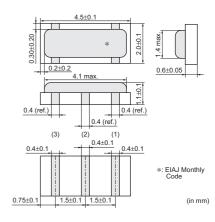
Ceramic Resonators (CERALOCK®)

MHz Chip Type -Tight Frequency Tolerance for Automotive-

Chip type CERALOCK(R) with built-in load capacitors provides high accuracy in an extremely small package. MURATA's frequency adjustment and package technology expertise has enabled the development of the chip CERALOCK(R) with built-in load capacitors.

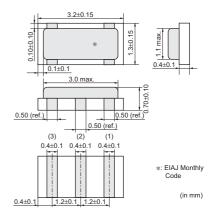
This diverse series owes its development to MURATA's original mass production techniques and high reliability, and has achieved importance in the worldwide automotive market.

■ Features

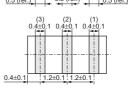

- 1. The series are high accuracy resonators whose total tolerance is available for less than +-3,000ppm.
- 2. The series has high reliability and is available for a wide temperature range.
- 3. Oscillation circuits do not require external load capacitors.
- 4. The series is available for a wide frequency range.
- 5. The resonators are extremely small and have a low profile.
- 6. No adjustment is necessary for oscillation circuits.

■ Applications

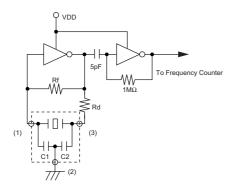
- 1. Cluster panel and Control panel
- 2. Safety control (Anti-lock Brake System, Electronic Stability Control, Airbag, etc.)
- 3. Engine ECU, Electronic Power Steering, Immobilizer, etc.
- 4. Car Air conditioner, Power Window, Remote Keyless Entry system, etc.
- 5. Intelligent Transportation System (Lane Keeping System, Millimeter wave radar, etc.)
- 6. Battery control for hybrid cars



CSTCR_G15C 4.00-7.99MHz

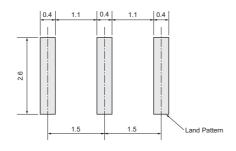


CSTCE_G15C 8.00-13.99MHz

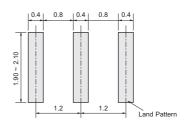

3.2±0.15

*: EIAJ Monthly Code
(in mm)

Part Number	Oscillating Frequency (MHz)	Initial Tolerance	Temperature Stability (%)	Temperature Range (°C)
CSTCR_G15C	4.00 to 7.99	±0.1%	±0.13	-40 to 125
CSTCE_G15C	8.00 to 13.99	±0.1%	±0.13	-40 to 125
CSTCE_V13C	14.00 to 20.00	±0.1%	±0.13	-40 to 125

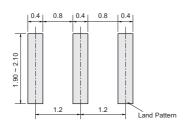

Irregular or stop oscillation may occur under unmatched circuit conditions. Please check the actual conditions prior to use.

■ Oscillation Frequency Measuring Circuit

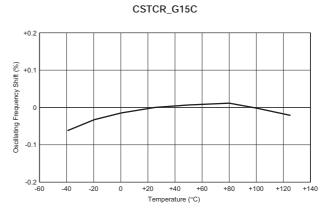


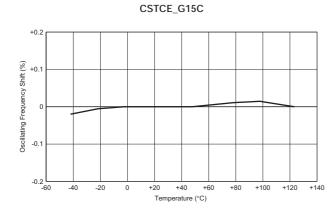
■ Standard Land Pattern Dimensions

CSTCR_G15C (* This Land Pattern is not common to CSTCR_G.)



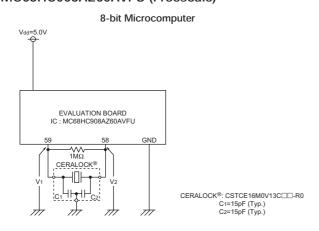
CSTCE_G15C


mm) (in mm)


CSTCE_V13C (* This Land Pattern is not common to CSTCE_V.)

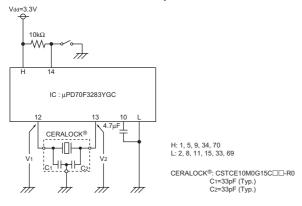
(in mm)

■ Oscillation Frequency Temperature Stability

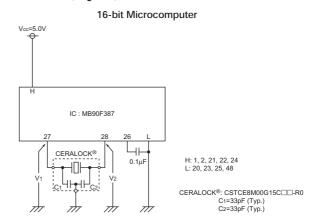


Application Circuits Utilization

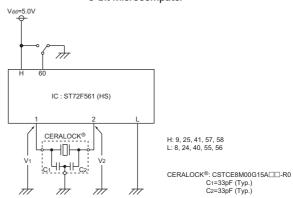
■ TMP92CD54IF (Toshiba)


16-bit Microcomputer Vcc3=3.3V Vcc5=5.0V 0.1µF H1 H2 IC:TMP92CD54IF 74 72 H1: 36, 68, 86 H2: 2, 4, 15, 40, 50, 61, 75 L: 1, 3, 13, 38, 51, 63, 73, 88 CERALOCK®. CSTCE10M0G15C□□-R0 C1=33pF (Typ.) C2=33pF (Typ.)

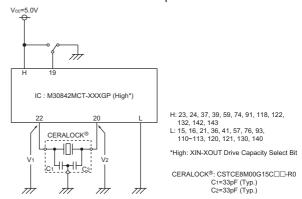
■ MC68HC908AZ60AVFU (Freescale)



■ µPD70F3283YGC (Renesas)



■ MB90F387 (Fujitsu)


■ ST72F561 (HS) (ST Microelectronics)

8-bit Microcomputer

■ M30842MCT-XXXGP (Renesas)

16-bit Microcomputer

