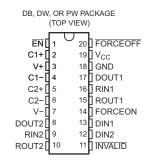
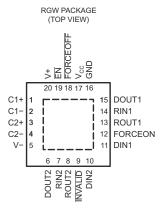


TRSF3223E SLLS824B - AUGUST 2007 - REVISED DECEMBER 2023


3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver with ±15-kV ESD **Protection**


1 Features

- ESD protection for RS-232 bus pins
 - ±15-kV Human-body model (HBM)
 - ±8-kV IEC 61000-4-2, contact discharge
 - ±15-kV IEC 61000-4-2, Air-gap discharge
- Meets or exceeds the requirements of TIA/ EIA-232-F and ITU v.28 standards
- Operates with 3-V to 5.5-V V_{CC} supply
- Operates up to 1000 kbit/s
- Two drivers and two receivers
- Low standby current: 1 µA Typical
- External capacitors: 4 × 0.1 µF
- Accepts 5-V logic input with 3.3-V supply

2 Applications

- Battery-powered systems
- **PDAs**
- Notebooks
- Laptops
- Palmtop PCs
- Hand-held equipment

3 Description

The TRSF3223E consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). This device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The TRSF3223E operates at typical data signaling rates up to 1000 kbits.

Flexible control options for power management are available when the serial port is inactive. The autopowerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low and EN is high, both drivers and receivers are shut off, and the supply current is reduced to 1 mA. Disconnecting the serial port or turning off the peripheral drivers causes auto-powerdown to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is automatically activated when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if the receiver input voltage is between –0.3 V and 0.3 V for more than 30 μs. Refer to Figure 5-4 for receiver input levels.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
	SOIC (DW, 20)	12.8 mm × 10.3 mm
TRSF3223E	SSOP (DB, 20)	7.2 mm × 7.8 mm
TROF3223E	TSSOP (PW, 20)	6.5 mm x 6.4 mm
	VQFN (RGW, 20)	5 mm x 5mm

- For more information, see Section 10. (1)
- The package size (length × width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features1	5 Parameter Measurement Information
2 Applications1	6 Detailed Description11
3 Description1	6.1 Functional Block Diagram11
4 Specifications3	6.2 Device Functional Modes11
4.1 Absolute Maximum Ratings3	7 Application and Implementation12
4.2 Recommended Operating Conditions3	7.1 Typical Application12
4.3 ESD Ratings3	8 Device and Documentation Support13
4.4 ESD Ratings - IEC Specifications4	8.1 Receiving Notification of Documentation Updates13
4.5 Thermal Information4	8.2 Support Resources13
4.6 Electrical Characteristics4	8.3 Trademarks13
4.7 Electrical Characteristics, Driver5	8.4 Electrostatic Discharge Caution13
4.8 Switching Characteristics, Driver5	8.5 Glossary13
4.9 Electrical Characteristics, Receiver	9 Revision History13
4.10 Switching Characteristics, Receiver6	10 Mechanical, Packaging, and Orderable
4.11 Electrical Characteristics, Auto-Powerdown7	Information13
4.12 Switching Characteristics, Auto-Powerdown7	

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V-	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
V	Input voltage range	Driver (FORCEOFF, FORCEON, EN)	-0.3	6	\/
VI		Receiver	-25	25	V
\ /	0.4	Driver	-13.2	13.2	.,
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	V
T _J	Operating virtual junction temperature	,		150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 Recommended Operating Conditions

See Figure 7-1 and (1)

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage		V _{CC} = 5 V	4.5	5	5.5	V
V _{IH}	Driver and control	DIN, EN, FORCEOFF, FORCEON	V _{CC} = 3.3 V	2			V
	high-level input voltage	DIN, EN, FORCEON , FORCEON	V _{CC} = 5 V	2.4			V
V _{IL}	Driver and control low-level input voltage	DIN, EN, FORCEOFF, FORCEON	DIN, EN, FORCEOFF, FORCEON			0.8	V
\/	Driver and control input voltage	DIN, EN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage			-25		25	V
т.	Operating free-air temperature	On anothing fine a girthman anothers		0		70	°C
T _A	Operating free-air temperature		TRSF3223EI	-40		85	

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

4.3 ESD Ratings

				VALUE	UNIT
V _(ESD)		Human-body model (HBM), per ANSI/	All pins except RIN1, RIN2, DOUT1 and DOUT2 pins	±3000	
	Electrostatic discharge	Electrostatic ESDA/JEDEC JS-001(1) RIN1, RIN2, DOUT1 and DOUT2 pins	RIN1, RIN2, DOUT1 and DOUT2 pins to GND	±15000	V
		Charged device model (CDM), per ANSI/ ESDA/JEDEC JS-002 ⁽²⁾	All pins	±1500	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ All voltages are with respect to network GND.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.4 ESD Ratings - IEC Specifications

					VALUE	UNIT
		Electrostatic	IEC 61000-4-2 Contact Discharge (1)	DINA DINA DOUTA and DOUTA mine	±8,000	.,
Ľ	V (ESD)	discharge	IEC 61000-4-2 Air-gap Discharge (1)	RIN1, RIN2, DOUT1 and DOUT2 pins	±15,000	V

(1) A minimum of 1-µF capacitor between V_{CC} and GND is required to meet the specified IEC 61000-4-2 rating.

