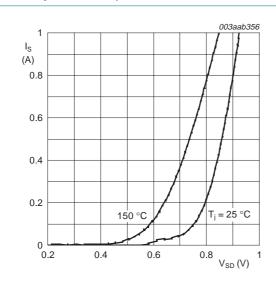

 $I_D = 0.25 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature

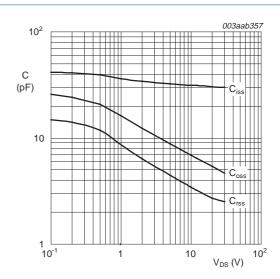

 $T_j = 25$ °C; $V_{DS} = 5$ V

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 T_i = 25 °C and 150 °C; V_{GS} = 0 V

Fig 11. Source current as a function of source-drain voltage; typical values

 $V_{GS} = 0 V; f = 1 MHz$

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

N-channel TrenchMOS FET

8. Package outline

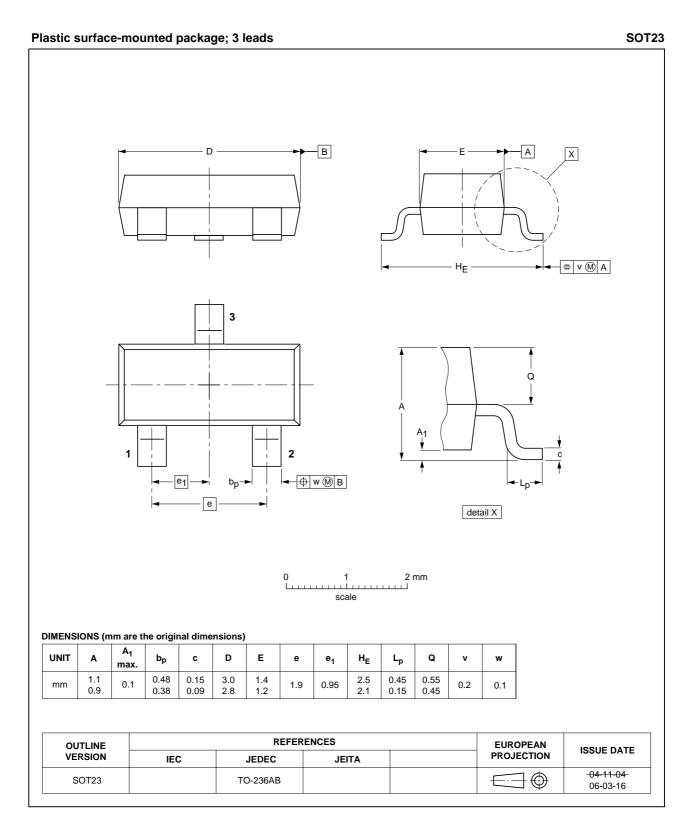


Fig 13. Package outline SOT23

N-channel TrenchMOS FET

9. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ON5520_1	20090324	Product data sheet	-	-

N-channel TrenchMOS FET

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

11. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

N-channel TrenchMOS FET

12. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data1
2	Pinning information 1
3	Ordering information 2
4	Marking 2
5	Limiting values
6	Thermal characteristics 4
7	Characteristics 5
8	Package outline 8
9	Revision history 9
10	Legal information
10.1	Data sheet status
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks10
11	Contact information 10
12	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 March 2009 Document identifier: ON5520_1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

ON5520,215