

FEATURES:

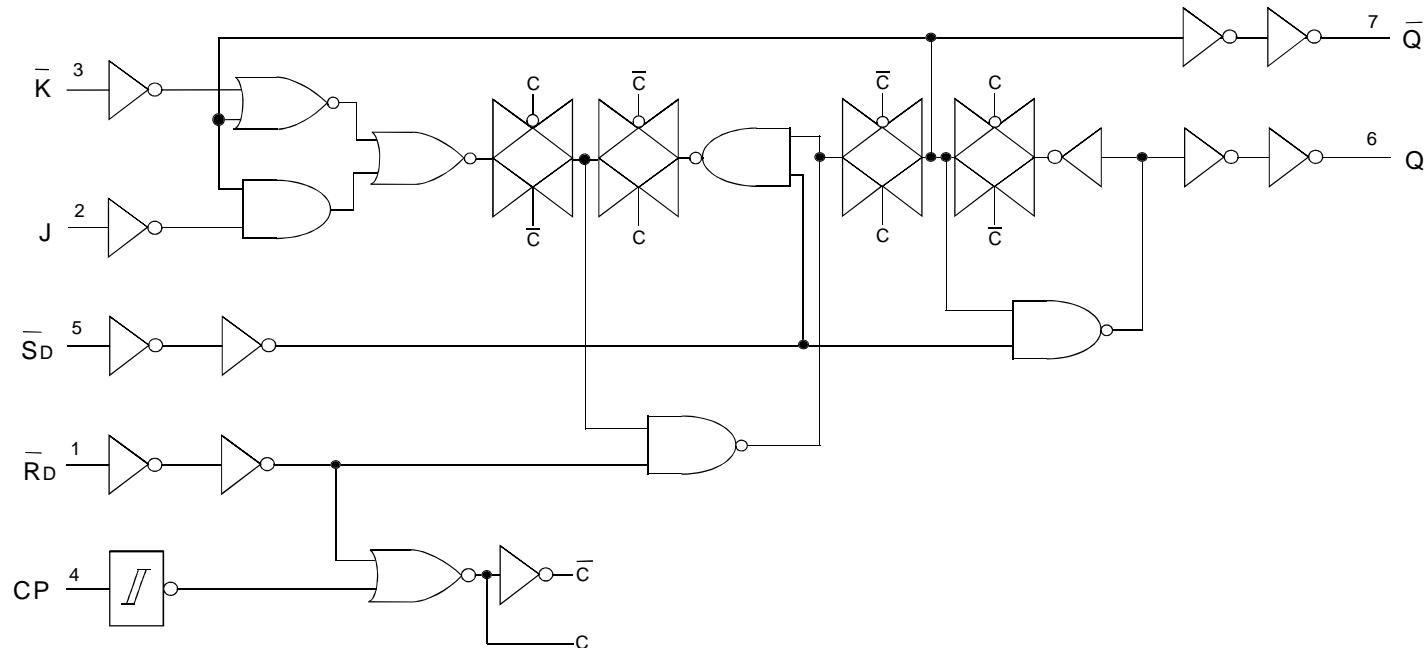
- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
> 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.635mm pitch QSOP,
0.65mm pitch SSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of -40°C to +85°C
- V_{CC} = 3.3V ± 0.3V, Normal Range
- V_{CC} = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC109A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

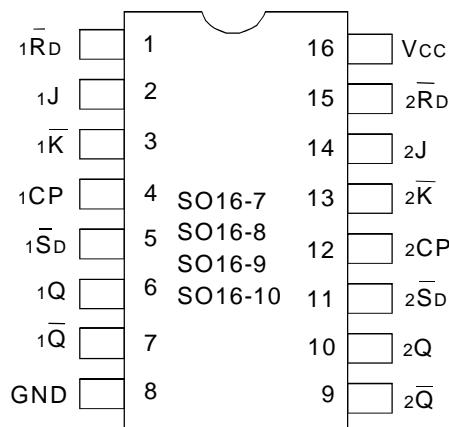
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


DESCRIPTION:

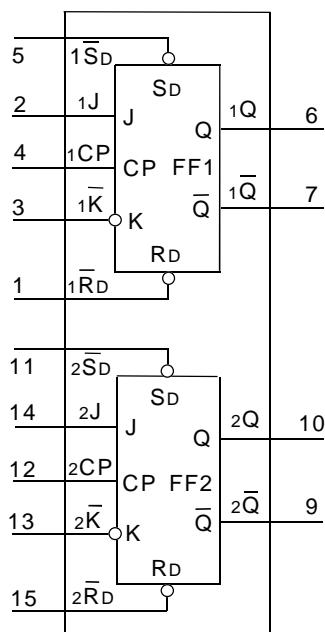
The LVC109A dual J- \bar{K} flip-flop with set and reset, positive-edge trigger is built using advanced dual metal CMOS technology. This device features individual J, \bar{K} inputs, clock (CP) inputs, set ($\bar{S}D$) and reset ($\bar{R}D$) inputs; also complementary Q and \bar{Q} outputs. The set and reset are asynchronous active low inputs and operate independently of the clock input. The J and \bar{K} inputs control the state changes of the flip-flops as described in the function table. The J and \bar{K} inputs must be stable one setup time prior to the low-to-high clock transition for predictable operation. The J- \bar{K} design allows operation as a D-type flip-flop by tying the J and \bar{K} inputs together.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC109A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


FUNCTIONAL BLOCK DIAGRAM

NOTE:


Pin numbers are for section 1. Refer to pin configuration for section 2 pin numbers.

PIN CONFIGURATION

QSOP/ SOIC/ SSOP/ TSSOP
TOP VIEW

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
TSTG	Storage Temperature	- 65 to +150	°C
IOUT	DC Output Current	- 50 to +50	mA
I _{lk}	Continuous Clamp Current, V _I < 0 or V _O < 0	- 50	mA
I _{cc}	Continuous Current through each V _{cc} or GND	±100	mA
I _{ss}			

LVC QUAD Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- V_{cc} terminals.
- All terminals except V_{cc}.

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

LVC QUAD Link

NOTE:

- As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
xCP	Clock Inputs, LOW-to-HIGH, edge-triggered
x̄RD	Asynchronous Reset Input (Active LOW)
x̄SD	Asynchronous Set Inputs (Active LOW)
xJ, x̄K	Synchronous Inputs
xQ	True Flip-Flop Outputs
x̄Q	Complement Flip-Flop Outputs

FUNCTION TABLE (1)

Operating Modes	Inputs					Outputs	
	$x\bar{S}D$	$x\bar{R}D$	xCP	xJ	$x\bar{K}$	xQ	$x\bar{Q}$
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset	H	L	X	X	X	L	H
Undetermined	L	L	X	X	X	H	H
Toggle	H	H	↑	h	I	\bar{Q}_0	Q_0
Load "0" (reset)	H	H	↑	I	I	L	H
Load "1" (set)	H	H	↑	h	h	H	L
Hold "no change"	H	H	↑	I	h	Q_0	\bar{Q}_0

NOTE:

1. H = HIGH voltage level

h = HIGH voltage level of input set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level

I = LOW voltage level of input set-up time prior to LOW-to-HIGH CP transition

X = Don't care

↑ = LOW-to-HIGH CP Transition

Q_0 = Level of Q before the indicated steady-state input conditions were established.

\bar{Q}_0 = Complement of Q_0 or level of \bar{Q} before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^\circ C$ to $+85^\circ C$

Symbol	Parameter	Test Conditions		Min.	Typ.(1)	Max.	Unit
V_{IH}	Input HIGH Voltage Level	$V_{CC} = 2.3V$ to $2.7V$		1.7	—	—	V
		$V_{CC} = 2.7V$ to $3.6V$		2	—	—	
V_{IL}	Input LOW Voltage Level	$V_{CC} = 2.3V$ to $2.7V$		—	—	0.7	V
		$V_{CC} = 2.7V$ to $3.6V$		—	—	0.8	
I_{IH} I_{IL}	Input Leakage Current	$V_{CC} = 3.6V$	$V_I = 0$ to $5.5V$	—	—	± 5	μA
I_{OZH} I_{OZL}	High Impedance Output Current (3-State Output pins)	$V_{CC} = 3.6V$	$V_O = 0$ to $5.5V$	—	—	± 10	μA
I_{OFF}	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_O \leq 5.5V$		—	—	± 50	μA
V_{IK}	Clamp Diode Voltage	$V_{CC} = 2.3V$, $I_{IN} = -18mA$		—	-0.7	-1.2	V
V_H	Input Hysteresis	$V_{CC} = 3.3V$		—	100	—	mV
I_{CCL} I_{CCH} I_{CCZ}	Quiescent Power Supply Current	$V_{CC} = 3.6V$	$V_{IN} = GND$ or V_{CC}	—	—	10	μA
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at $V_{CC} - 0.6V$ other inputs at V_{CC} or GND			—	500	μA