4.5 Thermal Information

	THERMAL METRIC ⁽¹⁾	DB (SOIC)	DW (SOIC)	PW (TSSOP)	RGW (VQFN)	UNIT
	I HERMAL METRIC	20 PINS	20 PINS	20 PINS	20 PINS	UNII
R _{θJA}	Junction-to-ambient thermal resistance	76.2	76.8	89.7	32.2	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	36.8	39.6	29.0	23.7	°C/W
R _{θJB}	Junction-to-board thermal resistance	33.9	41.5	41.9	11.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	6.7	12.6	1.9	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	33.6	40.9	41.3	11.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a	2.6	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

4.6 Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PAR	AMETER	TEST CONDITIONS(1)	MIN	TYP ⁽²⁾	MAX	UNIT
I	Input leakage current	EN, FORCEOFF, FORCEON			±0.01	±1	μА
			V_{CC} = 3.3 V or 5 V, T_A = 25°C, No load, FORCEOFF and FORCEON at V_{CC}		0.3	1.3	mA
I _{CC}	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
		Auto-powerdown enabled	No load, $\overline{\text{FORCEOFF}}$ at V_{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

Product Folder Links: TRSF3223E

- Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

4.7 Electrical Characteristics, Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND	5	5.4		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND	-5	-5.4		V
I _{IH}	High-level input current	V _I = V _{CC}		±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND		±0.01	±1	μΑ
	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V, V _O = 0 V		±35	±60	mA
los	Short-circuit output current	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V}$		133	100	ША
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, V_{O} = ±2 V	300	10M		Ω
1	Output lookage current	FORCEOFF = GND, V _{CC} = 3 V to 3.6 V, V _O = ±12 V			±25	
loz	Output leakage current	$\overline{\text{FORCEOFF}}$ = GND, V_{CC} = 4.5 V to 5.5 V, V_{O} = ±12 V			±25	μA

- (1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.
- (2) All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.
- (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

4.8 Switching Characteristics, Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

P	ARAMETER		TEST CONDITIONS(1)		MIN	TYP ⁽²⁾	MAX	UNIT
data rate	D 010	C _L = 1000 pF		250				
	R_L = 3 kΩ, One DOUT switching	C _L = 250 pF,	V _{CC} = 3 V to 4.5 V	1000			kbit/s	
	one book awterming	C _L = 1000 pF,	V _{CC} = 4.5 V to 5.5 V	1000				
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF,	R_L = 3 kΩ to 7 kΩ,	See Figure 5-2		300		ns
	Slew rate.	$R_L = 7 k\Omega$,	C _L = 150 pF to 1000 pF		8		90	
SR(tr)	transition region	$R_1 = 3 k\Omega$	C _L = 1000 pF		12		60	V/µs
	(see Figure 5-1)	\(\(- 3 \) \(\(\) \(\)	C _L = 150 pF to 250 pF		24		150	

- (1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.
- (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
- (3) Pulse skew is defined as $|t_{PLH} t_{PHL}|$ of each channel of the same device.

4.9 Electrical Characteristics, Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	V _{CC} - 0.6	$V_{CC} - 0.1$		٧
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	٧
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	1.6 2.4	V
VIT+	Positive-going input the shou voltage	V _{CC} = 5 V		1.9	2.4	v
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT}	Negative-going input tilleshold voltage	V _{CC} = 5 V	0.6	1.4	1	v
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
I _{OZ}	Output leakage current	EN = V _{CC}		±0.05		μA
r _i	Input resistance	V _I = ±3 V to ±25 V	3	5		kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

4.10 Switching Characteristics, Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 5-3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 5-3	150	ns
t _{en}	Output enable time	C_L = 150 pF, R_L = 3 k Ω , See Figure 5-4	200	ns
t _{dis}	Output disable time	C_L = 150 pF, R_L = 3 k Ω , See Figure 5-4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 5-3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as $|t_{PLH}|$ of each channel of the same device.

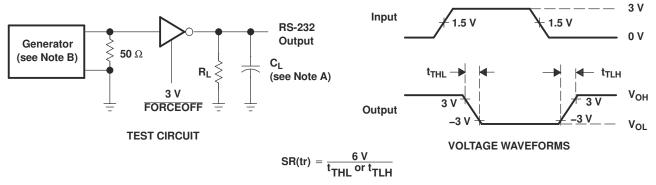
All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

4.11 Electrical Characteristics, Auto-Powerdown

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-5)

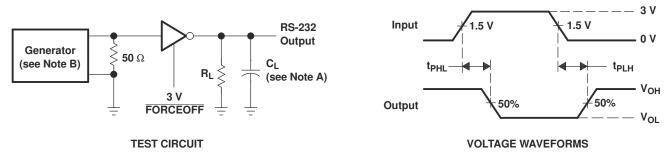
	PARAMETER	TEST (MIN	MAX	UNIT	
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I _{OH} = 1 mA, FORCEOFF = V _{CC}	FORCEON = GND,	V _{CC} - 0.6		٧
V _{OL}	INVALID low-level output voltage	I _{OL} = 1.6 mA, FORCEOFF = V _{CC}	FORCEON = GND,		0.4	V

4.12 Switching Characteristics, Auto-Powerdown


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-5)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

⁽¹⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.



5 Parameter Measurement Information

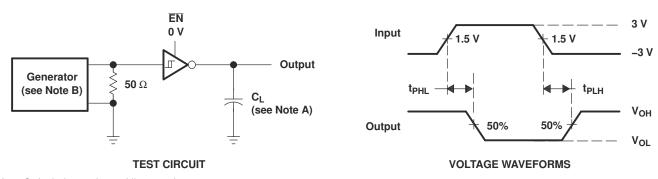

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 5-1. Driver Slew Rate

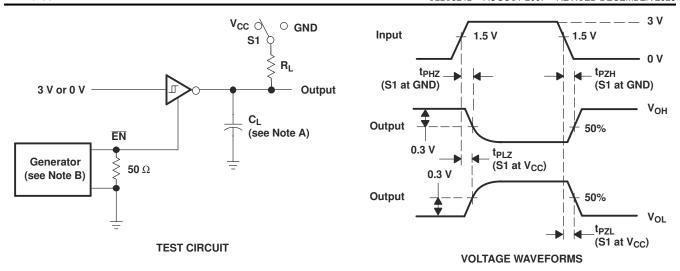
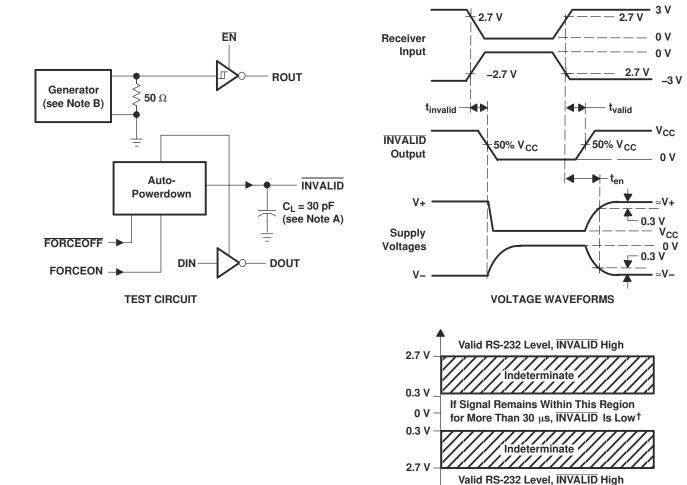

- C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 5-2. Driver Pulse Skew

- C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

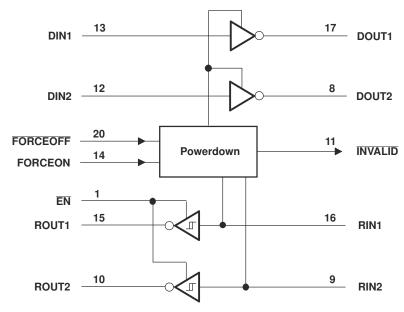

Figure 5-3. Receiver Propagation Delay Times

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 5-4. Receiver Enable and Disable Times

† Auto-powerdown disables drivers and reduces supply current to 1 μA

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


Figure 5-5. INVALID Propagation Delay Times and Supply Enabling Time

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

6 Detailed Description

6.1 Functional Block Diagram

Pin numbers are for the DB, DW, and PW packages.

Figure 6-1. Logic Diagram (Positive Logic)

6.2 Device Functional Modes

Function Tables (Each Driver)

		INPUTS ⁽¹⁾	,	OUTPUT			
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS		
X	X	L	X	Z	Powered off		
L	Н	Н	X	Н	Normal operation with		
Н	Н	Н	X	L	auto-powerdown disabled		
L	L	Н	Yes	Н	Normal operation with		
Н	L	Н	Yes	L	auto-powerdown enabled		
L	L	Н	No	Z	Powered off by		
Н	L	Н	No	Z	auto-powerdown feature		

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Function Tables (Each Receiver)