LVC QUAD Link

NOTE:

1. Typical values are at $V_{CC} = 3.3V$, $+25^\circ C$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	VCC = 2.3V to 3.6V	IOH = - 0.1mA	VCC - 0.2	—	V
		VCC = 2.3V	IOH = - 6mA	2	—	
		VCC = 2.3V	IOH = - 12mA	1.7	—	
		VCC = 2.7V		2.2	—	
		VCC = 3.0V		2.4	—	
		VCC = 3.0V	IOH = - 24mA	2.2	—	
VOL	Output LOW Voltage	VCC = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		VCC = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	—	0.7	
		VCC = 2.7V	IOL = 12mA	—	0.4	
		VCC = 3.0V	IOL = 24mA	—	0.55	

LVC QUAD Link

NOTE:

1. VIH and Vil must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

OPERATING CHARACTERISTICS, TA = 25°C

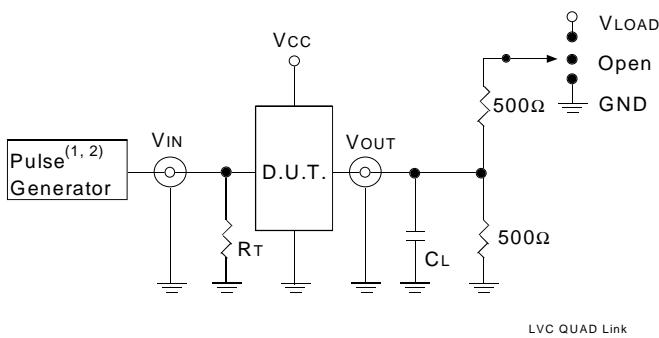
Symbol	Parameter	Test Conditions	VCC = 2.5V±0.2V	VCC = 3.3V±0.3V	Unit
			Typical	Typical	
CPD	Power Dissipation Capacitance per flip-flop	CL = 0pF, f = 10Mhz	—	—	pF

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	VCC = 2.5V±0.2V		VCC = 2.7V		VCC = 3.3V±0.3V		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tPLH	Propagation Delay xCP to xQ or x̄Q	—	9	—	8.5	—	7.5	ns
tPLH	Propagation Delay x̄SD to xQ or x̄RD to x̄Q	—	11	—	9	—	8	ns
tPHL	Propagation Delay x̄SD to xQ or x̄RD to x̄Q	—	10	—	10	—	9	ns
tsu	Set-up Time, xJ, x̄K to xCP	2.5	—	2.5	—	2.5	—	ns
tH	Hold Time, xJ, x̄K to xCP	2	—	2	—	2	—	ns
tREM	Removal Time, x̄SD, x̄RD to xCP	3	—	3	—	3	—	ns
tw	Pulse Width CLK HIGH or LOW	3.3	—	3.3	—	3.3	—	ns
tw	Set or Reset Pulse Width, HIGH or LOW	3	—	3	—	3	—	ns
tsk(0)	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See test circuits and waveforms. TA = - 40°C to + 85°C.
2. Skew between any two outputs of the same package and switching in the same direction.