	INPUTS ⁽¹⁾							
RIN	EN	VALID RIN RS-232 LEVEL	ROUT					
L	L	X	Н					
Н	L	X	L					
X	Н	X	Z					
Open	L	No	Н					

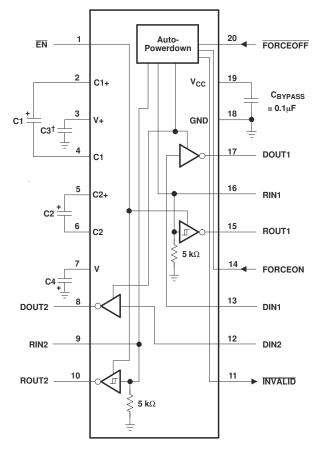
⁽¹⁾ H = high level, L = low level, X = irrelevant,

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

Z = high impedance (off),

Open = input disconnected or connected driver off



7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Typical Application

 $^{^{\}dagger}$ C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

V _{CC}	V _{CC} C1				
3.3 V \pm 0.3 V	0.1 μ F	0.1 μ F			
5 V ± 0.5 V	0.047 μ F	0.33 μ F			
3 V to 5.5 V	0.1 μ F	0.47 μ F			

Figure 7-1. Typical Operating Circuit and Capacitor Values

7.1.1 Detailed Design Procedure

TRSF3223E has integrated charge-pump that generates positive and negative rails needed for RS-232 signal levels. Main design requirement is that charge-pump capacitor terminals must be connected with recommended capacitor values. Charge-pump rail voltages and device supply pin must be properly bypassed with ceramic capacitors.

Product Folder Links: TRSF3223E

8 Device and Documentation Support

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision A (September 2011) to Revision B (December 2023)	Page
•	Changed the numbering format for tables, figures, and cross-references throughout the doc	ument1
•	Added the ESD Ratings tables	3
•	Added the Thermal Information table	4
•	Changed the I _{CC} Auto-powerdown disabled max value from 1 mA to 1.3 mA in the <i>Electrica</i>	l Characteristics 4
C	hanges from Revision * (August 2007) to Revision A (September 2011)	Page
•	Added the RGW package to the datasheet.	1
•	Deleted the RHL package from the datasheet.	1

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow (5)		(6)
TRSF3223EIDBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIDBR.A	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIDWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRSF3223EI
TRSF3223EIDWR.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRSF3223EI
TRSF3223EIPW	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	-40 to 85	RT23EI
TRSF3223EIPWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIPWR.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIPWRG4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIPWRG4.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI
TRSF3223EIRGWR	Active	Production	VQFN (RGW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	RT23EI
TRSF3223EIRGWR.A	Active	Production	VQFN (RGW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	RT23EI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

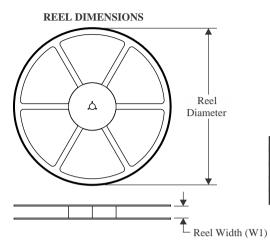
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

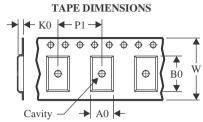
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

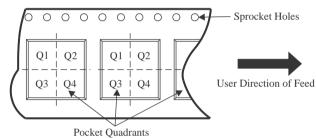
www.ti.com 7-Oct-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

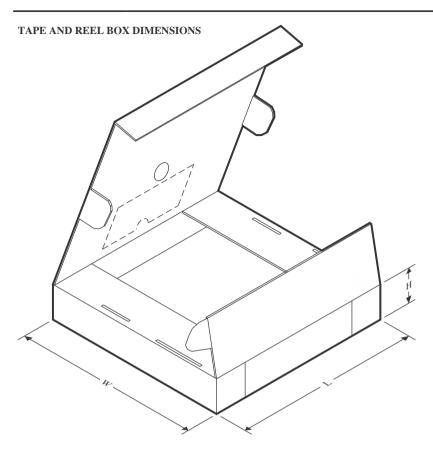
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

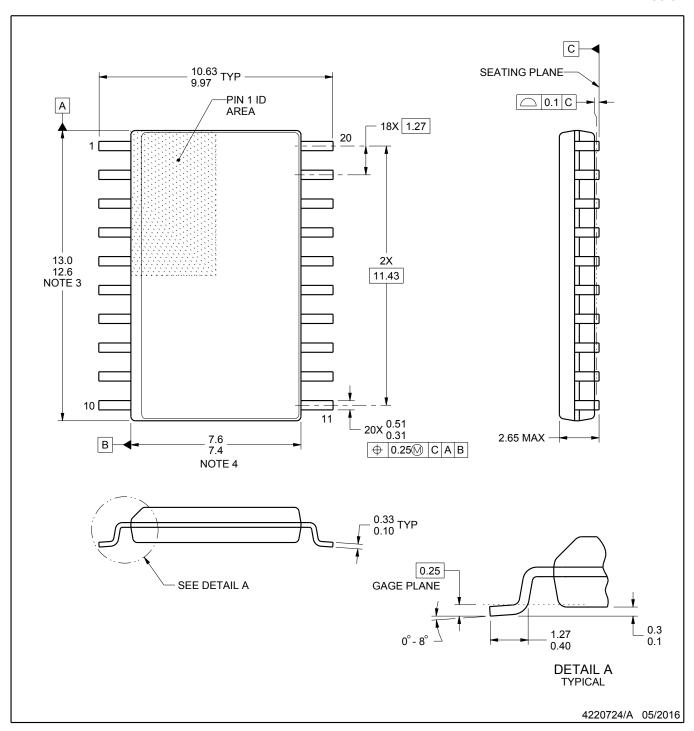
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF3223EIDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRSF3223EIDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TRSF3223EIPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
TRSF3223EIPWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
TRSF3223EIRGWR	VQFN	RGW	20	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

www.ti.com 24-Jul-2025

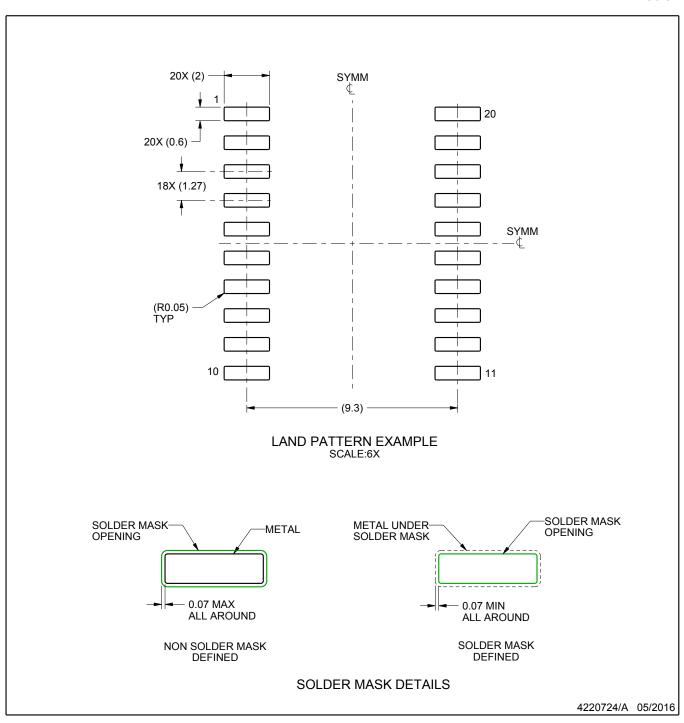


*All dimensions are nominal

7 till dillitoriolorio di o riorininal												
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)					
TRSF3223EIDBR	SSOP	DB	20	2000	353.0	353.0	32.0					
TRSF3223EIDWR	SOIC	DW	20	2000	356.0	356.0	45.0					
TRSF3223EIPWR	TSSOP	PW	20	2000	353.0	353.0	32.0					
TRSF3223EIPWRG4	TSSOP	PW	20	2000	353.0	353.0	32.0					
TRSF3223EIRGWR	VQFN	RGW	20	3000	353.0	353.0	32.0					

SOIC

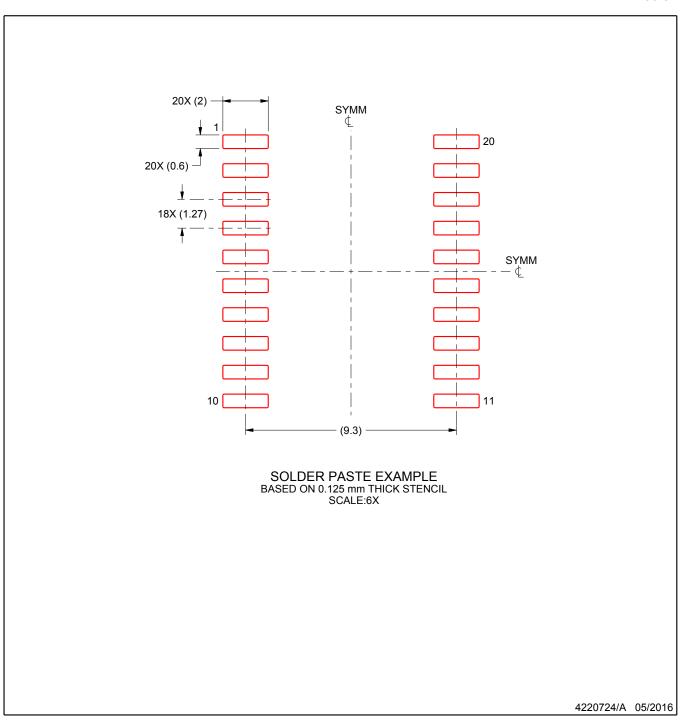
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