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC}^{(1)} = 2.5V \pm 0.2V$	$V_{CC}^{(2)} = 3.3V \pm 0.3V \& 2.7V$	Unit
V_{LOAD}	$2 \times V_{CC}$	6	V
V_{IH}	V_{CC}	2.7	V
V_T	$V_{CC}/2$	1.5	V
V_{LZ}	150	300	mV
V_{HZ}	150	300	mV
C_L	30	50	pF

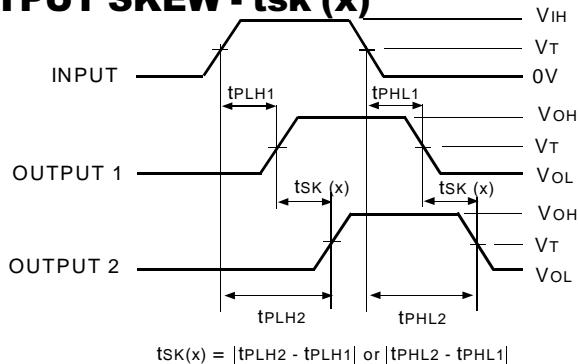
LVC QUAD Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.
 R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

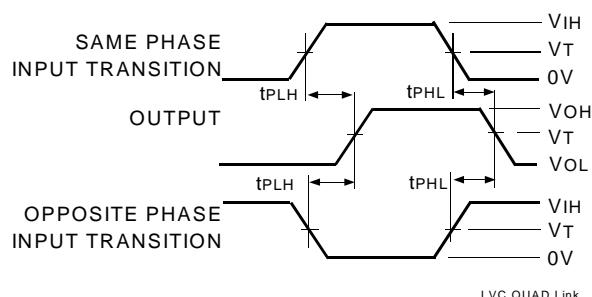

1. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2\text{ns}$; $t_r \leq 2\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.

SWITCH POSITION

Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

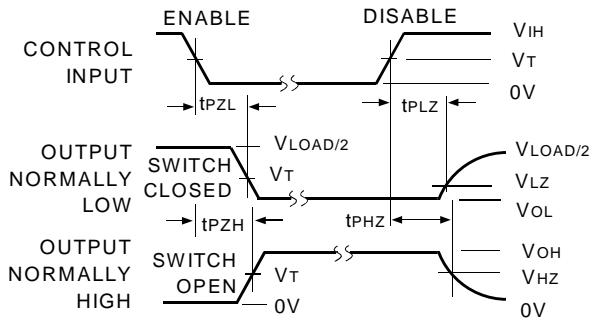
LVC QUAD Link

OUTPUT SKEW - $t_{SK}(x)$


$$t_{SK}(x) = |t_{PHL2} - t_{PHL1}| \text{ or } |t_{PHL2} - t_{PHL1}|$$

LVC QUAD Link

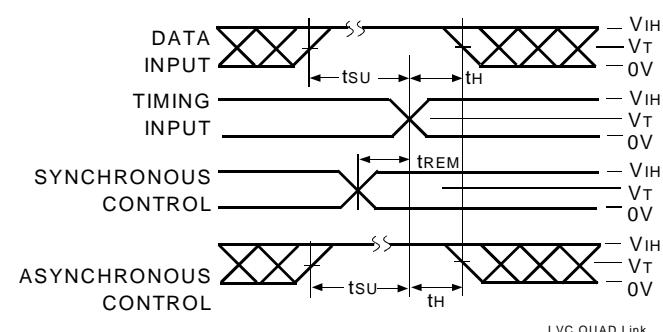
NOTES:


1. For $t_{SK}(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $t_{SK}(b)$ OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

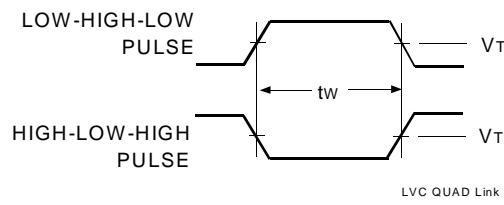
LVC QUAD Link

ENABLE AND DISABLE TIMES



LVC QUAD Link

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

LVC QUAD Link

PULSE WIDTH

LVC QUAD Link

ORDERING INFORMATION

IDT	XX	LVC	XXXX	XX	
Temp. Range		Device Type		Package	
				Q	Quarter Size Outline Package (SO16-7)
				DC	Small Outline IC (SO16-8)
				PY	Shrink Small Outline Package (SO16-9)
				PG	Thin Shrink Small Outline Package (SO16-10)
				109A	Dual J-K Flip-Flop with Set and Reset, Positive-Edge Trigger, $\pm 24\text{mA}$
			74		-40°C to +85°C

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.