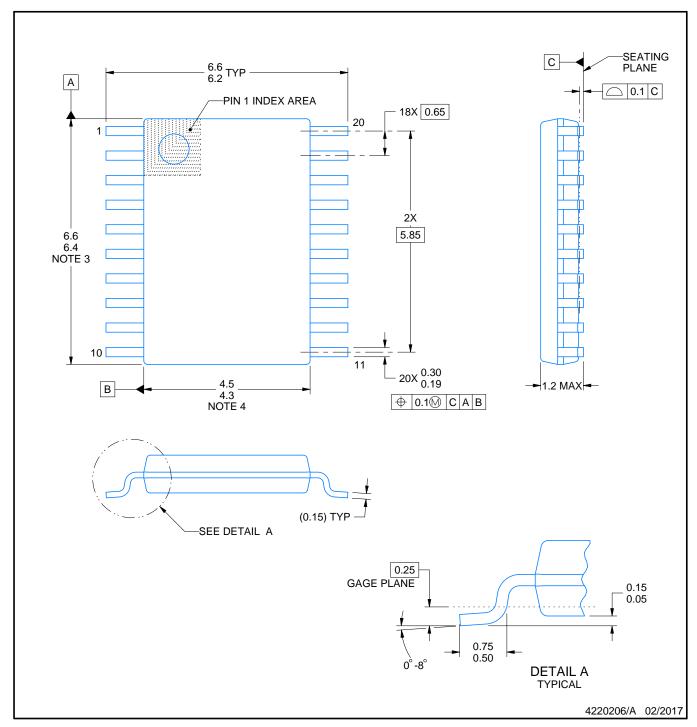
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

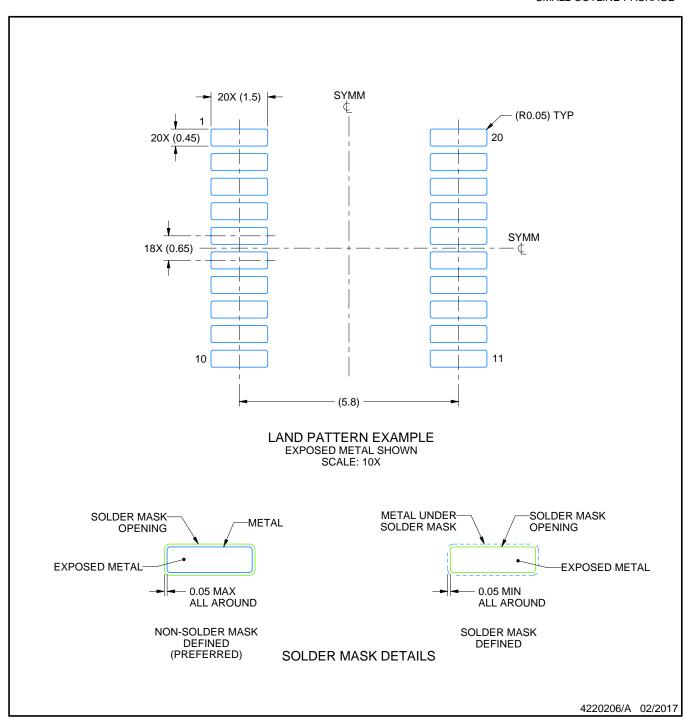
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC



NOTES: (continued)

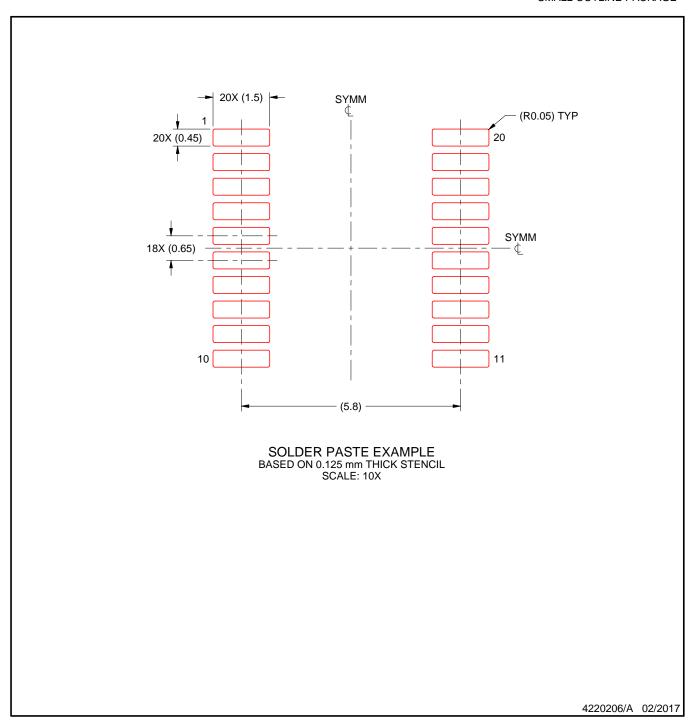
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

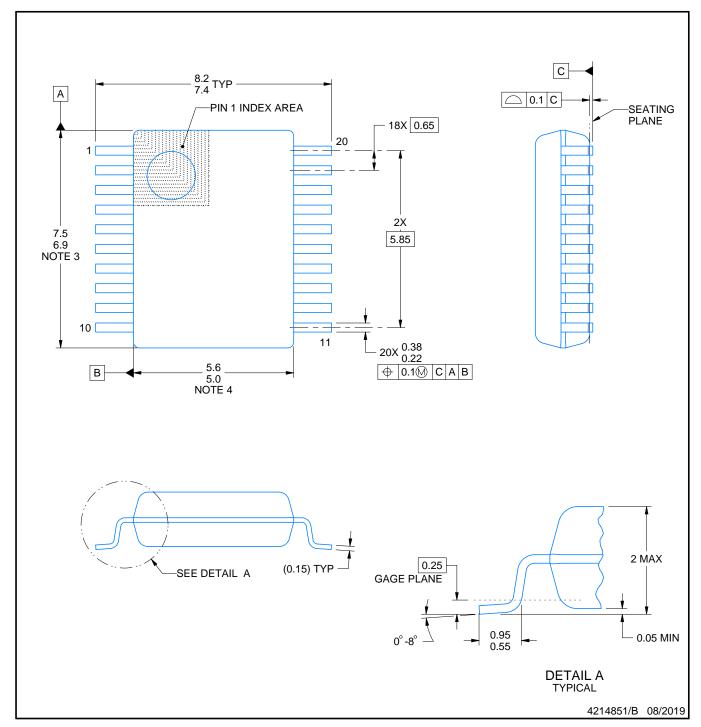
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

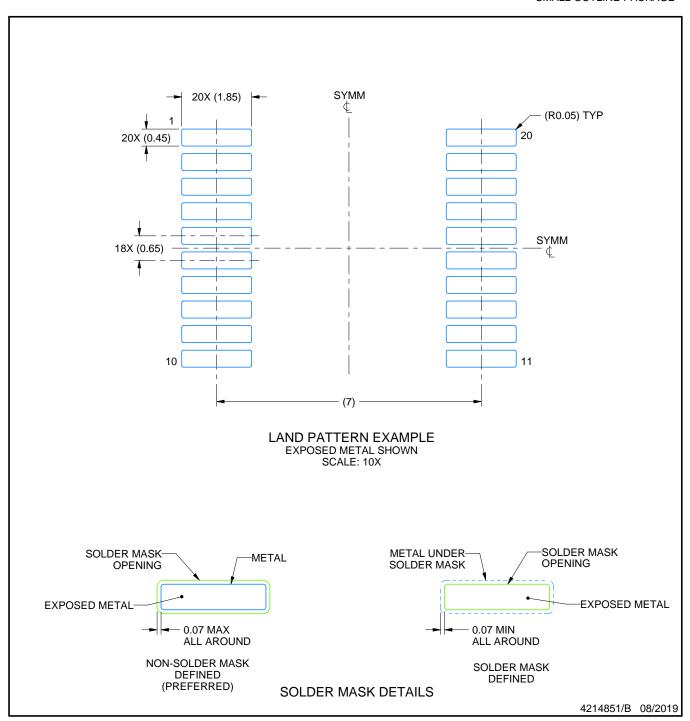
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

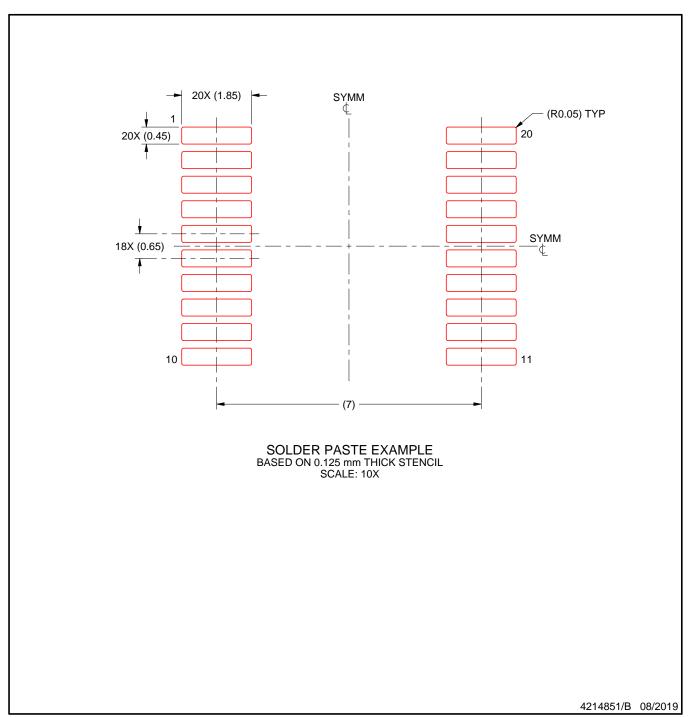
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

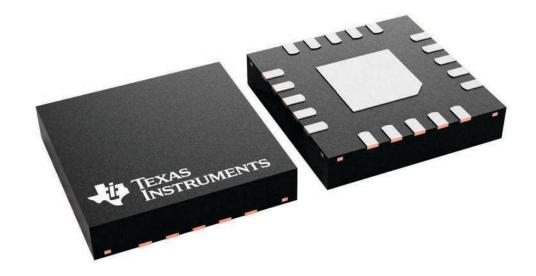


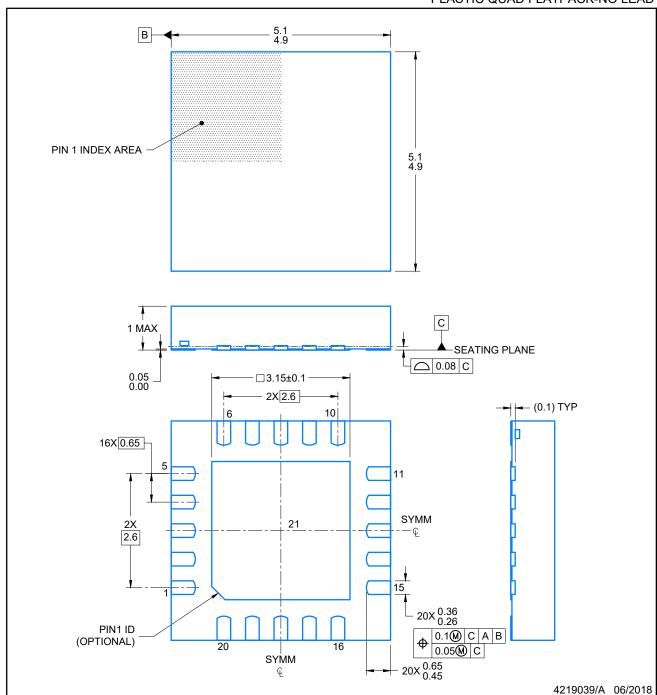
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

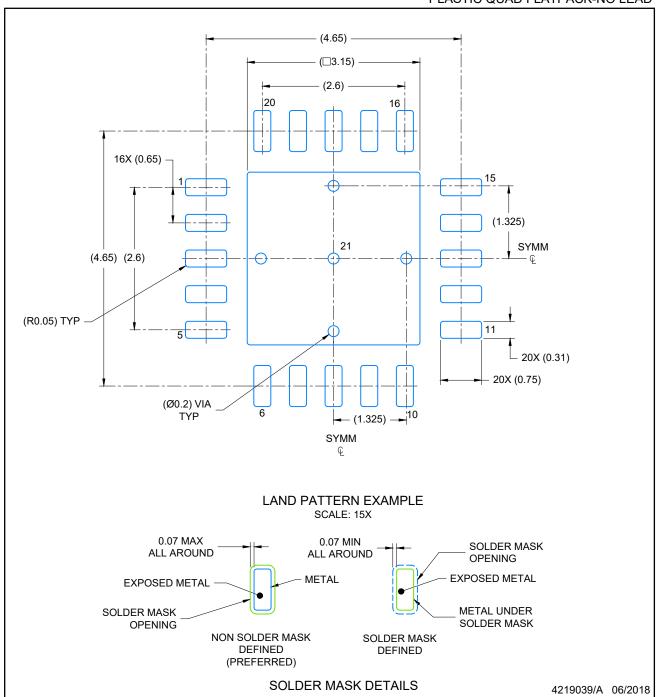

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


5 x 5, 0.65 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

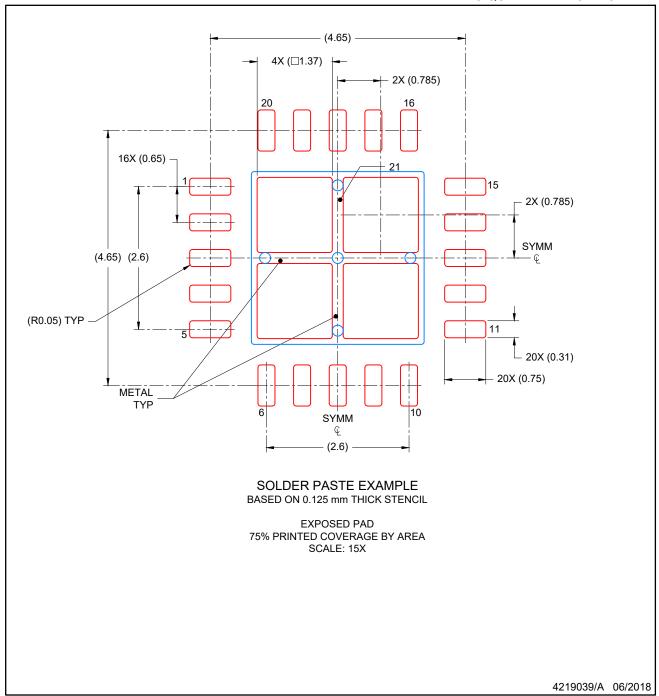
PLASTIC QUAD FLATPACK-NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK-NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated