
TVP5020

NTSC/PAL VIDEO DECODER

Data Manual

May 2000

Mixed-Signal Products

SLAS186B

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Contents

<i>Section</i>	<i>Title</i>	<i>Page</i>
1	Introduction	1-1
1.1	Features	1-1
1.2	Applications	1-2
1.3	Functional Block Diagram	1-2
1.4	Terminal Assignments	1-3
1.5	Ordering Information	1-3
1.6	Terminal Functions	1-4
2	Detailed Description	2-1
2.1	Analog Video Processors and A/D Converter	2-1
2.1.1	Video Input Selection	2-1
2.1.2	Analog Input Clamping and Automatic Gain Control Circuits	2-1
2.1.3	A/D Converter	2-1
2.2	Digital Processing	2-1
2.2.1	Y/C Separation	2-2
2.2.2	Luminance Processing	2-3
2.2.3	Chrominance Processing	2-6
2.2.4	Clock Circuits	2-6
2.3	Video Output Format	2-7
2.3.1	Sampling Frequencies and Patterns	2-7
2.3.2	Video Port 16-Bit 4:2:2 Output Format Timing	2-8
2.3.3	Video Port 12-Bit 4:1:1 Output Format Timing	2-9
2.3.4	Video Port 8-Bit 4:2:2 and ITU-R BT.656 Output Format Timing	2-9
2.4	Synchronization Signals	2-9
2.5	I ² C/VIP/VMI Host Interface	2-12
2.6	I ² C Interface	2-12
2.6.1	I ² C Host Port Select	2-13
2.6.2	I ² C Write Operation	2-14
2.6.3	I ² C Read Operation	2-15
2.6.4	I ² C Microcode Write Operation	2-16
2.6.5	I ² C Microcode Read Operation	2-17
2.7	VIP Host Interface Port	2-19
2.7.1	VIP Host Port Terminal Description	2-20
2.7.2	VIP Phases	2-20
2.7.3	Command Byte	2-21
2.7.4	VIP Microcode Write Operation	2-26
2.7.5	VIP Microcode Read Operation	2-26
2.8	Video Module Interface (VMI) Host Interface	2-26
2.9	Host Port – Mode A Timing	2-27
2.10	Host Port – Mode B Timing	2-28
2.11	Host Port – Mode C Timing (PPC)	2-28

2.11.1 VMI Register Mapping	2-29
2.11.2 VMI Microcode Write Operation	2-30
2.11.3 VMI Microcode Read Operation	2-31
2.12 Genlock Control	2-31
2.13 VBI Data Processor	2-32
2.13.1 Teletext Data Byte Order	2-32
2.13.2 Teletext as Ancillary Data in Video Stream	2-33
2.14 Reset	2-36
2.15 Internal Control Registers	2-37
2.15.1 Register Definitions	2-38
2.15.2 Vendor ID	2-38
2.15.3 Device ID	2-39
2.15.4 Subsystem Vendor ID	2-39
2.15.5 Subsystem Device ID	2-39
2.15.6 Subsystem Revision ID	2-39
2.15.7 Analog Input Source Selection	2-40
2.15.8 Analog Channel Controls	2-41
2.15.9 Operation Mode Controls	2-42
2.15.10 Miscellaneous Controls	2-43
2.15.11 Color Killer Threshold Control	2-44
2.15.12 Luminance Processing Control 1	2-45
2.15.13 Luminance Processing Control 2	2-46
2.15.14 Brightness Control	2-47
2.15.15 Color Saturation Control	2-47
2.15.16 Hue Control	2-47
2.15.17 Contrast Control	2-48
2.15.18 Outputs and Data Rates Select	2-48
2.15.19 Horizontal Sync (HSYN) Start	2-49
2.15.20 Vertical Blanking Start	2-49
2.15.21 Vertical Blanking Stop	2-50
2.15.22 Chrominance Control	2-51
2.15.23 Digital Channel Selection	2-52
2.15.24 Firmware Version	2-52
2.15.25 Status Register 1	2-53
2.15.26 Status Register 2	2-54
2.15.27 AGC Gain	2-54
2.15.28 TXF Filter #1 Parameters	2-55
2.15.29 TXF Filter #2 Parameters	2-56
2.15.30 TXF Error Filtering Enables	2-57
2.15.31 TXF Transaction Processing Enables	2-57
2.15.32 TTX Control Register	2-58
2.15.33 Line Enable Registers	2-58
2.15.34 Sync Pattern Register	2-59
2.15.35 Teletext FIFO	2-59
2.15.36 Closed Caption Data	2-59
2.15.37 Buffer Status	2-60
2.15.38 Interrupt Threshold	2-60

2.15.39 Interrupt Line Number	2-60
2.15.40 FIFO Control	2-61
2.15.41 Interrupt Status Register	2-62
2.15.42 Interrupt Enable Register	2-63
2.15.43 Interrupt Configuration Register	2-63
2.15.44 Interrupt Status Register	2-63
3 Electrical Specifications	3-1
3.1 Absolute Maximum Ratings†	3-1
3.2 Recommended Operating Conditions	3-1
3.3 Electrical Characteristics	3-2
3.3.1 Analog Processing and Analog-to-Digital Converter	3-2
3.3.2 DC Electrical Characteristics	3-2
3.4 Timing	3-3
3.4.1 Clocks, Video Data, Sync Timing	3-3
3.4.2 I ² C Host Bus Timing	3-4
3.4.3 VIP Host Port Timing	3-4
3.4.4 VMI Host Port Timing (Mode A)	3-5
3.4.5 VMI Host Port Timing (Mode B)	3-6
4 Mechanical Data	4-1

List of Illustrations

<i>Figure</i>	<i>Title</i>	<i>Page</i>
2-1	Analog Video Processors and A/D Converter	2-1
2-2	Digital Video Signal Processing Block Diagram	2-2
2-3	Chroma Trap Filter Frequency Response for 13.5 MHz Sampling	2-3
2-4	Chroma Trap Filter Frequency Response for Square-Pixel Sampling	2-3
2-5	Luminance Edge-Enhancer	2-4
2-6	Peaking Filter Response, 13.5 MHz Sampling	2-4
2-7	Peaking Filter Response, NTSC AND PAL-M SQUARE PIXEL	2-5
2-8	Peaking Filter Response, PAL Square Pixel	2-5
2-9	Transfer Curve of Coring Circuit	2-6
2-10	Clock Circuit Diagram	2-6
2-11	Reference Clock Configurations	2-7
2-12	4:2:2 Sampling	2-8
2-13	4:1:1 Sampling	2-8
2-14	16-Bit 4:2:2 Output Format	2-8
2-15	12-bit 4:1:1 Output Format	2-9
2-16	8-Bit 4:2:2 and ITU-R BT.656 Output Formats	2-9
2-17	Vertical Synchronization Signals	2-10
2-18	Horizontal Synchronization Signals	2-11
2-19	Host Interface	2-12
2-20	I ² C Data Transfer Example	2-13
2-21	VIP Transfer Example	2-20
2-22	Functional Timing Reading From TVP (Example)	2-22
2-23	Functional Timing Writing to TVP (Example)	2-23
2-24	Functional Timing Reading From FIFO (Example)	2-23
2-25	Functional Timing Example of Slave Termination	2-24
2-26	VMI Host Port Mode A Timing	2-27
2-27	Host Port Mode B Timing	2-28
2-28	Host Port Mode C Timing	2-28
2-29	VMI Address Register Map	2-29
2-30	GLCO Timing	2-32
2-31	Video Input Source Selection	2-40
3-1	Clock, Video and Sync Timing	3-3
3-2	I ² C Bus Timing	3-4
3-3	VIP Host Port Timing	3-4
3-4	VMI Host Port Timing (Mode A)	3-5
3-5	VMI Host Port Timing (Mode B)	3-6

List of Tables

<i>Table</i>	<i>Title</i>	<i>Page</i>
2-1	Summary of the Line Frequencies, Data Rates, and Pixel Counts	2-7
2-2	Host Port Select	2-12
2-3	I ² C Host Port Terminal Description	2-13
2-4	VIP Host Port Terminal Description	2-20
2-5	VIP Host Port Phase Description	2-21
2-6	Condensed Table Command/Address	2-21
2-7	VMI Host Port Select	2-26
2-8	VMI Host Port Terminal Definitions	2-27
2-9	Teletext Byte Order	2-32
2-10	NABTS 525/625-Line Ancillary Data Sequence	2-34
2-11	WST 525-Line Ancillary Data Sequence	2-35
2-12	WST 625-Line Ancillary Data Sequence	2-35
2-13	Dummy Timing Ancillary Data Sequence	2-36
2-14	Ancillary Data ID	2-36
2-15	Power-Up Reset Sequence	2-36
2-16	Registers Summary	2-37
2-17	Analog Channel and Video Mode Selection	2-40
2-18	YUV Output Controls	2-43

1 Introduction

The TVP5020 is a high-quality single-chip digital video decoder that converts base-band analog NTSC and PAL video signals into digital component video. Sampling is square-pixel or ITU-R BT.601 (13.5 MHz) and is line-locked for correct pixel alignment. The output formats can be 8-bit or 16-bit 4:2:2, 12-bit 4:1:1, or 8-bit ITU-R BT.656. The TVP5020 uses TI patented technology for locking to weak, noisy, or unstable signals. A genlock control output is generated for synchronizing downstream video encoders.

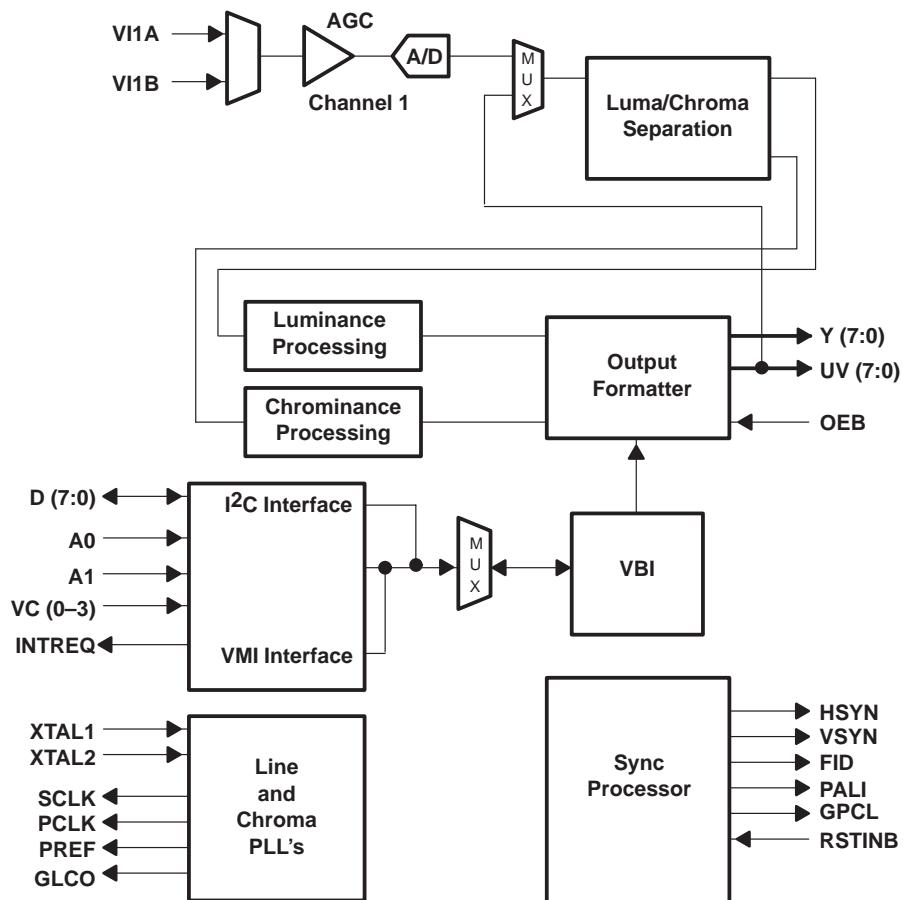
Two-line (1-H delay) comb filtering is available for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available. Video characteristics including hue, contrast, and saturation are programmable using one of five supported host port interfaces. The TVP5020 generates synchronization, blanking, field, lock, and clock signals in addition to digital video outputs.

The TVP5020 includes advanced vertical blanking interval (VBI) data retrieval. The VBI data processor slices, parses, and performs error checking on teletext data in several formats. A built-in FIFO stores up to 14 lines of teletext data and, with proper host port synchronization, full-field teletext retrieval is possible. The VBI data processor also retrieves closed-caption data.

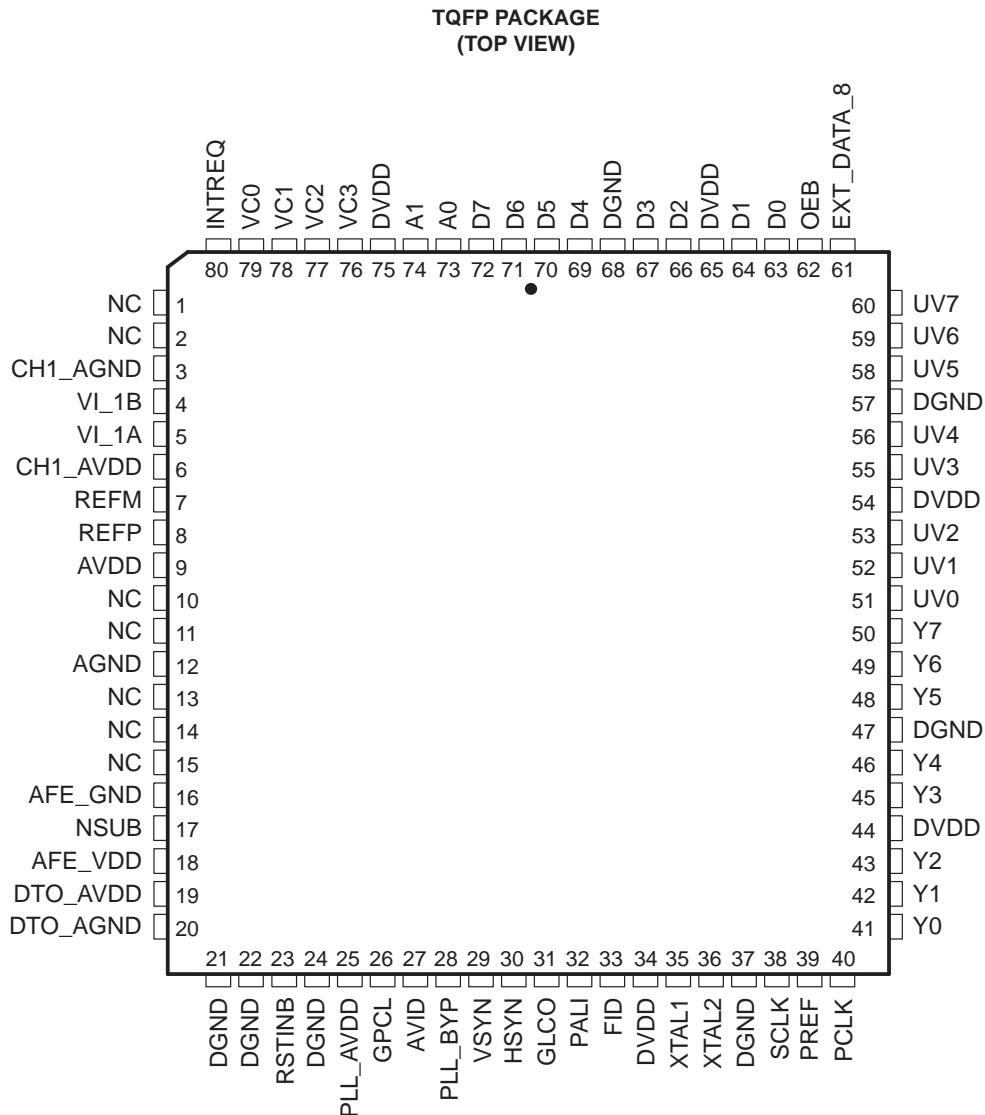
The main blocks of TVP5020 include:

- Analog processors and A/D converter
- Y/C separation
- Chrominance processor
- Luminance processor
- Clock/Timing processor and power-down control
- Output formatter
- Host port interface
- VBI data processor

1.1 Features


- NTSC (M) and PAL (B, D, G, H, I, M, N) composite video
- Two analog video inputs for up to two composite inputs
- Single built-in-analog signal processing channels with clamping and AGC
- Single high speed 8-bit A/D converter
- Patented architecture for locking to weak, noisy, or unstable signals
- Comb filters for both cross-color and cross-luminance noise reductions
- Line locked clock and sampling
- Programmable data rates:
 - 12.2727 MHz square-pixel (NTSC)
 - 14.7500 MHz square-pixel (PAL)
 - 13.5 MHz ITU-R BT.601 (NTSC and PAL)
- Programmable output formats: 16-bit or 8-bit 4:2:2 YCbCr, 12-Bit 4:1:1 YCbCr and ITU-R BT.656 with embedded syncs

- Teletext (NABTS, WST) and closed caption decode with FIFO
- ITU-R BT.601 or extended coding range
- Programmable host port options including I²C, VMI (3 modes), and VIP
- 80-terminal TQFP package


1.2 Applications

- Digital image processing
- Video conferencing
- Multimedia
- Digital video
- Desktop video
- Video capture
- Video editing

1.3 Functional Block Diagram

1.4 Terminal Assignments

1.5 Ordering Information

DEVICE: TVP5020CPFP
PFP: Plastic flat-pack with PowerPAD

1.6 Terminal Functions

TERMINAL NAME	NO.	I/O	DESCRIPTIONS		
Analog video					
VI_1A	5	I	Analogue video inputs. Up to two composite inputs. The inputs must be AC coupled. The recommended coupling capacitor is 0.1 μ F.	VI_1B	4
Clock Signals					
PCLK	40	O	Pixel clock output. The frequency is 12.2727 MHz for square-pixel NTSC, 14.75 MHz for square-pixel PAL, and 13.5 MHz for ITU-R BT.601 sampling modes.		
PREF	39	O	Clock phase reference signal. This signal qualifies clock edges when SCLK is used to clock data that is changing at the pixel clock rate.		
SCLK	38	O	System clock output with twice the frequency of the pixel clock (PCLK).		
XTAL1	35	I	External clock reference. The user may connect XTAL1 to a TTL-compatible oscillator or to one terminal of a crystal oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect XTAL2 at all. Square pixel sampling uses an oscillator frequency of 26.800 MHz. ITU-R BT.601 sampling uses an oscillator frequency of 24.576 MHz.		
XTAL2	36				
Digital Video					
EXT_DATA_8	61	I	Bit [8] of a 9-or 10-bit digital composite video input		
UV[0:7]	51, 52, 53, 55, 56, 58, 59, 60	I/O	Digital chrominance outputs. These terminals may be configured to output data from the channel 2 A/D converter. A vendor modifiable subsystem ID may be initialized by configuring the UV [7:0] terminals with pull-up/pull-down resistors.		
Y[0:7]	41, 42, 43, 45, 46, 48, 49, 50	O	Digital luminance outputs, or multiplexed luminance and chrominance outputs. These terminals may be configured to output data from the channel 1 A/D converter.		
HOST PORT-bus			VMI	i²C	VIP
A[0:1]	73, 74	I	VMI address port		
D[0:7]	63, 64 66, 67 69, 70 71, 72	I/O	VMI data port – bit [7:0].		
INTREQ	80	O	Interrupt request (INTREQ)		Interrupt request (VIRQ)
VC0	79	I/O	VMI port data ack. or ready signal (DTACK)	Serial clock (SCL)	Hardware address bit-0 (HAD[0])
VC1	78	I/O	VMI Port Read-Write or Write (RW/WR)	Serial data (SDA)	Hardware address bit-1 HAD[1]
VC2	77	I/O	VMI port data strobe or read signal (DS/RD)		Hardware control (HCTL)
VC3	76	I	VMI port chip select. (VC)	Slave address select (I ² CA)	VIPCLK

1.6 Terminal Functions (Continued)

TERMINAL NAME	NO.	I/O	DESCRIPTIONS
Miscellaneous signals			
GPCL	26	I/O	<p>General-purpose control logic. This terminal has three functions:</p> <ol style="list-style-type: none"> 1. General-purpose output. In this mode the state of GPCL is directly programmed via the host port. 2. Vertical blank output. In this mode the GPCL terminal is used to indicate the vertical blanking interval of the output video. The beginning and end times of this signal are programmable via the host port control. 3. Sync lock control input. In this mode when GPCL is high, the output clock frequencies and sync timing are forced to nominal values.
GLCO	31	I/O	This serial output carries color PLL information. A slave device can decode the information to allow genlocking to the TVP5020. Data is transmitted at the SCLK rate. Additionally, this terminal, in conjunction with PALI and FID, is used to determine the host port mode configuration during initial power up.
OEB	62	I	Output enable for Y and UV terminals. Output enable is also controllable via the host port.
PLL_BYP	28		Connect a 0.1 μ F capacitor between this terminal and PLL_AVDD
RSTINB	23	I	Reset input, active low
NC	1, 2, 13, 14, 15		Not connected
Power Supplies			
AFE_GND	16		Analog ground
AFE_VDD	18		Analog supply, connect to 5 V
CH1_AGND	3		Analog grounds
AGND	12		
CH1_AVDD	6		Analog supply, connect to 5 V
AVDD	9		
DGND	21, 22, 24, 37, 47, 57, 68		Digital grounds
DTO_AGND	20		DTO ground, connect to analog ground
DTO_AVDD	19		DTO supply, connect to 5 V analog
DVDD	34, 44, 54, 65, 75		Digital supply, connect to 3.3 V
NSUB	17		Substrate ground, connect to analog ground
PLL_AVDD	25		PLL supply connect to 3.3 V
REFP	8		A/D reference supply, connect to 5 V analog
REFM	7		A/D reference ground, connect to analog ground

1.6 Terminal Functions (Continued)

TERMINAL	I/O	DESCRIPTIONS
NAME	NO.	
Sync Signals		
AVID	27	O
		Active video indicator. This signal is high during the horizontal active time of the video output on the Y and UV terminals. AVID continues to toggle during vertical blanking intervals.
FID	33	I/O
		Odd/even field indicator or vertical lock indicator. For odd/even indicator, a logic 1 indicates the odd field. For vertical lock indicator, a logic 1 indicates the internal vertical PLL is in a locked state. Additionally, this terminal in conjunction with GLCO and PALI is used to determine the host port mode configuration during initial power up and reset.
HSYN	30	O
		Horizontal sync signal. The rising edge time is programmable via the host.
PALI	32	I/O
		PAL line indicator or horizontal lock indicator. For PAL line indicator, a logic 1 indicates a noninverted line, and a logic 0 indicates an inverted line. For horizontal lock indicator, a logic 1 indicates the internal horizontal PLL is in a locked state. Additionally, this terminal in conjunction with GLCO and FID is used to determine the host port mode configuration during initial power up.
VSYN	29	O
		Vertical sync signal

2 Detailed Description

2.1 Analog Video Processors and A/D Converter

Figure 2–1 is a functional diagram of the TVP5020 analog video processors and A/D converter. This block accepts up to two inputs and performs analog signal conditioning (i.e., video clamping, video amplifying), and carries out analog-to-digital conversion.

2.1.1 Video Input Selection

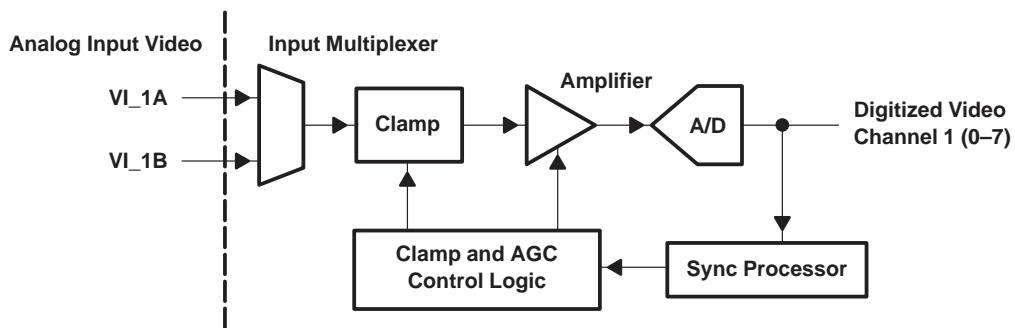
Two high-impedance video inputs are sources for a single internal analog channel in the TVP5020. The user can connect the two analog video inputs to two selectable individual composite video inputs.

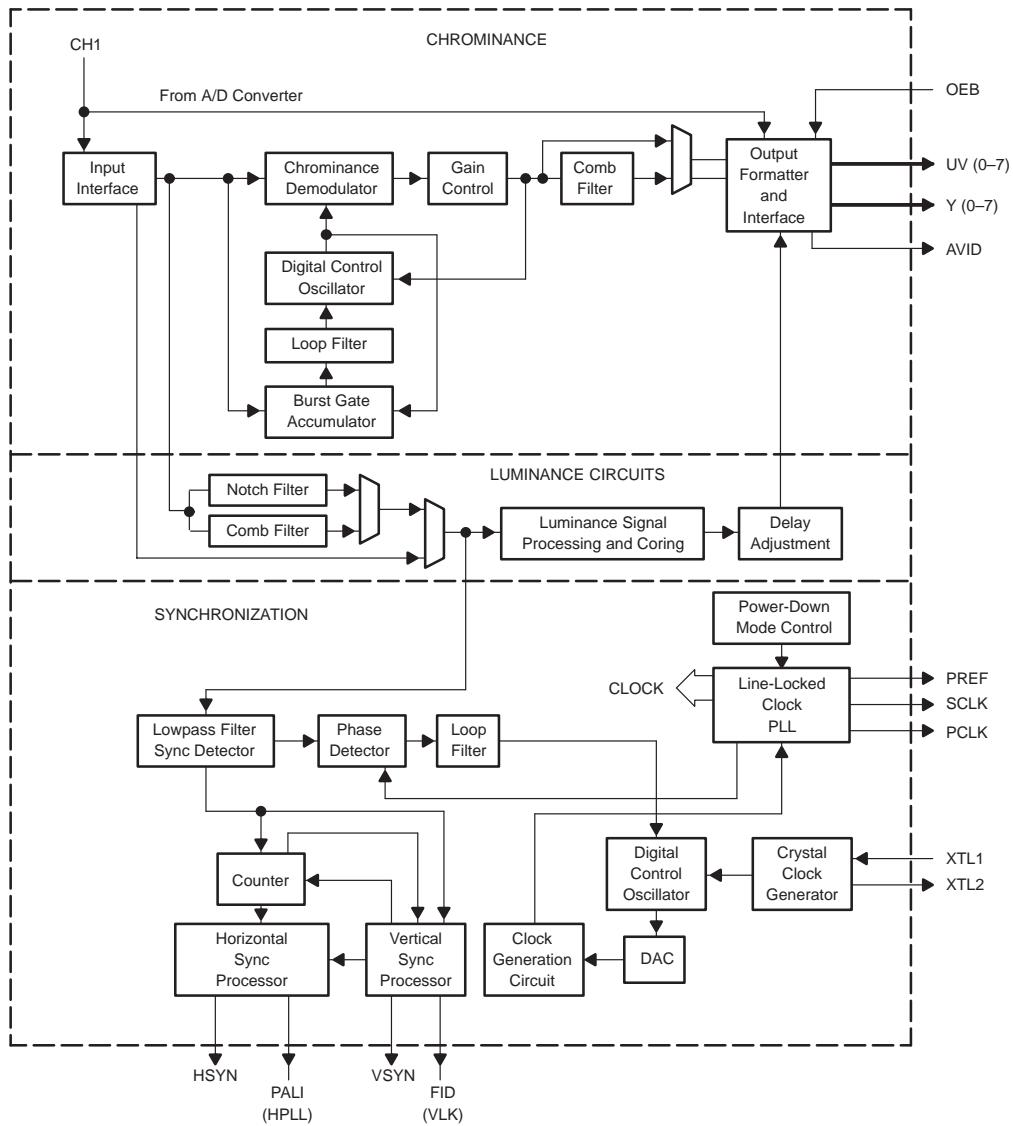
2.1.2 Analog Input Clamping and Automatic Gain Control Circuits

The internal clamp circuit restores the ac-coupled video signals to a fixed dc level before A/D conversion. The clamping circuit provides line-by-line restoration of the video sync level to a fixed dc reference voltage. The circuit has two modes of clamping, coarse and fine. In coarse mode, the most negative portion of the signal (typically the sync tip) is clamped to a fixed dc level. The circuit uses fine mode to prevent spurious level shifting caused by noise that is more negative than the sync tip on the input signal. When fine mode is enabled, after the sync position is detected, clamping is only enabled during the sync period.

Input video signal amplitudes may vary significantly from the nominal level of 1 Vpp. An automatic gain control (AGC) circuit adjusts the signal amplitude to use the maximum range of the A/D converter without clipping.

The AGC circuit adjusts the signal amplitude based on the detected amplitude of the sync portion of the input signal. Signal peaks may be present on nonstandard signals that cause clipping at the A/D converter after gain adjustment based only on sync amplitude. In these cases, the signal will be attenuated before A/D conversion.




Figure 2–1. Analog Video Processors and A/D Converters

2.1.3 A/D Converter

The TVP5020 contains one 8-bit A/D converter which digitizes the selected analog video signal input. To prevent high frequencies which are above half of the sampling rate from entering into the system, video inputs may require external anti-aliasing low pass filters.

2.2 Digital Processing

Figure 2–2 is a block diagram of the TVP5020 digital video processing. This block receives digitized composite or signals from the A/D converter, and performs Y/C separation, chroma demodulation, and Y-signal enhancements. It also generates the horizontal and vertical syncs. The YUV digital output may be programmed into various formats: 16-bit or 8-bit 4:2:2, 12-bit 4:1:1 and ITU-R BT.656 parallel interface standard. The circuit uses comb filters to reduce the cross-chroma and cross-luma noise.

Figure 2–2. Digital Video Signal Processing Block Diagram

2.2.1 Y/C Separation

Luma/chroma separation may be done using either 2-line (1-H delay) comb filtering or a chroma trap filter. Comb filtering is available for both the luminance and the chrominance portion of the data path. The characteristics of the chroma trap filter are shown in Figures 2–3 and 2–4.

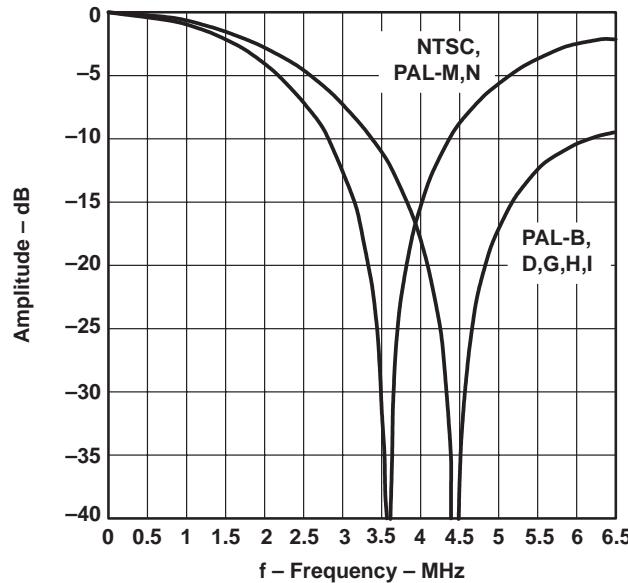


Figure 2-3. Chroma Trap Filter Frequency Response for 13.5 MHz Sampling

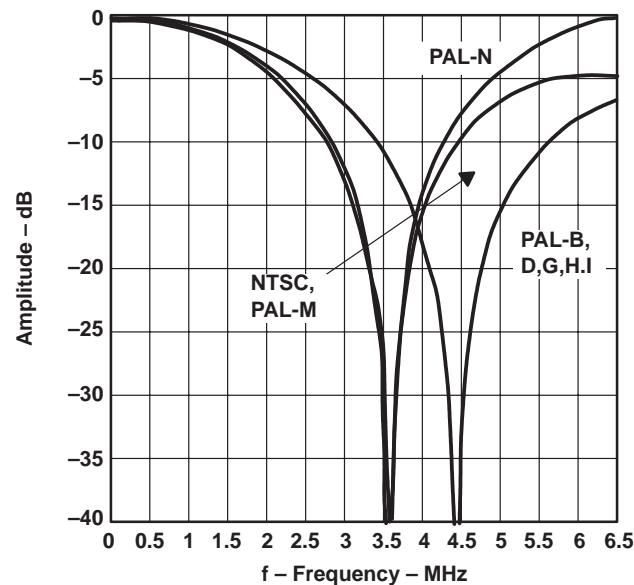


Figure 2-4. Chroma Trap Filter Frequency Response for Square-Pixel Sampling

2.2.2 Luminance Processing

The digitized composite video signal from the output of the A/D converter passes through a luminance comb filter or a chroma trap filter that removes the chrominance signal from the composite signal to generate the luminance signal. The luminance signal is then fed to the input of luminance signal peaking and coring circuits. Figure 2-5 illustrates the functions of the luminance data path. High frequency components of the luminance signal are enhanced further by the peaking filter (edge enhancer). Figures 2-6, 2-7, and 2-8 show the characteristic of the peaking filter at maximum gain. The coring circuit reduces low-level, high

-frequency noise. Figure 2-9 shows the transfer curve of the coring function. The peaking frequency, peaking gain, and coring threshold are programmable.

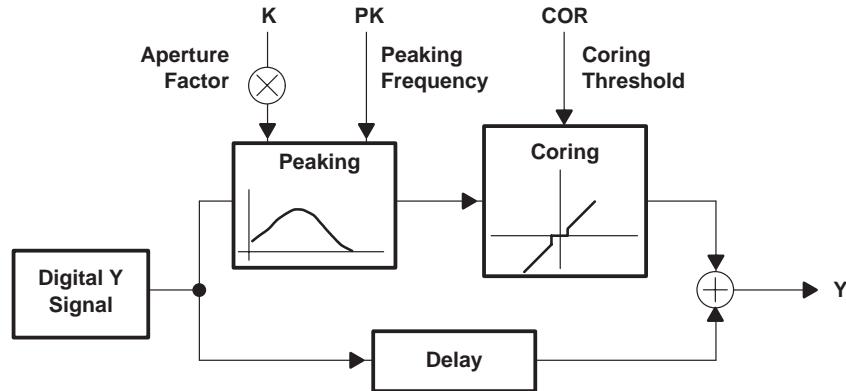


Figure 2-5. Luminance Edge-Enhancer

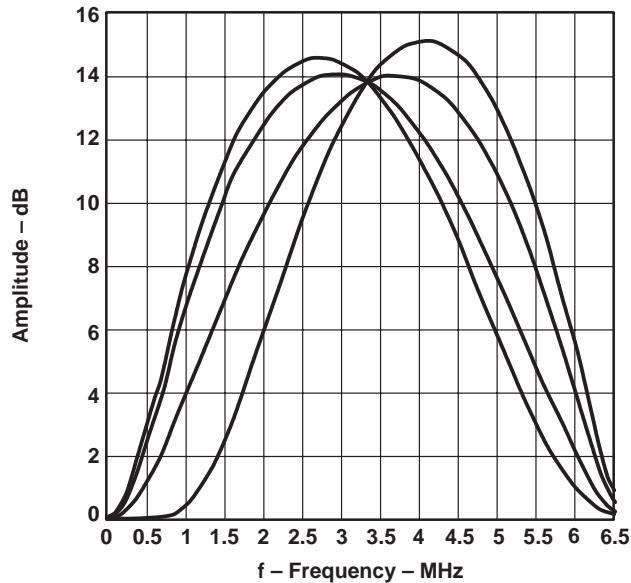


Figure 2-6. Peaking Filter Response, 13.5 MHz Sampling

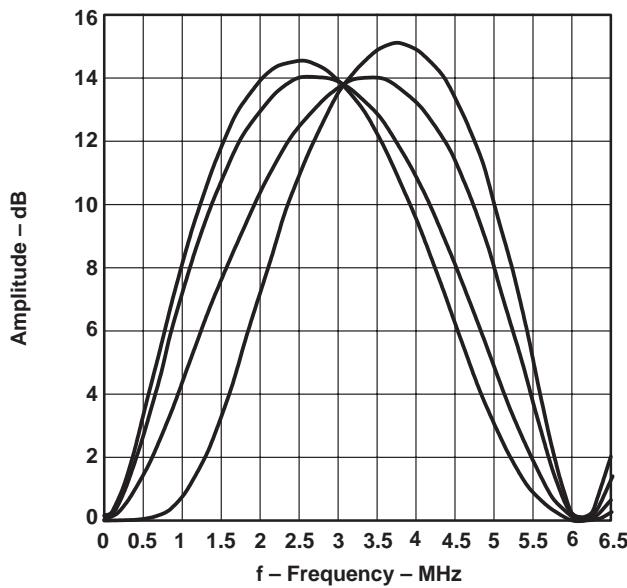


Figure 2-7. Peaking Filter Response, NTSC AND PAL-M SQUARE PIXEL

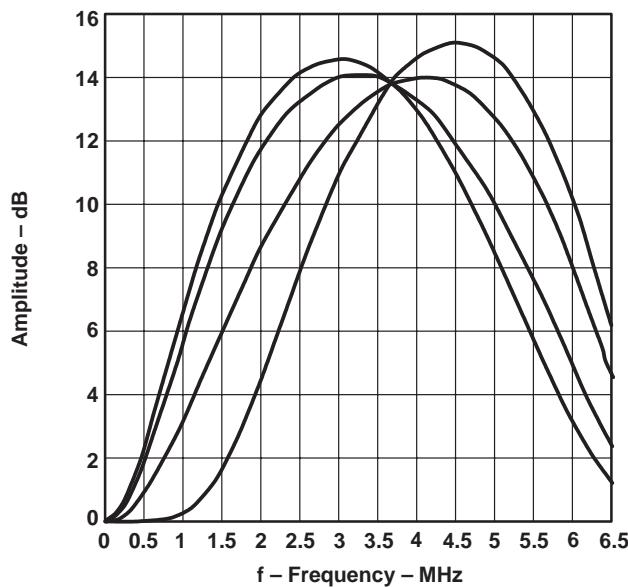


Figure 2-8. Peaking Filter Response, PAL Square Pixel

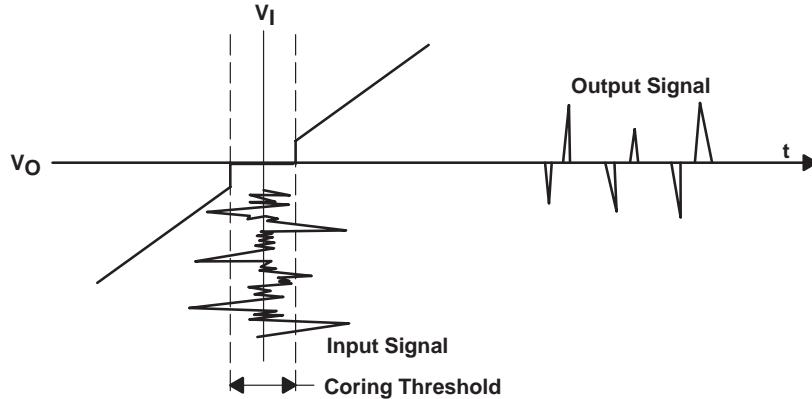


Figure 2-9. Transfer Curve of Coring Circuit

2.2.3 Chrominance Processing

A quadrature demodulator removes the U and V components from the composite signal in composite video mode. The U/V signals then pass through the gain control stage for chroma saturation adjustment. The U and V components pass through a comb filter to eliminate cross-chrominance noise. Phase shifting the digitally-controlled oscillator controls hue. The block includes an automatic color killer (ACK) circuit that suppresses the chroma output when the color burst of the video signal is weak or not present.

2.2.4 Clock Circuits

An internal line-locked PLL generates the system and pixel clocks. Figure 2-10 shows a simplified clock circuit diagram. The digital control oscillator (DCO) generates the reference signal for the horizontal PLL. The DCO outputs a signal that is fed to the D/A converter. The D/A converter outputs a line-locked clock signal (LCLK). The DCO requires a 26.8 or a 24.576 MHz clock as an input. The input for the DCO may be connected to terminal XTAL1 or a 26.8 or 24.576 MHz crystal may be connected across terminals XTAL1 and XTAL2. Figure 2-11 shows the various reference clock configurations.

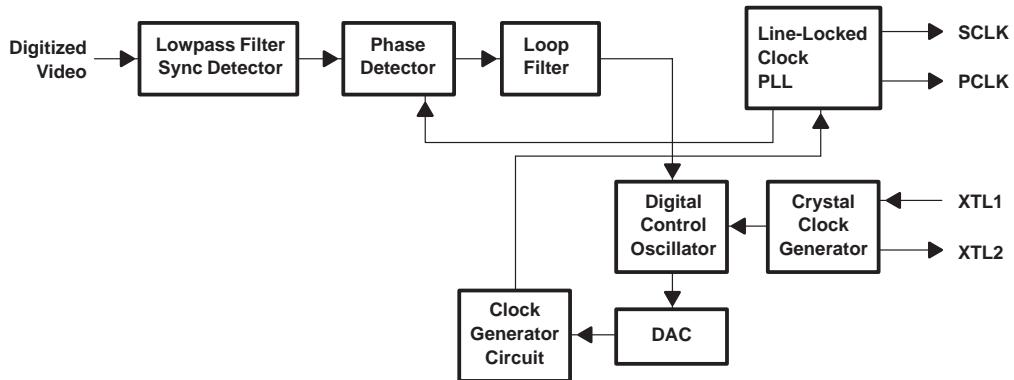
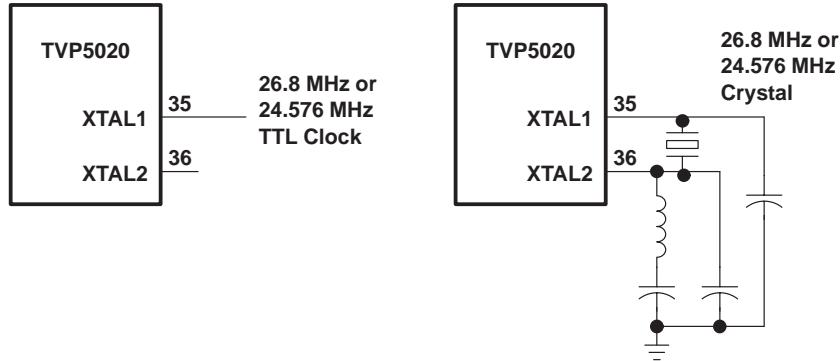



Figure 2-10. Clock Circuit Diagram

Figure 2-11. Reference Clock Configurations

The TVP5020 generates three signals PCLK, SCLK, and PREF used for clocking data. PCLK is the pixel clock at the sampling frequency. PCLK can be used for clocking data in the 16-bit 4:2:2 and the 12-bit 4:1:1 output formats. SCLK is at twice the sampling frequency and may be used for clocking data in the 8-bit 4:2:2 and ITU-R BT.656 formats. PREF is used as a clock qualifier with SCLK to clock data in the 16-bit 4:2:2 and the 12-bit 4:1:1 formats

2.3 Video Output Format

The TVP5020 supports both square-pixel and ITU-R BT.601 sampling formats and multiple output formats:

- 16-bit 4:2:2
- 12-bit 4:1:1
- 8-bit 4:2:2
- ITU-R BT.656

2.3.1 Sampling Frequencies and Patterns

The sampling frequencies that control the number of pixels per line differ depending on the video format and standards. Table 2-1 shows a summary of the sampling frequencies.

Table 2-1. Summary of the Line Frequencies, Data Rates, and Pixel Counts

STANDARDS	HORIZONTAL LINE RATE (kHz)	PIXELS PER LINE	ACTIVE PIXELS PER LINE	PCLK (MHz)	SCLK (MHz)
NTSC, square-pixel	15.73426	780	640	12.2727	24.54
NTSC, ITU-R BT.601	15.73426	858	720	13.5	27.0
PAL (B,D,G,H,I), square-pixel	15.625	944	768	14.75	29.5
PAL (B,D,G,H,I), ITU-R BT.601	15.625	864	720	13.5	27.0
PAL(M), square-pixel	15.73426	780	640	12.2727	24.54
PAL(M), ITU-R BT.601	15.73426	858	720	13.5	27.0
PAL(N), square-pixel	15.625	944	768	14.75	29.5
PAL(N), ITU-R BT.601	15.625	864	720	13.5	27.0

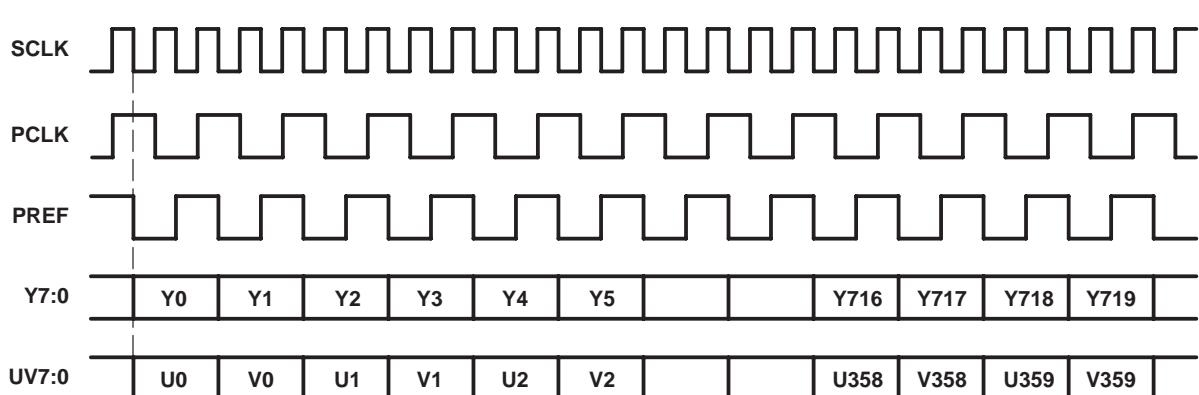
Depending on the output format chosen, The TVP5020 outputs data in the 4:2:2 or 4:1:1 sampling pattern. The patterns differ in the number of chrominance samples derived from the original samples. For the 4:2:2 pattern, every second sample is both a luminance and a chrominance sample; the remainder are luminance-only samples. For the 4:1:1 pattern, every fourth sample is both a luminance and a chrominance sample; the remainder are luminance-only samples.

Y0	Y1	Y2	Y3	Y4	Y5	Y716	Y717	Y718	Y719
U0		U1		U2		U358		U359	
V0		V1		V2		V358		V359	
<input type="checkbox"/>									
<input type="checkbox"/>									
<input type="checkbox"/>									

= Luminance-Only Sample
 = Luminance and Chrominance Sample

Numbering Shown is for 13.5 MHz Sampling.

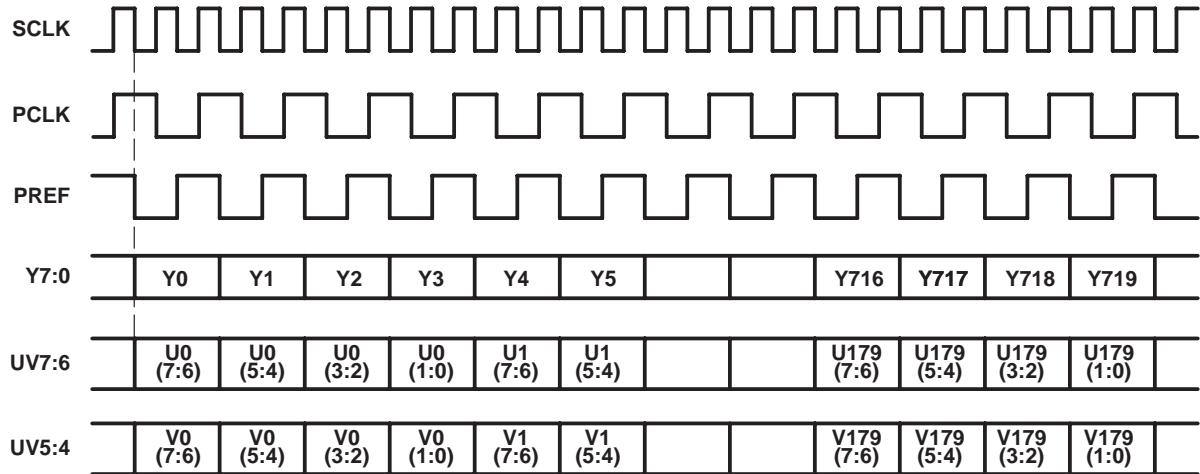
Figure 2–12. 4:2:2 Sampling


Y0	Y1	Y2	Y3	Y4	Y5	Y716	Y717	Y718	Y719
U0		U1				U179			
V0		V1				V179			
<input type="checkbox"/>									
<input type="checkbox"/>									
<input type="checkbox"/>									

= Luminance-Only Sample
 = Luminance and Chrominance Sample

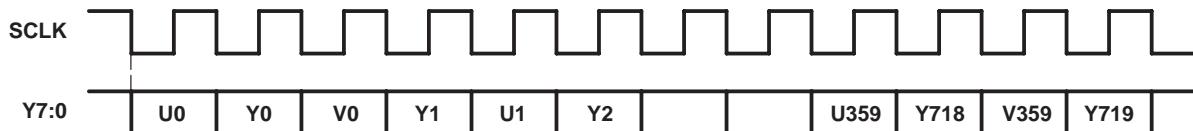
Numbering Shown is for 13.5 MHz Sampling.

Figure 2–13. 4:1:1 Sampling


2.3.2 Video Port 16-Bit 4:2:2 Output Format Timing

Numbering Shown is for 13.5 MHz Sampling.

Figure 2–14. 16-Bit 4:2:2 Output Format


2.3.3 Video Port 12-Bit 4:1:1 Output Format Timing

UV3:0 Logic 0
Numbering Shown is for 13.5 MHz Sampling.

Figure 2-15. 12-bit 4:1:1 Output Format

2.3.4 Video Port 8-Bit 4:2:2 and ITU-R BT.656 Output Format Timing

UV7:0 High Impedance
Numbering Shown is for 13.5 MHz Sampling.

Figure 2-16. 8-Bit 4:2:2 and ITU-R BT.656 Output Formats

2.4 Synchronization Signals

The TVP5020 generates synchronization signals to accompany the output video data stream. The following figures show the default timing for the horizontal and vertical sync and associated signals.

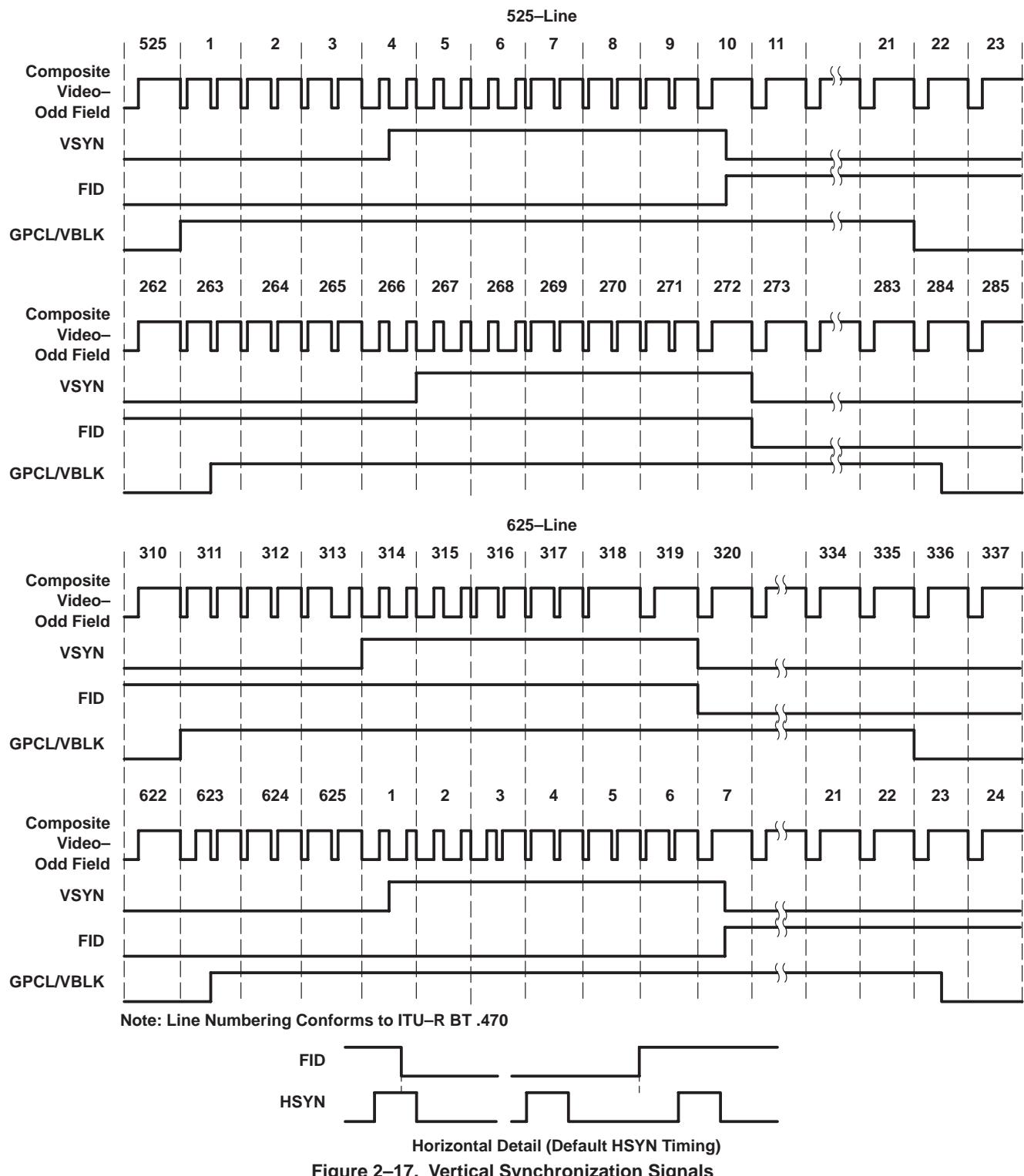
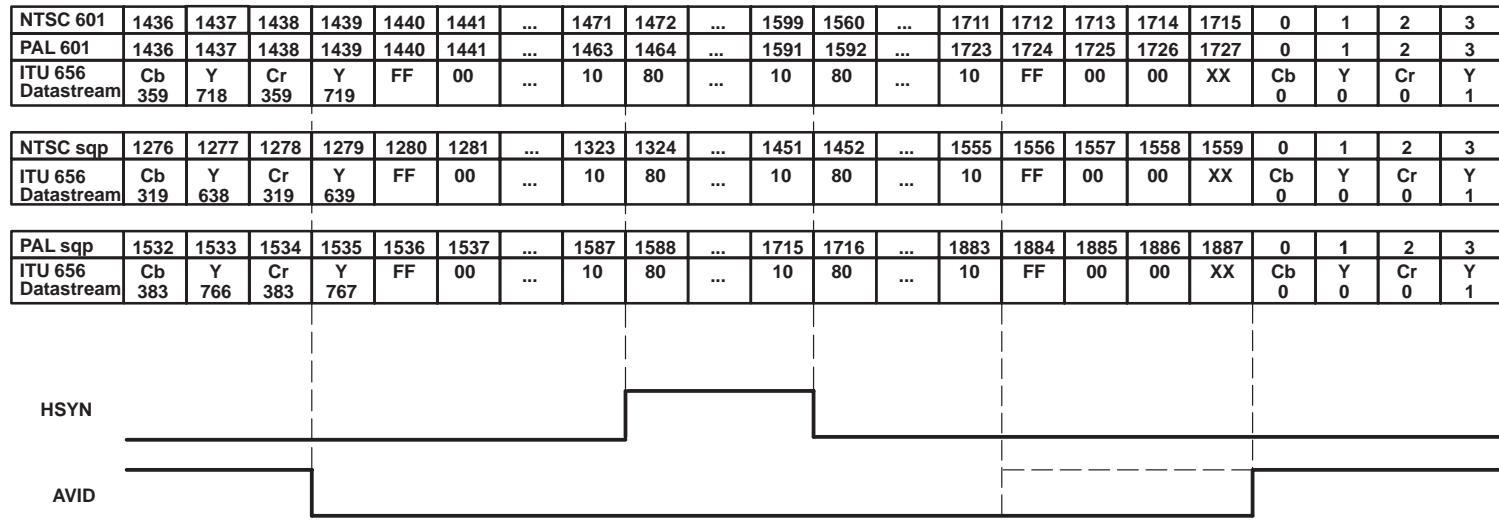



Figure 2-17. Vertical Synchronization Signals

8-Bit 4:2:2 Timing With 2x Pixel Clock (SCLK) Reference

16-Bit 4:2:2 Timing With 1x Pixel Clock (PCLK) Reference

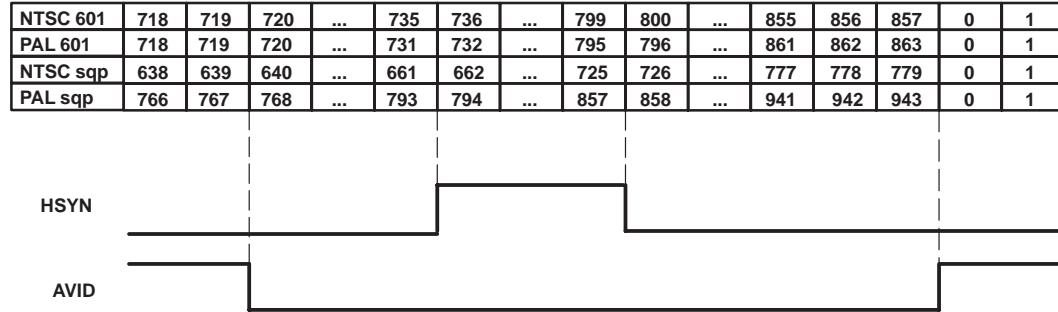


Figure 2–18. Horizontal Synchronization Signals

2.5 I²C/VIP/VMI Host Interface

Communication with the TVP5020 is via an interface that is configurable at power up to support an I²C, VIP, or VMI bus host. The host interface accesses status and control registers and retrieves sliced VBI data. The host interface also initializes the TVP5020's internal microprocessor.

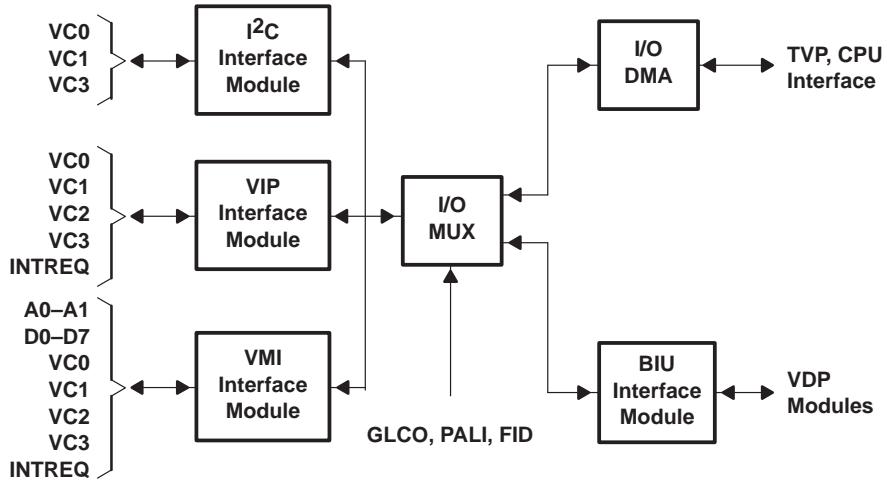


Figure 2–19. Host Interface

The host port mode is selected by attaching external pullup and pulldown resistors to the GLCO, PALI, and FID terminals. The TVP5020 samples the state of the terminals at trailing edge of RSTINB and configures the host port accordingly. Table 2–2 shows the pullup/pulldown combinations required to select each of the host port modes. Figure 2–19 is a block diagram of the host interface showing the mode selection and host interface terminals, as well as interfaces to the internal microprocessor and VBI data processor.

Table 2–2. Host Port Select

TERMINALS	GLCO	PALI	FID
	2	1	0
I ² C Host Port	0	0	1
VIP Host Port	0	1	0
VMI Host Port Mode A	1	0	1
VMI Host Port Mode B	1	1	0
VMI Host Port Mode C	1	1	1

2.6 I²C Interface

The TVP5020 host port interface is configured for I²C operation by attaching external pull-up and pull-down resistors to the GLCO, PALI, and FID terminals. The following is the combination of resistors required to select the I²C host mode. (1 is pullup and 0 is pulldown)

TERMINALS	GLCO	PALI	FID
	2	1	0
I ² C Host Port Enabled	0	0	1

2.6.1 I²C Host Port Select

The I²C standard consists of two signals, serial input/output data (VC1) line and input/output clock line (VC0), that carry information between the devices connected to the bus. A third signal (VC3) is used for slave address selection. Although the I²C system can be multimastered, the TVP5020 will function as a slave device only.

Both SDA and SCL are bidirectional lines that connect to a positive supply voltage via a pullup resistor. When the bus is free, both lines are high.

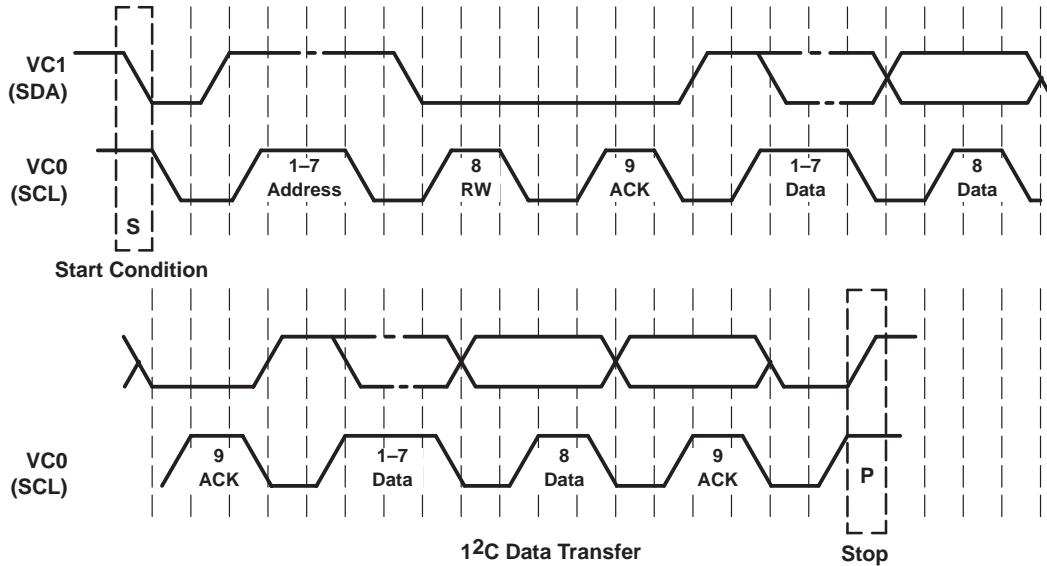

The slave address select terminal (VC3) enables the use of two TVP5020 devices tied to the same I²C bus.

Table 2–3 summarizes the terminal functions of the I²C mode host interface.

Table 2–3. I²C Host Port Terminal Description

SIGNAL	TYPE	DESCRIPTION
VC3 (I2CA)	I	Slave address selection
VC0 (SCL)	I/O (OD)	Input/output clock line
VC1 (SDA)	I/O (OD)	Input/output data line

NOTE: OD = Open drain

Figure 2–20. I²C Data Transfer Example

Data transfer rate on the bus is up to 400 kbit/s. The number of interfaces connected to the bus is dependent on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change with the clock signal on the SCL line being low.

- When transferring multiple bytes during one read or write operation, the internal subaddress is not automatically incremented.
- A high to low transition on the SDA line while the SCL is high indicates a start condition.
- A low to high transition on the SDA line while the SCL is high indicates a stop condition
- Acknowledge is signalled by SDA low during the ninth SCL high.
- Not-acknowledge is signalled by SDA high during the ninth SCL high.

Every byte placed on the SDA line must be 8 bits long. The number of bytes that can be transferred is unrestricted. An acknowledge bit follows each byte. If the slave can not receive another complete byte of data until it has performed another function, it holds the clock line (SCL) low. An SCL low forces the master

into a wait state. Data transfer continues when the slave is ready for another byte of data and releases the clock line (SCL).

Data transfer with acknowledge is necessary. The master generates an acknowledge related clock pulse. The master releases the SDA line high during the acknowledge clock pulse. The slave pulls down the SDA line during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.

When a slave does not acknowledge the slave address, the data line is left high. The master then generates a stop condition to abort the transfer.

If a slave acknowledges the slave address, but some time later in the transfer cannot receive any more data bytes, the master again aborts the transfer. The slave indicates a not ready condition by generating the not acknowledge. The slave leaves the data line high and the master generates the stop condition.

If a master-receiver is involved in a transfer, it indicates the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the data line to allow the master to generate a stop or repeated start condition.

2.6.2 I²C Write Operation

Data transfers occur using the following illustrated formats.

The I²C master initiates a write operation to the TVP5020 by generating a start condition followed by the TVP5020's I²C address (101110X). The address is in MSB first bit order followed by a 0 to indicate a write cycle. After receiving a TVP5020 acknowledge, the I²C master sends a subaddress of the register or the block of registers where it will write. Following the subaddress is one or more bytes of data, with MSB first. The TVP5020 acknowledges the receipt of each byte upon completion of each transfer. The I²C master ends a write operation by generating a stop condition.

The X in the address of the TVP5020 is 0 when the I²CA terminal is low and the X is 1 when the I²CA is high. If the read or write cycle contains more than one byte, the internal subaddress does not increment automatically.

	0							
I ² C Start (Master)	S							
	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Write register address (Master)	Addr							
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Write data (Master)	Data							
	9							
I ² C Acknowledge (Slave)	A							
	0							
I ² C Stop (Master)	P							

2.6.3 I²C Read Operation

The read operation has two phases, the address phase and the data phase. In the address phase, the I²C master initiates a write operation to the TVP5020 by generating a start condition followed by the TVP5020's I²C address (101110X). The address is in MSB first bit order followed by a 0 to indicate a write cycle. After receiving a TVP5020 acknowledge, the I²C master sends a subaddress of the register or the block of registers where it will read. The TVP5020 acknowledges the receipt of the address. The I²C master ends the address phase by generating a stop condition. During the data phase, the I²C master initiates a read operation to the TVP5020 by generating a start condition followed by the TVP5020's I²C address (101110X). The address is in MSB first bit order followed by a 1 to indicate a read cycle. After receiving a TVP5020 acknowledge, the TVP5020 transfers a data byte to the master. The I²C master acknowledges the receipt of each byte upon completion of each transfer. After the TVP5020 transfers the last byte, the I²C master ends the read operation by generating a not acknowledge followed by a stop condition.

Read Address Phase

	0							
I ² C Start (Master)	S							
	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Write register address (Master)	Addr							
	9							
I ² C Acknowledge (Slave)	A							
	0							
I ² C Stop (Master)	P							

Read Data Phase

	0							
I ² C Start (Master)	S							
	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	1
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Read data (Slave)	Data							
	9							
I ² C Acknowledge (Master)	/A							
	0							
I ² C Stop (Master)	P							

2.6.4 I²C Microcode Write Operation

Data written during the microcode write operation will be written to the TVP5020 program RAM. During the write cycle the microprocessor resets and points to location zero in the program and remains reset. Upon completion of the write operation, the microprocessor requires a restart operation. To perform a clear-reset requires writing into the 7F register to clear reset and resume microprocessor function. (The 7F register requires no specific data written into the register, any data will resume microprocessor function).

	0
I ² C Start (Master)	S

	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0

	9
I ² C Acknowledge (Slave)	A

	7	6	5	4	3	2	1	0
I ² C Write register address (Master)	0	1	1	1	1	1	1	0

	9
I ² C Acknowledge (Slave)	A

	7	6	5	4	3	2	1	0
I ² C Write data (Master)	Data							

	9
I ² C Acknowledge (Slave)	A

	0
I ² C Stop (Master)	P

Micropocessor CLEAR Reset

	0							
I ² C Start (Master)	S							
	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Write register address (Master)	0	1	1	1	1	1	1	1
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Write data (Master)	Data							

Any Data Written to 7F Will Start the Micropocessor

	9							
I ² C Acknowledge (Slave)	A							
	0							
I ² C Stop (Master)	P							

2.6.5 I²C Microcode Read Operation

Data read during the microcode read operation will be read from the TVP5020 Program RAM. During the read cycle the microprocessor resets and points to location zero in the program and remains reset. Upon completion of the read operation, the microprocessor requires a restart operation. To perform a clear-reset requires writing into the 7F register to clear reset and resume microprocessor function. (The 7F register requires no specific data written into the register, any data will resume microprocessor function).

Read Address Phase

	0							
I ² C Start (Master)	S							
	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0
	9							
I ² C Acknowledge (Slave)	A							
	7	6	5	4	3	2	1	0
I ² C Read register address (Master)	1	0	0	0	1	1	1	0
	9							
I ² C Acknowledge (Slave)	A							

	0
I ² C Stop (Master)	P

Read Data Phase

	0
I ² C Start (Master)	S

	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	1

	7
I ² C Acknowledge (Slave)	A

	7	6	5	4	3	2	1	0
I ² C Read data (Slave)	Data							

	7
I ² C Acknowledge (Master)	A

NOTE: Repeat byte read sequence for N-1 bytes where N is the total number of bytes to be read

	7	6	5	4	3	2	1	0
I ² C read data (Slave)	Data							

	9
I ² C Acknowledge (Master)	/A

	0
I ² C Stop (Master)	P

Microprocessor CLEAR Reset

	0
I ² C Start (Master)	S

	7	6	5	4	3	2	1	0
I ² C General address (Master)	1	0	1	1	1	0	X	0

	9
I ² C Acknowledge (Slave)	A

	7	6	5	4	3	2	1	0
I ² C Write register address (Master)	0	1	1	1	1	1	1	1

Write to FIFO address=7F

	9
I ² C Acknowledge (Slave)	A

	7	6	5	4	3	2	1	0
I ² C Write data (Master)	Data							

NOTE: Any data written to 7F will start the microprocessor.

	9
I ² C Acknowledge (Slave)	A

	0
I ² C Stop (Master)	P

2.7 VIP Host Interface Port

The TVP5020 host interface is configured for video interface port (VIP) by attaching external pullup and pulldown resistors to the GLCO, PALI, and FID terminals. The following is the combination of resistors required to select the VIP host mode. (1 is pullup and 0 is pulldown)

TERMINALS	GLCO	PALI	FID
	2	1	0
VIP host port enabled	0	1	0

The VIP is a standard interface, conforming to the video interface port (VIP) specification Version 1.1. The interface is between a video enabled graphics device and one or more video devices. The video port of VIP transports various types of real-time signal streams. Signal names in parentheses denote the signal name referenced in VIP specification. Host port transfers require five terminals, VC3, VC0, VC1, VC2, INTREQ.

2.7.1 VIP Host Port Terminal Description

Table 2-4. VIP Host Port Terminal Description

SIGNAL	TYPE	DESCRIPTION
VC3 (VIPCLK)	I	VIP Host clock (25 MHz – 33 MHz)
VC0 VC1 (HAD[0:1])	I/O	Host address/data bus VC0 = (HAD_0) VC1 = (HAD_1)
VC2 (HCTL)	I/O (OD)	Host control: This includes the symbolic signals of VFRAME, DTACK, and VSTOP
INTREQ (VIRQ#)	O (OD)	Interrupt request. Shared signal with VDP

VC3 (VIPCLK) is the host port clock, operating from 25 MHz–33 MHz. VIPCLK can come from any source.

VC0 and VC1 (HAD[0:1]) is a two-wire bus that transfers commands, addresses, and data between master and slave devices.

VC2 (HCTL) is a shared control terminal. The master drives it to initiate and terminate data transfers. The slave drives it to terminate and add wait states to data transfers. Because VC2 is a shared control signal, special attention must be given to its generation to avoid bus conflicts.

INTREQ is a normally open drain pin that signals interrupts to the host controller. Using the interrupt configuration register at subaddress C2, this terminal can be configured as a conventional CMOS I/O buffer (non-open drain). Conflict is possible if multiple devices are connected to the INTREQ signal when it is configured in non-open drain mode.

2.7.2 VIP Phases

Figure 2-21. VIP Transfer Example

Table 2–5. VIP Host Port Phase Description

PHASE	EXPLANATION
Command	All host port transfers start with a command phase. The 8-bit command/address byte is multiplexed onto VC0 and VC1 (HAD[1:0]) during the command phase. The command byte selects between devices, read, and write cycles, register or FIFO transfers, and contains the most significant four bits of the register address.
Address	During register transfers the command phase is followed by the address extension phase. The least significant 8-bits of the VIP register address are multiplexed onto VC0 and VC1 (HAD[1:0]) during the address extension phase. This phase is not present during FIFO transfers.
Decode	Following the command or command/address phase(s), the bus requires one clock delay to allow slave devices to decode the address and determine if they are able to respond within the 1 wait phase requirement for active operation.
Retry	The four clock cycles immediately following the decode phase constitute the retry phase. During the retry phase, the slave indicates its desire to terminate the operation without transferring any data (retry), add a wait phase or transfer the first byte of data. When the slave asserts VSTOP, the transfer ends with the retry phase. When the slave neither terminates the transfer nor accepts the byte, the retry phase is followed by a wait phase.
Wait	During the second cycle of a decode, retry or wait phase, the slave indicates its ability to transfer the next byte of data by driving VC2 (HCTL) low. When the slave does not drive VC2 (HCTL) low and the transfer is not terminated, the current phase is followed by a wait phase. During wait phases, the current owner (master for writes, slave for reads) continues to drive the HAD bus, but no data is transferred. The slave is allowed to add one wait phase per byte to register accesses without compromising system timing. Additional wait phases are not prevented but overall system reliability may be compromised.
Data	When VC2 (HCTL) is removed during cycle 1 of a retry, wait or data phase, a data phase follows the current phase. The bus transfers data between master and slave devices during data phases. The data is multiplexed onto VC0 and VC1 (HAD[1:0]).
TA	Immediately following the last transfer phase of a read transfer, the slave requires a one cycle delay giving time to 3-state the VC0 and VC1 (HAD) bus. The master is free to begin a new bus transfer, driving VC0 and VC1 (HAD) and VC2 (HCTL) immediately following the TA phase.

Table 2–6. Condensed Table Command/Address

COMMAND	Cmd/Addr	REGISTER ADDRESS	DATA	COMMENT
[7:4]	[3:0]	[7:0]	[7:0]	
01 1 0	0000	00000000 thru 11111111	ddddddd	VIP configuration registers
01 0/1 0	0001	00000000 thru 11111111	ddddddd	General TVP registers
01 1 0	0010	00000000 thru 11111111	xxxxxx	No latency read access 1 phase
01 1 0	0011	addr as prev. written	ddddd	No latency read access 2 phase
01 1 1	0000	No addr phase	xxx0/1xxx0/1	FIFO status 0 read
01 1 1	0001	No addr phase	xxxxx11	FIFO status 1 read
01 1 1	0100	No addr phase	ddddd	FIFO VBI data read

2.7.3 Command Byte

During the command byte phase, the hardware control line (VC2) will transition high and the hardware address lines (VC0 and VC1) transmits the command byte from the host to the TVP5020. The command byte determines the nature of the data transfer and the affected TVP5020 address space.

	7	6	5	4	3	2	1	0
Command	DEVSEL1 (0)	DEVSEL0 (1)	R/W	F/R	A11	A10	A9	A8

Command Byte Bit Description

NAME	DESCRIPTION
DEVSEL1:0	Device select. Always 01 for TVP5020
R/W	1=Read 0=Write
F/R	1=FIFO 0=Register access
A11:8	Address bus upper 4 bits For register accesses: 0000=VIP specific configuration registers 0001=General TVP5020 registers 0010=No latency read access phase 1 0011=No latency read access phase 2 For FIFO accesses: 0000=FIFO status 0 0001=FIFO status 1 0100=VBI FIFO

2.7.3.1 Access Latency and Wait States

VIP accesses to registers or the VBI FIFO require the TVP5020 to insert one or more wait states into the access sequence. For register accesses, the wait states may total as much as 64 μ s. All writes will release the host port immediately, but internal wait states will continue to be generated until the operation completes. Any access attempts to the host port while the write operation is not completed will cause the slave to terminate the operation. Reads (except for no-latency reads) will hold the host port until completion.

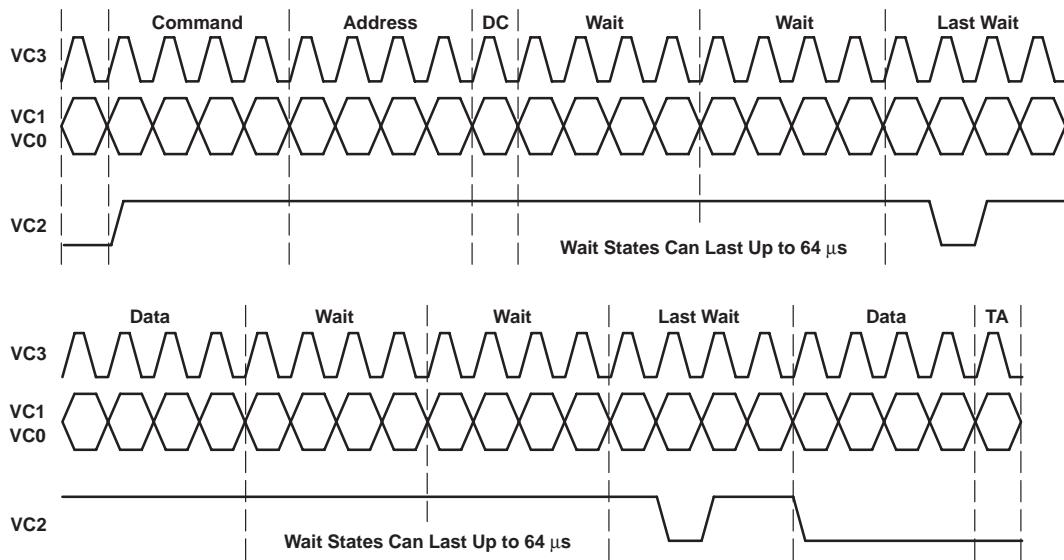


Figure 2–22. Functional Timing Reading From TVP (Example)

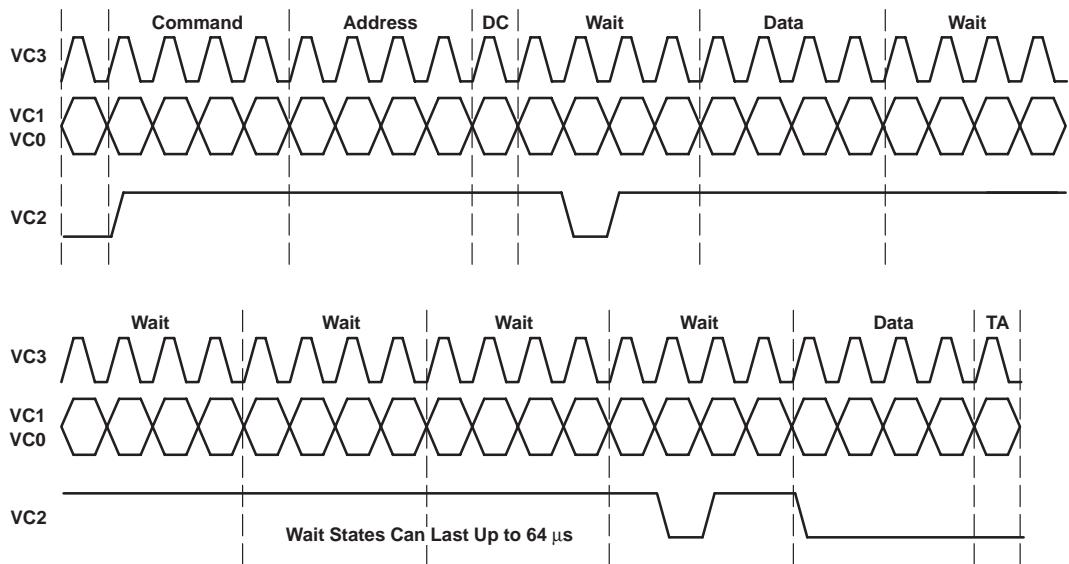


Figure 2–23. Functional Timing Writing to TVP (Example)

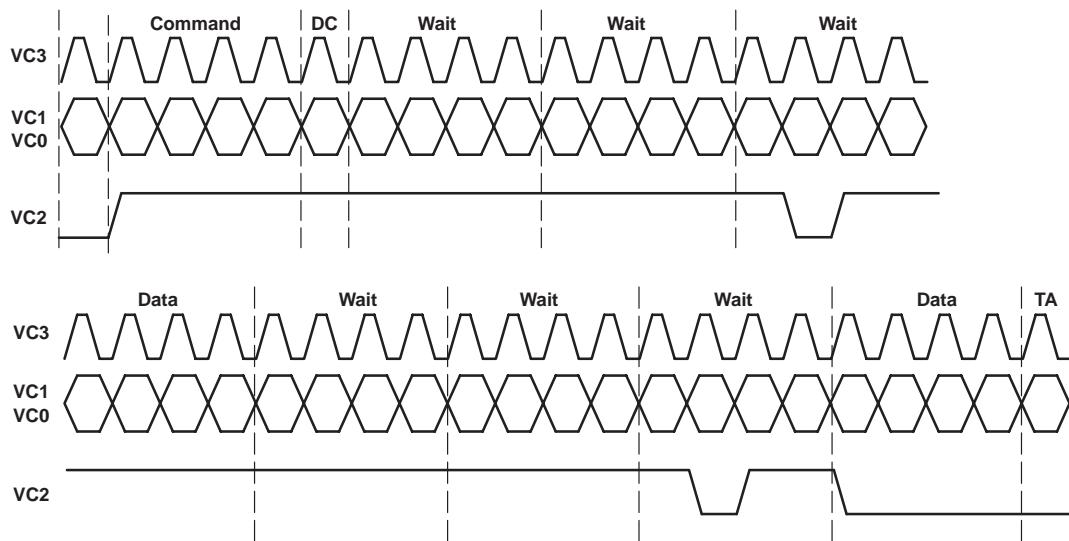


Figure 2–24. Functional Timing Reading From FIFO (Example)

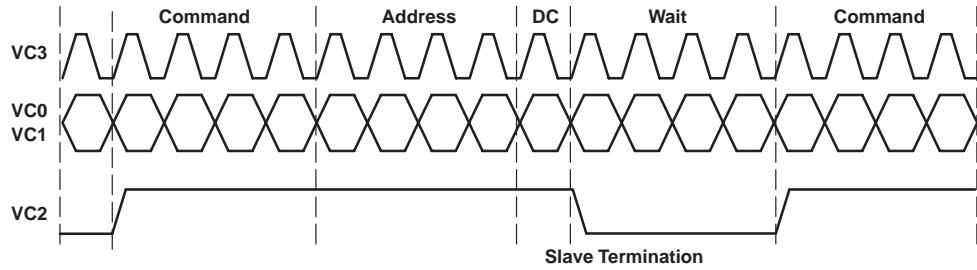


Figure 2–25. Functional Timing Example of Slave Termination

VIP Configuration Register:

The TVP5020 supports VIP configuration registers that are accessible only in the VIP host mode.

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (from TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
VIP Config. Register read	0	1	1	0	0	0	0	0	A	A	A	A	A	A	A	A	D	D	D	D	D	D	D							

General TVP5020 Registers:

The bulk of the TVP5020 register space consists of status and control registers that are available to the I²C, VIP, and VMI host modes.

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (from TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
General TVP register read	0	1	1	0	0	0	0	1	A	A	A	A	A	A	A	A	D	D	D	D	D	D	D	D	D	D	D	D		
	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (to TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
General TVP register write	0	1	0	0	0	0	0	1	A	A	A	A	A	A	A	A	D	D	D	D	D	D	D	D	D	D	D	D		

2.7.3.2 No-latency Read

No-latency read eliminates the extended wait states of normal read operations. No latency read consists of two zero-wait state phases separated by an idle period during which the host may perform other operations. The first phase identifies the register address to be read. This will be stored in an intermediate data buffer. The current data in the intermediate data buffer is immediately read out. This information is to be ignored because it is invalid data.

Following the completion of the first phase, the host must wait for at least 64 µs to ensure that the data requested in the first phase is stored in the intermediate data buffer. The host initiates the second phase of the read by reading the data from the intermediate data buffer.

No Latency Read Phase 1:

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (from TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
No latency read phase 1	0	1	1	0	0	0	1	0	A	A	A	A	A	A	A	A	du	du	du	du	du	du	du	du	du	du	du	du		

No Latency Read Phase 2:

	COMMAND PHASE								ADDRESS PHASE								DATA PHASE (to TVP5020)							
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
No Latency Read Phase 2	0	1	1	0	0	0	1	1	A	A	A	A	A	A	A	A	D	D	D	D	D	D	D	D

2.7.3.3 FIFO Status 0 Register

FIFO status 0 register returns two bits that report status and six unused bits.

	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0
FIFO Status 0	Undefined	Undefined	Undefined	DREQA	Undefined	Undefined	Undefined	VIRQ									

DREQA: DMA request for FIFO A. This bit is the same as the teletext threshold bit (bit 1 of the interrupt status register at VIP address 1C0).

VIRQ: this bit returns the status of the INTREQ terminal. Reading this register does not clear this terminal.

	COMMAND PHASE								DATA PHASE							
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
FIFO Status 0	0	1	1	1	0	0	0	0	d	d	d	0/1	d	d	d	0/1

There is no address associated with reading the FIFO status 0 register.

2.7.3.4 FIFO Status 1 Register

The FIFO status 1 register returns two bits that report status and six unused bits.

	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0
FIFO Status 1	Undefined	R/W	PRESENT														

R/W This bit identifies the VBI FIFO is read-only and is always set to 1.

PRESENT This bit indicates the VBI FIFO is present and is always set to 1.

	COMMAND PHASE								DATA PHASE								
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
FIFO Status 1	0	1	1	1	0	0	0	1	dc	dc	dc	dc	dc	dc	dc	1	1

There is no address associated with reading the FIFO status 1 register.

2.7.3.5 VBI FIFO

The VBI FIFO stores sliced VBI data. The data may be read from the FIFO at an average rate of one data byte per three cycles (1 data cycle and 2 wait cycles) when the VIPCLK is at maximum speed.

	COMMAND PHASE								DATA PHASE							
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
FIFO VBI data read	0	1	1	1	0	1	0	0	D	D	D	D	D	D	D	D

There is no address associated with reading the VBI FIFO.

2.7.4 VIP Microcode Write Operation

Data is written to the TVP5020 program RAM during the microcode write operation. During the write cycle, the microprocessor resets and points to location zero in the program and remains reset. Following the first data phase, the data phase is repeated until all microcode is written. The microprocessor requires a clear-reset operation upon completion of the write operation. The host performs the reset by writing into the 7F register to clear reset and resume microprocessor function. (There is no specific data to be written into the 7F register; any data will resume microprocessor function).

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (to TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
Microcode write	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1	0	D	D	D	D	D	D	D	D	D	D			

The data phase is repeated to the end of the microcode.

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (to TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
Clear reset	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X			

2.7.5 VIP Microcode Read Operation

Data is read from the TVP5020 program RAM during the microcode read operation. During the read cycle, the microprocessor resets and points to location zero in the program and remains reset. Following the first data phase, the data phase is repeated until all microcode is read. The microprocessor requires a clear-reset operation upon completion of the read operation. The host performs the reset by writing into the 7F register to clear reset and resume microprocessor function. (There is no specific data to be written into the 7F register; any data will resume microprocessor function).

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (from TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
Microcode read	0	1	1	0	0	0	0	1	1	0	0	0	0	1	1	1	0	D	D	D	D	D	D	D						

The data phase is repeated to the end of the microcode.

	COMMAND PHASE										ADDRESS PHASE										DATA PHASE (to TVP5020)									
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0						
Clear reset	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X			

2.8 Video Module Interface (VMI) Host Interface

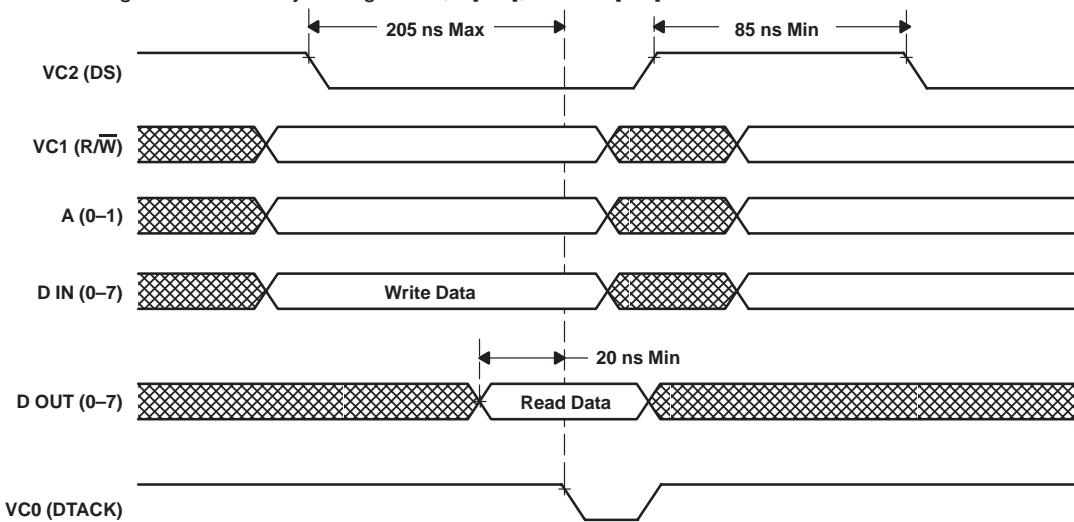
The VMI host port interface is configurable for three possible modes of operation. The mode of operation is determined by attaching pullup or pulldown resistors to the GLCO, PALI, and FID terminals. Table 2-7 shows the various modes. (0=pulldown and 1=pullup)

Table 2-7. VMI Host Port Select

TERMINALS	GLCO	PALI	FID
	2	1	0
VMI Host Port Mode A	1	0	1
VMI Host Port Mode B	1	1	0
VMI Host Port Mode C	1	1	1

VMI modes A and B are from the Video Electronics Standards Association (VESA) video module interface (VMI) proposal version 1.4. Mode C is designed to conform to the interface requirements of the IBM PowerPC 403GC. Table 2-8 summarizes the terminal functions of the VMI mode host interface.

Table 2-8. VMI Host Port Terminal Definitions


SIGNAL	VMI SIGNAL NAME	TYPE	DESCRIPTION
VC3	CS	I	Chip select - modes A, B, and C
VC0	DTACK – mode A READY – mode B	O (see below)	Data acknowledge – mode A Data ready – modes B and C
VC1	R/W – mode A WR – mode B	I	Read/write – modes A and C Write strobe – mode B
VC2	DS – mode A RD – mode B	I	Data strobe – mode A and C Read strobe – mode B
A1:A0	HA[1:0]	I	Address bus from host
D7:D0	HD[7:0]	I/O	Input/output data bus from host
INTREQ	INTREQ	O (nominal open drain)	Interrupt request

INTREQ is a nominally open drain terminal that signals interrupts to the host controller. The interrupt configuration register at subaddress C2 can configure this terminal as a conventional CMOS I/O buffer (non-open drain). Conflict is possible if INTREQ is connected to multiple devices and INTREQ is not configured in the open drain mode.

VC0 (DTACK/READY) is in the high impedance state when VC3 is not asserted.

2.9 Host Port – Mode A Timing

Host port mode A has a bus interface that accommodates the Motorola type of control signals. The diagram below shows the timing of the mode A signals. The host initiates the cycle when VC2 transitions low. The target responds by pulling VC0 low to indicate it is receiving the data or that the requested data is present on the bus. The host completes its cycle by pulling VC2 high. Once the host completes its cycle, the target pulls VC0 high. The host may change VC1, A[1:0], and Din[7:0] as soon as it receives VC0.

Figure 2-26. VMI Host Port Mode A Timing

2.10 Host Port – Mode B Timing

Host port mode B has a bus interface that accommodates the Intel type of control signals. The diagram below shows the timing of the mode B signals. The host presents the address and chip select when the command (VC1 or VC2) transitions low. The VMI module pulls VC0 low until the read or write operation is complete. VC1 and VC2 cannot both be low while VC3 is low.

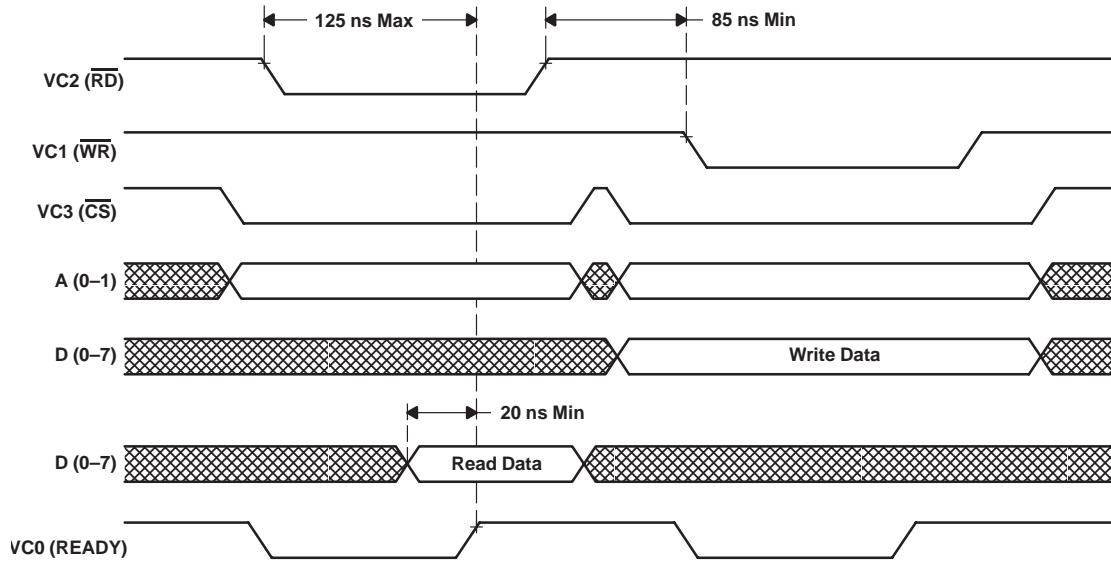


Figure 2–27. Host Port Mode B Timing

2.11 Host Port – Mode C Timing (PPC)

Host port mode C has a bus interface that accommodates the IBM PowerPC 403GC type of control signals. The Figure 2–21 shows the timing of the mode C signals. Mode C is similar to mode A (Motorola) except that a ready signal is used instead of VC0.

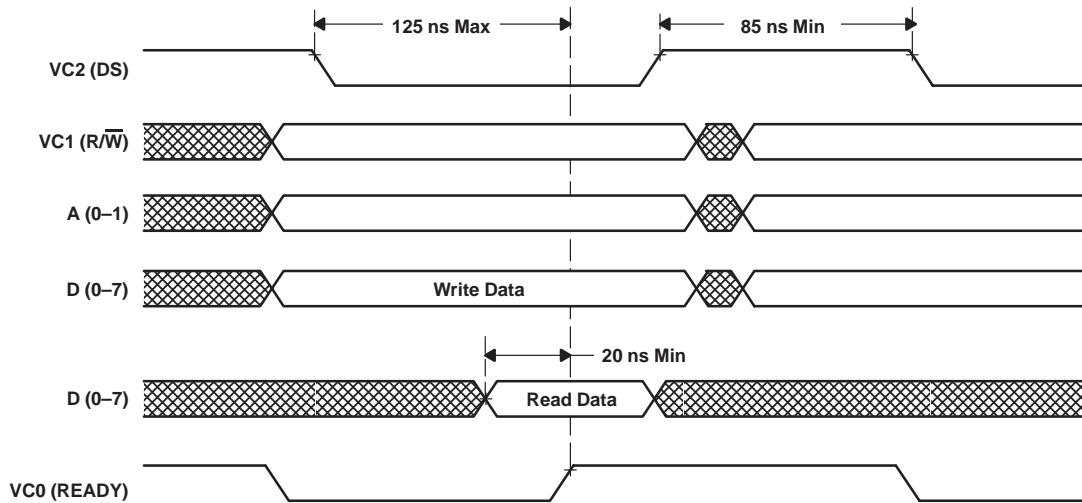


Figure 2–28. Host Port Mode C Timing

2.11.1 VMI Register Mapping

The VMI module contains only four registers that are accessible by the host. The address register holds an indirect address for internal register access. When the host accesses the data register, the VMI module reads or writes the internal register selected by the indirect address register.

Two other registers are provided for direct access. The FIFO register provides direct access to the VBI FIFO and the second direct access register is the status/interrupt register. This register contains the state of the interrupt sources.

A[1:0]	
00	Address register
01	Data register
10	FIFO
11	Status register

Figure 2-29. VMI Address Register Map

Normally, read or write operations require two accesses. To read the FIFO register, set A[1:0] to 10(binary) and perform a read cycle. The FIFO read data will be placed on the D[7:0] bus. To read/write the status/interrupt register, set A[1:0] to 11(binary) and perform a read/write cycle. The read/write will be muxed appropriately to/from the external data bus.

Indirect Register Read/Write:

All VMI accesses except for the VBI FIFO and the status/interrupt register require a two-step operation. To access an indirect register, write the internal address to the VMI address register. The first step requires setting A[1:0] to 00 and performing a write cycle with D[7:0] equaling the indirect address. To write to an indirect register, the second step is to write the data to VMI address 01. To read an indirect register, the second step is to read the the requested data from address 01.

Read the indirect register

STEP 1	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write register address	0	0	Register address							
STEP 2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Read register data	0	1	Data from register							

Write to the indirect register

STEP 1	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write register address	0	0	Register address							
STEP 2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write register data	0	1	Data to register							

Latency:

VMI access to indirect addresses 00–8F requires special consideration due to response latencies of up to 64 μ s for these addresses. Latency occurs between steps one and two for a read operation and following step two of a write operation. To avoid violating the VMI cycle time requirements, the host can poll the cycle complete bit in the VMI status register following step one for a read or step two for a write. Alternatively, the cycle complete enable bit in the interrupt enable register (indirect address C1) can be set to generate an interrupt for the host when access is complete.

VMI access to indirect addresses 90–CF occur with minimal latency. Interrupts will not be generated for the completion of access cycles to these addresses.

VBI FIFO:

The VBI FIFO containing sliced VBI data is directly readable by the VMI host.

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Read VBI FIFO	1	0								Data from FIFO

Status/Interrupt Register:

The status/interrupt register provides the host with information containing the source of an interrupt. After an interrupt condition is set, the condition can be reset by writing a one to the appropriate bit in the status/interrupt register.

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Access status/interrupt register	1	1								Data to/from status/interrupt register

2.11.2 VMI Microcode Write Operation

Data written to indirect register 7E will be written to the TVP5020 program RAM. During the address write cycle the microprocessor resets and points to location zero in the program and remains reset. The microprocessor requires a clear-reset operation upon completion of the write operation. The host performs the reset by writing into the 7F register to clear reset and resume microprocessor function. (There is no specific data to be written into the 7F register; any data will resume microprocessor function).

To avoid violating VMI cycle time requirements during microcode write operation, the host can poll the cycle complete bit in the VMI status register after writing each byte of data to the VMI data register. Alternatively, the cycle complete enable bit in the interrupt enable register (indirect address C1) can be set to generate an interrupt for the host when a write operation is complete.

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write microcode Register address	0	0	0	1	1	1	1	1	1	0

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write microcode Register data	0	1								First byte of microcode data (Wait for cycle complete status or interrupt)
Write microcode Register Data	0	1								Second Byte of microcode data (Wait for cycle complete status or interrupt)
Write microcode Register data	0	1								Last byte of microcode data (Wait for cycle complete status or interrupt)

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write clear reset Register address	0	0	0	1	1	1	1	1	1	1

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write clear reset Dummy data	0	1	X	X	X	X	X	X	X	X

2.11.3 VMI Microcode Read Operation

Data read from indirect register 8E will be read from the TVP5020 program RAM. During the read cycle, the microprocessor resets, points to location zero in the program, and remains reset. The microprocessor requires a clear-reset operation upon completion of the read operation. The host performs the reset by writing into the 7F register to clear reset and resume microprocessor function. (There is no specific data to be written into the 7F register; any data will resume microprocessor function).

To avoid violating VMI cycle time requirements during the microcode read operation, the host can poll the cycle complete bit in the VMI status register. This polling should be done following the address load cycle (for indirect register 8Eh). Alternatively, the cycle complete enable bit in the interrupt enable register (indirect address C1) can be set to generate an interrupt for the host when data from a read cycle is unavailable.

STEP 1	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write microcode Register address	0	0	1	0	0	0	1	1	1	0

STEP 2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Read register data	0	1	Data							

Note: Must readdress for each read of incremental data

STEP 1	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write microcode Register address	0	0	1	0	0	0	1	1	1	0

STEP 2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Read register data	0	1	Data	dData						

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write clear reset Register address	0	0	0	1	1	1	1	1	1	1

	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Write clear reset Dummy data	0	1	Data							

2.12 Genlock Control

The frequency control word of the internal color subcarrier digital control oscillator (DCO) and the subcarrier phase reset bit are transmitted via the GLCO terminal. The frequency control word is a 23-bit binary number. The frequency of the DCO can be calculated from the following equation:

$$F_{dco} = \frac{F_{ctrl}}{2^{23}} \times F_{sclk}$$

Where F_{dco} is the frequency of the DCO, F_{ctrl} is the 23-bit DCO frequency control, and F_{sclk} is the frequency of the SCLK.

The last bit (bit 0) of the DCO frequency control is always 0.

A write of 1 to bit 4 of the chrominance control register at host port subaddress 1Ah causes the subcarrier DCO phase reset bit to be sent on the next scan line on GLCO. The active low reset bit occurs 8 SCLKs after the transmission of the last bit of DCO frequency control. Upon the transmission of the reset bit, the phase of the TVP5020 internal subcarrier DCO is reset to zero.

A genlocking slave device connected to the GLCO terminal can use the information on GLCO to synchronize its internal color DCO to achieve clean line and color lock.

Figure 2–30 shows the timing of GLCO.

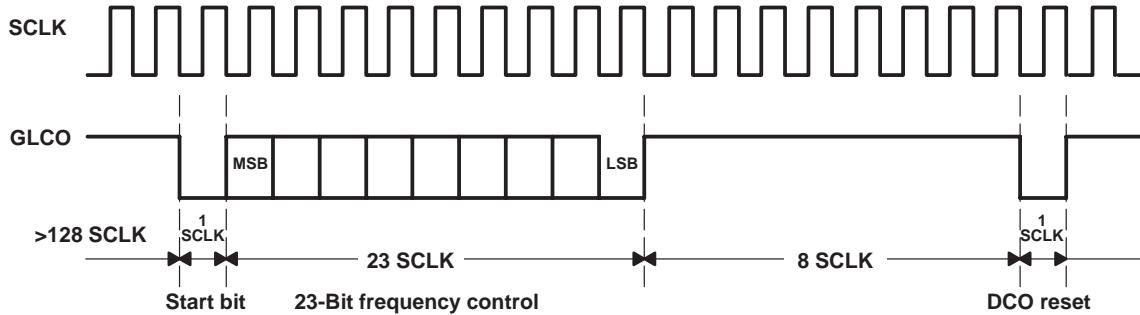


Figure 2–30. GLCO Timing

2.13 VBI Data Processor

The TVP5020 VBI data processor slices, parses, and performs error checking on teletext data contained in the vertical blanking interval or during active lines. Teletext formats supported are North American Basic Teletext Specification (NABTS) equivalent to ITU-R BT.653 system C, and World System Teletext (WST) equivalent to ITU-R BT.653 system B. Data is stored in an internal FIFO and may be read via the host port or transmitted as ancillary data in the digital video stream in BT.656 mode. The VBI data FIFO holds up to 14 lines of NABTS or 11 lines of WST data. Interrupts generated by the VBI data processor are configurable to enable host synchronization for retrieval of full-field teletext data.

VBI data processor may also slice closed caption data and store it in two registers accessible via the host port.

2.13.1 Teletext Data Byte Order

Table 2–9 shows the order in which teletext data is read from the FIFO.

Table 2–9. Teletext Byte Order

BYTE NUMBER	NABTS – 525 OR 625 LINE SYSTEM	WST – 525 LINE SYSTEM	WST – 625 LINE SYSTEM
1	Video line [7:0]	Video Line [7:0]	Video Line [7:0]
2	00, Hamming error, parity error, LPC error, match #2, match #1, video line [8]	00, Hamming error, parity error, LPC error, match #2, match #1, video line [8]	00, Hamming error, parity error, LPC error, match #2, match #1, video line [8]
3	Packet address 1	Magazine	Magazine
4	Packet address 2	Row address	Row address
5	Packet address 3	Data byte 1	Data byte 1
6	Continuity index	Data byte 2	Data byte 2
7	Packet structure	Data byte 3	Data byte 3
8	Data block 1	Data byte 4	Data byte 4
9	Data block 2	Data byte 5	Data byte 5
10	Data block 3	Data byte 6	Data byte 6
11	Data block 4	Data byte 7	Data byte 7
12	Data block 5	Data byte 8	Data byte 8

Table 2-9. Teletext Byte Order (Continued)

BYTE NUMBER	NABTS – 525 OR 625 LINE SYSTEM	WST – 525 LINE SYSTEM	WST – 625 LINE SYSTEM
13	Data block 6	Data byte 9	Data byte 9
14	Data block 7	Data byte 10	Data byte 10
15	Data block 8	Data byte 11	Data byte 11
16	Data block 9	Data byte 12	Data byte 12
17	Data block 10	Data byte 13	Data byte 13
18	Data block 11	Data byte 14	Data byte 14
19	Data block 12	Data byte 15	Data byte 15
20	Data block 13	Data byte 16	Data byte 16
21	Data block 14	Data byte 17	Data byte 17
22	Data block 15	Data byte 18	Data byte 18
23	Data block 16	Data byte 19	Data byte 19
24	Data block 17	Data byte 20	Data byte 20
25	Data block 18	Data byte 21	Data byte 21
26	Data block 19	Data byte 22	Data byte 22
27	Data block 20	Data byte 23	Data byte 23
28	Data block 21	Data byte 24	Data byte 24
29	Data block 22	Data byte 25	Data byte 25
30	Data block 23	Data byte 26	Data byte 26
31	Data block 24	Data byte 27	Data byte 27
32	Data block 25	Data byte 28	Data byte 28
33	Data block 26	Data byte 29	Data byte 29
34	Data block 27/suffix	Data byte 30	Data byte 30
35	Data block 28/suffix	Data byte 31	Data byte 31
36	Padding byte [†]	Data byte 32	Data byte 32
37			Data byte 33
38			Data byte 34
39			Data byte 35
40			Data byte 36
41			Data byte 37
42			Data byte 38
43			Data byte 39
44			Data byte 40

[†]The padding byte is used to ensure an even number of writes. This byte does not contain any useful information. The read pointer automatically advances past this byte so the user does not have to read the padding byte.

2.13.2 Teletext as Ancillary Data in Video Stream

Sliced teletext data can be output as ancillary data in the video stream in ITU-R BT.656 mode. Teletext data is output on the Y7:0 pins during the horizontal blanking period following the line that the data was retrieved. Dummy ancillary data blocks with special timing header information are inserted during certain horizontal blanking periods to provide data synchronization information. Tables 2-10 through 2-13 show the format and sequence of the ancillary data inserted into the video stream.

Table 2–10. NABTS 525/625-Line Ancillary Data Sequence

BYTE NO.	MSB 7	6	5	4	3	2	1	LSB 0	DESCRIPTION
1	0	0	0	0	0	0	0	0	
2	1	1	1	1	1	1	1	1	Ancillary data preamble
3	1	1	1	1	1	1	1	1	
4	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID
5	1	0	0	0	0	0	0	0	Secondary data ID
6	1	0	0	0	1	0	0	1	Number of 32-bit data words
7	Video line number 7:0								
8	0	0	Hamming error	Parity error	LPC error	Match #2	Match #1	Video line 8	Internal data ID
9	Packet address 1								Data byte
10	Packet address 2								Data byte
11	Packet address 3								Data byte
12	Continuity index								Data byte
13	Packet structure								Data byte
14	Teletext data 1								Data byte
15	Teletext data 2								Data byte
39	Teletext data 26								Data byte
40	Teletext data 27/suffix								Data byte
41	Teletext data 27/suffix								Data byte
42	Checksum								Checksum
43	1	0	0	0	0	0	0	0	Fill byte
44	1	0	0	0	0	0	0	0	Fill byte

Table 2–11. WST 525-Line Ancillary Data Sequence

BYTE NO.	MSB 7	6	5	4	3	2	1	LSB 0	DESCRIPTION
1	0	0	0	0	0	0	0	0	
2	1	1	1	1	1	1	1	1	Ancillary data preamble
3	1	1	1	1	1	1	1	1	
4	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID
5	1	0	0	0	0	0	0	0	Secondary data ID
6	1	0	0	0	1	0	0	1	Number of 32-bit data words
7	Video line number 7:0								
8	0	0	Hamming error	Parity error	LPC error	Match #2	Match #1	Video line 8	Internal data ID
9	Magazine								Data byte
10	Row address								Data byte
11	Teletext data 1								Data byte
12	Teletext data 2								Data byte
									Data byte
42	Teletext data 32								Data byte
43	NEP	EP	Checksum						Checksum
44	1	0	0	0	0	0	0	0	Fill byte

Table 2–12. WST 625-Line Ancillary Data Sequence

BYTE NO.	MSB 7	6	5	4	3	2	1	LSB 0	DESCRIPTION
1	0	0	0	0	0	0	0	0	
2	1	1	1	1	1	1	1	1	Ancillary data preamble
3	1	1	1	1	1	1	1	1	
4	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID
5	1	0	0	0	0	0	0	0	Secondary data ID
6	0	1	0	0	1	0	1	1	Number of 32-bit data words
7	Video line number 7:0								
8	0	0	Hamming error	Parity error	LPC error	Match #2	Match #1	Video line 8	Internal data ID
9	Magazine								Data byte
10	Row address								Data byte
11	Teletext data 1								Data byte
12	Teletext data 2								Data byte
									Data byte
50	Teletext data 40								Data byte
51	NEP	EP	Checksum						Checksum
52	1	0	0	0	0	0	0	0	Fill byte

Table 2–13. Dummy Timing Ancillary Data Sequence

BYTE NO.	MSB 7	6	5	4	3	2	1	LSB 0	DESCRIPTION
1	0	0	0	0	0	0	0	0	
2	1	1	1	1	1	1	1	1	Ancillary data preamble
3	1	1	1	1	1	1	1	1	
4	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID
5	1	0	0	0	0	0	0	0	Secondary data ID
6	1	0	0	0	0	0	0	0	Number of 32-bit data words

In the tables above, EP is even parity on the lower 6 bits and NEP is negated even parity. The checksum for teletext data blocks is the 8 LSB's of the sum of the data bytes. The data ID byte provides timing information. Table 2–14 shows the possible values of the data ID byte and their meanings.

Table 2–14. Ancillary Data ID

DATA ID	EVENT IN SOURCE STREAM	DATA TYPE
50	Start of first, odd field	Dummy timing block
91	Sliced data of lines 1–23 of first field	VBI data
92	End of nominal VBI of first field, line 23	Dummy timing block
53	Sliced data of line 24 to end of first field	Full field teletext data
94	Start of second, even field	Dummy timing block
55	Sliced data of lines 1–23 of second field	VBI data
56	End of nominal VBI of second field, line 23	Dummy timing block
97	Sliced data of line 24 to end of second field	Full field teletext data

A dummy timing block will be inserted into the video stream during the horizontal blanking period following line 23 of each field. If teletext data is available from line 23 it will be inserted into the video stream prior to the dummy timing block.

2.14 Reset

Reset is initiated at power up or any time the RSTINB terminal is brought low. Table 2–15 describes the status of the terminals on the TVP5020 during and immediately after reset. Following a powerup reset, the host downloads microcode to the program memory of the TVP5020 for use by the internal microprocessor.

Table 2–15. Power-Up Reset Sequence

SIGNAL NAMES	DURING RESET	AFTER RESET
RSTINB, OEB, EXT_DATA_8	In	In
GLCO, PALI, FID, GPCL	In	Out
UV[7:0]	In	High-impedance
SCLK, PCLK, PREF	High-impedance	Out
Y[7:0], HSYN, VSYN, AVID	High-impedance	High-impedance
Host interface terminals: VC0, VC1, VC2, VC3, INTREQ, A1:0, D7:0	High-impedance	Active

Signals take their reset values during power up and anytime the RSTINB terminal is low.

The active state of the host interface terminals may be input, output, or input/output depending on the host mode selected during reset.

2.15 Internal Control Registers

Table 2–16 shows the summary of the TVP5020 registers. The detailed programming information of each register is described in the following sections. For writable registers, the reserved bits must be written with a 0.

Table 2–16. Registers Summary

REGISTER FUNCTION	VIP	VMI	I ² C	R/W
Vendor ID	000 – 001	NA	NA	R
Device ID	002 – 003	NA	NA	R
Subsystem vendor ID	004 – 005	NA	NA	R
Subsystem device ID	006 – 007	NA	NA	R
Reserved	008 – 00B	NA	NA	
Revision ID	00C – 00D	NA	NA	R
Reserved	00E – 0FF	NA	NA	
Analog input source selection	100	00 ← 00	00	W
Analog channel controls	101	00 ← 01	01	W
Operation mode controls	102	00 ← 02	02	W
Miscellaneous controls	103	00 ← 03	03	W
Reserved	104 – 105	00 ← 04 – 05	04 – 5	
Color killer threshold control	106	00 ← 06	06	W
Luminance processing controls–#1	107	00 ← 07	07	W
Luminance processing controls–#2	108	00 ← 08	08	W
Brightness control	109	00 ← 09	09	W
Color saturation control	10A	00 ← 0A	0A	W
Hue control	10B	00 ← 0B	0B	W
Contrast control	10C	00 ← 0C	0C	W
Outputs and data rate select	10D	00 ← 0D	0D	W
Reserved	10E – 115	00 ← 0E – 15	0E – 15	
Horizontal sync start NTSC	116	00 ← 16	16	W
Horizontal sync start PAL	117	00 ← 17	17	W
Vertical blanking start	118	00 ← 18	18	W
Vertical blanking stop	119	00 ← 19	19	W
Chrominance control	11A	00 ← 1A	1A	W
Reserved	11B – 11F	00 ← 1B – 1F	1B – 1F	
Digital channel selection	120	00 ← 20	20	W
Reserved	121 – 17D	00 ← 21 – 7D	21 – 7D	
Program RAM write	17E	00 ← 7E	7E	W
Microprocessor reset clear	17F	00 ← 7F	7F	W
Firmware version	180	00 ← 80	80	R
Status #1	181	00 ← 81	81	R
Status #2	182	00 ← 82	82	R
AGC gain	183	00 ← 83	83	R

Table 2–16. Registers Summary (Continued)

REGISTER FUNCTION	VIP	VMI	I ² C	R/W
Reserved	184 – 18D	00 ← 84 – 8D	84 – 8D	
Program RAM read	18E	00 ← 8E	8E	R
Reserved	18F	00 ← 8F	8F	
TXF filter #1 parameters (R/W)	190 – 194	00 ← 90 – 94	90 – 94	R/W
TXF filter #2 parameters (R/W)	195 – 199	00 ← 95 – 99	95 – 99	R/W
TXF error filtering enable	19A	00 ← 9A	9A	R/W
TXF transaction processing enables	19B	00 ← 9B	9B	R/W
Reserved	19C – 19F	00 ← 9C – 9F	9C – 9F	
TTX control register	1A0	00 ← A0	A0	R/W
Line enable register	1A1 – 1A2	00 ← A1 – A2	A1 – A2	R/W
Sync pattern register	1A3	00 ← A3	A3	R/W
Reserved	1A4 – AF	00 ← A4 – AF	A4 – AF	
Teletext FIFO	1B0	00 ← B0	B0	R
Closed caption data	1B1 – 1B2	00 ← B1 – B2	B1 – B2	R
Buffer status	1B3	00 ← B3	B3	R
Interrupt threshold	1B4	00 ← B4	B4	R/W
Interrupt line number	1B5	00 ← B5	B5	R/W
FIFO control	1B6	00 ← B6	B6	R/W
Reserved	1B7 – 1BF	00 ← B7 – BF	B7 – BF	R/W
Interrupt status register	1C0	00 ← C0	C0	R/W
Interrupt enable register	1C1	00 ← C1	C1	R/W
Interrupt configuration register	1C2	00 ← C2	C2	R/W
Reserved	1C3 – 1FF	00 ← C3 – FF	C3 – FF	
No-Latency read access 1	2xx			R
No-Latency read access 2	3xx			R
FIFO		10		R
Interrupt status register		11		R/W

2.15.1 Register Definitions

2.15.2 Vendor ID

VIP address	000–001
VMI address	NA
I ² C address	NA

Address	7	6	5	4	3	2	1	0
000	0	1	0	0	1	1	0	0
001	0	0	0	1	0	0	0	0

This field identifies the manufacturer of the device. Address 001 is the MSB. This field is a constant of 104C.

2.15.3 Device ID

VIP address	002–003
VMI address	NA
I ² C address	NA

Address	7	6	5	4	3	2	1	0
002	0	0	1	0	0	0	0	0
003	0	1	0	1	0	0	0	1

This field identifies the particular device. Address 003 is the MSB. This field is a constant of 5120.

2.15.4 Subsystem Vendor ID

VIP address	004–005
VMI address	NA
I ² C address	NA

Address	7	6	5	4	3	2	1	0
004	Loaded from UV pins on powerup reset							
005	1	1	1	1	1	1	1	1

This field identifies the subsystem manufacturer (e.g., the board manufacturer). Address 005 is the MSB. This field is a constant of FF. The value of the LSB is set at the device power up or reset by sampling the state of UV[7:0] terminals. The UV[7:0] terminals may be tied to pullup or pulldown resistors to determine a fixed value for the subsystem vendor ID.

2.15.5 Subsystem Device ID

VIP address	006–007
VMI address	NA
I ² C address	NA

Address	7	6	5	4	3	2	1	0
006	1	1	1	1	1	1	1	1
007	1	1	1	1	1	1	1	1

This field identifies the subsystem device. Address 007 is the MSB. This field is a constant of FFFF.

2.15.6 Subsystem Revision ID

VIP address	00C–00D
VMI address	NA
I ² C address	NA

Address	7	6	5	4	3	2	1	0
00C	0	0	0	0	0	0	0	0
00D	0	0	0	0	0	0	0	1

This identifies the device hardware revision. Address 00D is the MSB. This field is a constant of 0100.

2.15.7 Analog Input Source Selection

VIP address	100
VMI address	00
I ² C address	00

7	6	5	4	3	2	1	0
Reserved					Channel 1 source selection	Reserved	

Channel 1 source selection:

0 = VI1A selected (default)

1 = VI1B selected

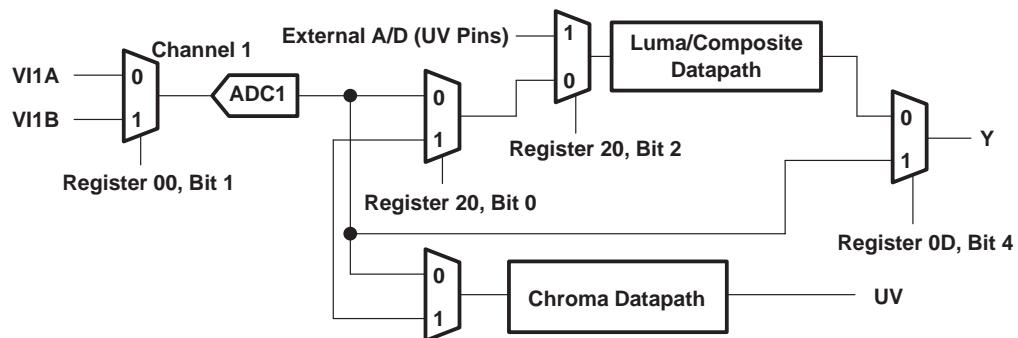


Figure 2-31. Video Input Source Selection

Table 2-17. Analog Channel and Video Mode Selection

	INPUT(s) SELECTED	ADDRESS 00		ADDRESS 20	
		BIT 1	BIT 1	BIT 0	BIT 0
Composite	1A 1B	0 1	0 0	0 0	0 0

2.15.8 Analog Channel Controls

VIP address	101
VMI address	01
I ² C address	01

7	6	5	4	3	2	1	0
Reserved	Reserved			Automatic clamping control. Channel 1		Automatic gain control	

Automatic clamping control, channel 1:

00 = Reserved

01 = Automatic clamping enabled (default)

10 = Reserved

11 = Clamping level frozen

Automatic gain control:

00 = Reserved

01 = AGC enabled using luma input as the reference (default)

10 = Reserved

11 = AGC frozen

2.15.9 Operation Mode Controls

VIP address	102
VMI address	02
I ² C address	02

7	6	5	4	3	2	1	0
External A/D width	TV/VCR mode	Reserved	Disable color PLL	Reserved	Power down mode		

External A/D width:

00 = 8-bit external A/D

01 = 9-bit external A/D terminal OEB is the LSB of the 9-bit input data

10 = 10-bit external A/D terminal GPCL is the LSB of the 10-bit input data, and terminal OEB is the next-to-LSB (default)

11 = Reserved

An external A/D converter can be used to provide up to 10-bit data directly to the digital data path. These bits set the width of the external data path. External A/D access is enabled by register 20, bit 2. See Figure 2-31 and register 20.

TV/VCR mode:

00 = Automatic mode determined by the internal detection circuit (default)

01 = Reserved

10 = VCR (nonstandard video) mode

11 = TV (standard video) mode

With automatic detection enabled, unstable or nonstandard syncs on input video will force the device into VCR (nonstandard) mode. This turns off the luminance and chrominance comb filters and turns on the chroma trap filter.

Disable color PLL:

0 = Normal operation (default)

1 = Force color PLL increment and genlock (GLCO) serial output to zero

Power down mode:

0 = Normal operation (default)

1 = Power down mode

2.15.10 Miscellaneous Controls

VIP address	103
VMI address	03
I ² C address	03

7	6	5	4	3	2	1	0
Terminal GPCL function select	Terminals PALI and FID function select	YUV output enable	HSYN, VSYN, AVID enable	Reserved	Vertical blanking on/off	Clock enable	

Terminal GPCL function select:

- 00 = Terminal GPCL is logic 0 output (default)
- 01 = Terminal GPCL is logic 1 output
- 10 = Terminal GPCL is vertical blank output
- 11 = Terminal GPCL is external sync lock control input

When GPCL is configured as a vertical blank output, the vertical blanking on/off bit is used to activate the output.

When GPCL is configured as a sync lock control, it can be used to force the internal PLLs to their normal settings. This causes all clocks and synchronization signals to assume nominal values. The sync lock control input is active high.

Terminals PALI and FID function select:

- 0 = Terminal PALI outputs PAL indicator signal and terminal FID outputs field ID signal (default)
- 1 = Terminal PALI outputs horizontal lock indicator (HLK) and terminal FID outputs vertical lock indicator (VLK)

YUV output enable:

- 0 = YUV high impedance (default)
- 1 = YUV active

Y[7:0] and UV[7:0] terminals are controlled by this bit, the YUV enable bit in register C2, and the OEB terminal.

Table 2-18. YUV Output Controls

OEB Pin	Reg 03, Bit 4	Reg C2, Bit 2	YUV OUTPUT
0	x	0	High impedance
0	0	x	High impedance
0	1	1	Active
1	x	x	High impedance

Horizontal sync (HSYN), Vertical sync (VSYN), and Active video indicator (AVID) outputs enable:

0 = HSYN, VSYN, and AVID disabled, (high impedance state) (default)

1 = HSYN, VSYN, and AVID active

Vertical blanking on/off control:

0 = Vertical blanking off. Output is logic zero (default)

1 = Vertical blanking on

This bit is functional if GCPL is configured to output vertical blank.

Clock enable:

0 = SCLK and PCLK outputs are high impedance

1 = SCLK and PCLK outputs are enabled (default)

2.15.11 Color Killer Threshold Control

VIP address	106							
VMI address	06							
I ² C address	06							
	7	6	5	4	3	2	1	0
Reserved	Automatic color killer						Color killer threshold	

Automatic color killer:

00 = Automatic mode (default)

01 = Reserved

10 = Color killer enabled. The UV terminals are forced to a zero color state

11 = Color killer disabled

Color killer threshold (ref. 0 dB = nominal burst amplitude):

1 1 1 1 1 = -30 dB

1 0 0 0 0 = -24 dB (default)

0 0 0 0 0 = -18 dB

2.15.12 Luminance Processing Control 1

VIP address	107
VMI address	07
I ² C address	07

7	6	5	4	3	2	1	0
Reserved	Pedestal	Reserved	Luma bypass during vertical blank	Luminance signal delay with respect to chrominance signal			

Pedestal:

0 = 7.5 IRE pedestal is present on the analog video input (default)

1 = Pedestal is not present on the analog video input

Luminance bypass mode during vertical blanking:

0 = No (default)

1 = Yes

When the luminance bypass is enabled, the luminance comb and notch filters are turned off and the chrominance components of the output video are sent to a zero color state. Luminance bypass will occur for the duration of the vertical blanking as defined by registers 18 and 19. This feature may be used to prevent distortion of test and data signals present during the vertical blanking interval.

Luma signal delay with respect to chroma signal in pixel clock increments (range -8 to 7 pixel clocks):

1 1 1 1 = -8 pixel clocks delay

1 0 1 1 = -4 pixel clocks delay

1 0 0 0 = -1 pixel clocks delay

0 0 0 0 = 0 pixel clocks delay (default)

0 0 1 1 = 3 pixel clocks delay

0 1 1 1 = 7 pixel clocks delay

2.15.13 Luminance Processing Control 2

VIP address	108
VMI address	08
I ² C address	08

7	6	5	4	3	2	1	0
Luma filter select		Coring threshold		Peaking gain		Peaking frequency	

Luminance filter select:

- 00 = Automatic select (default)
- 01 = Reserved
- 10 = Chroma trap (notch filter)
- 11 = Comb filter

With automatic select enabled, unstable or nonstandard syncs on input video will force selection of the chroma trap (notch) filter. For PAL inputs, automatic select will always select the chroma trap filter.

Coring threshold:

- 00 = Coring off (default)
- 01 = ± 1 LSB
- 10 = ± 2 LSB
- 11 = ± 3 LSB

Peaking gain:

- 00 = Peaking disabled (default)
- 01 = 6 dB
- 10 = 12 dB
- 11 = 18 dB

Peaking frequency:

Square-pixel sampling rate:

	NTSC	PAL	PAL M	PAL N	
00 =	3.8 MHz	4.5 MHz	3.8 MHz	4.5 MHz	(default)
01 =	3.4 MHz	4.1 MHz	3.4 MHz	4.1 MHz	
10 =	2.5 MHz	3.0 MHz	2.5 MHz	3.0 MHz	
11 =	2.7 MHz	3.2 MHz	2.7 MHz	3.2 MHz	

ITU-R BT.601 sampling rate:

ALL STANDARDS

- 00 = 4.1 MHz (default)
- 01 = 3.7 MHz
- 10 = 2.8 MHz
- 11 = 3.0 MHz

2.15.14 Brightness Control

VIP address	109
VMI address	09
I ² C address	09

7	6	5	4	3	2	1	0
Brightness control							

Brightness:

1 1 1 1 1 1 1 1 = 255 (bright)

1 0 0 0 0 0 0 0 = 128 (default)

0 0 0 0 0 0 0 0 = 0 (dark)

2.15.15 Color Saturation Control

VIP address	10A
VMI address	0A
I ² C address	0A

7	6	5	4	3	2	1	0
Saturation control							

Saturation:

1 1 1 1 1 1 1 1 = 255 (maximum)

1 0 0 0 0 0 0 0 = 128 (default)

0 0 0 0 0 0 0 0 = 0 (no color)

2.15.16 Hue Control

This register (Sub-address = 0Bh) sets the hue of the color signal.

VIP address	10B
VMI address	0B
I ² C address	0B

7	6	5	4	3	2	1	0
Hue control							

Hue:

0 1 1 1 1 1 1 1 = 180 degrees

0 0 0 0 0 0 0 0 = 0 degrees (default)

1 0 0 0 0 0 0 0 = -180 degrees

2.15.17 Contrast Control

VIP address	10C
VMI address	0C
I ² C address	0C

7	6	5	4	3	2	1	0
Contrast control							

Contrast:

1 1 1 1 1 1 1 1 = 255 (maximum contrast)

1 0 0 0 0 0 0 0 = 128 (default)

0 0 0 0 0 0 0 0 = 0 (minimum contrast)

2.15.18 Outputs and Data Rates Select

VIP address	10D
VMI address	0D
I ² C address	0D

7	6	5	4	3	2	1	0
Reserved	YUV output code range	UV code format	YUV data path bypass	Reserved	YUV output format		

YUV output code range:

0 = ITU-R BT.601 coding range (Y ranges from 16 to 235, UV components range from 16 to 240)
(default)

1 = Extended coding range (Y, and UV components range from 1 to 254)

UV code format:

0 = Offset binary code (2's complement + 128) (default)

1 = Straight binary code (2's complement)

YUV data path bypass:

0 = Normal operation (default)

1 = Y terminals connected to channel 1 A/D output, UV terminals connected to channel 2 A/D output

YUV output format:

000 = 16-bit 4:2:2 (default)

001 = Reserved

010 = 12-bit 4:1:1

011 = Reserved

100 = 8-bit 4:2:2

101 = Reserved

110 = Reserved

111 = 8-bit ITU-R BT. 656 with embedded syncs

2.15.19 Horizontal Sync (HSYN) Start

VIP address	116–117
VMI address	16–17
I ² C address	16–17

Address	7	6	5	4	3	2	1	0
16								HSYN start for NTSC
17								HSYN start for PAL

HSYN start:

1 1 1 1 1 1 1 1 1 = -127×4 pixel clocks
 1 1 1 1 1 1 1 1 0 = -126×4 pixel clocks
 1 1 1 1 1 1 1 0 1 = -125×4 pixel clocks
 1 0 0 0 0 0 0 0 0 = 0 pixel clocks (default)
 0 1 1 1 1 1 1 1 1 = 1×4 pixel clocks
 0 1 1 1 1 1 1 1 0 = 2×4 pixel clocks
 0 0 0 0 0 0 0 0 0 = 128×4 pixel clocks

2.15.20 Vertical Blanking Start

VIP address	118
VMI address	18
I ² C address	18

7	6	5	4	3	2	1	0
VBLK start							

VBLK start:

0 1 1 1 1 1 1 1 1 = 127 lines after start of vertical blanking interval
 0 0 0 0 0 0 0 1 = 1 line after start of vertical blanking interval
 0 0 0 0 0 0 0 0 = Same time as start of vertical blanking interval (default)
 0 1 1 1 1 1 1 1 1 = 1 line before start of vertical blanking interval
 1 0 0 0 0 0 0 0 0 = 128 lines before start of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals as shown in Figure 2–17. The setting in this register determines the timing of the GPCL signal when it is configured to output vertical blank (see register 03). The setting in this register is also used to determine the duration of the luma bypass function (see register 07).

2.15.21 Vertical Blanking VBLK Stop

VIP address	119
VMI address	19
I ² C address	19

7	6	5	4	3	2	1	0
VBLK end							

VBLK start:

0 1 1 1 1 1 1 1 = 127 lines after end of vertical blanking interval

0 0 0 0 0 0 0 1 = 1 line after end of vertical blanking interval

0 0 0 0 0 0 0 0 = Same time as end of vertical blanking interval (default)

1 1 1 1 1 1 1 1 = 1 line before end of vertical blanking interval

1 0 0 0 0 0 0 0 = 128 lines before end of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals as shown in Figure 2–17. The setting in this register determines the timing of the GPCL signal when it is configured to output vertical blank (see register 03). The setting in this register is also used to determine the duration of the luma bypass function (see register 07).

2.15.22 Chrominance Control

VIP address	11A
VMI address	1A
I ² C address	1A

7	6	5	4	3	2	1	0
Reserved			Color reset	Chrominance comb filter control		Automatic color gain control	

Color reset:

- 0 = Color not reset (default)
- 1 = Color reset

When this bit is set the color PLL phase is reset to zero and the phase reset bit is sent in the next transmission of the genlock control signal GCLO. The color reset control bit is then automatically reset to zero. Refer to Figure 2-30 for genlock timing.

Chrominance comb filter control:

- 00 = Automatic select (default)
- 01 = Reserved
- 10 = Comb filter on
- 11 = Comb filter bypassed

With automatic select enabled, unstable or nonstandard syncs on input video will force bypass of the chrominance comb filter. For PAL inputs, automatic select will always bypass the chrominance comb filter.

Automatic color gain control:

- 00 = ACC enabled (default)
- 01 = Reserved
- 10 = ACC disabled
- 11 = ACC frozen

2.15.23 Digital Channel Selection

VIP address	120
VMI address	20
I ² C address	20

7	6	5	4	3	2	1	0
Reserved		External A/D select		0		0	

NOTE: Also see *analog input source selection register 00*

External A/D select

0 = Use internal A/D converter

1 = Use external A/D converter (default)

2.15.24 Firmware Version

VIP address	180
VMI address	80
I ² C address	80

7	6	5	4	3	2	1	0
Firmware version							

2.15.25 Status Register 1

VIP address	181
VMI address	81
I ² C address	81

7	6	5	4	3	2	1	0
Peak white detect	Reserved	Field rate	Lost lock detect	Color lock	Vertical lock	Horizontal lock	TV/VCR

Peak white detect:

0 = Peak white is not detected

1 = Peak white is detected

Field rate:

0 = 60 Hz

1 = 50 Hz

Lost lock detect:

0 = No lost horizontal lock since status was last read

1 = Lost horizontal lock since status was last read

Color lock:

0 = Color subcarrier is not locked

1 = Color subcarrier is locked

Vertical lock:

0 = Vertical sync is not locked

1 = Vertical sync is locked

Horizontal lock:

0 = Horizontal sync is not locked

1 = Horizontal sync is locked

TV/VCR:

0 = TV

1 = VCR

This bit indicates whether or not nonstandard syncs are detected on the video input.

2.15.26 Status Register 2

VIP address	182
VMI address	82
I ² C address	82

7	6	5	4	3	2	1	0
Reserved	PAL switch polarity	Field sequence	AGC and clamping lock	Reserved			

PAL switch polarity of first line of odd field:

0 = PAL switch is zero (color burst phase = 135 degree)

1 = PAL switch is one (color burst phase = 225 degree)

Field sequence:

0 = Even field

1 = Odd field

Automatic gain and clamping lock status:

0 = Automatic gain and clamping is not locked

1 = Automatic gain and clamping is locked

2.15.27 AGC Gain

VIP address	183
VMI address	83
I ² C address	83

7	6	5	4	3	2	1	0
AGC gain							

AGC gain (step size = 0.831%):

0 0 0 0 0 0 0 0 = 70.7%(-3 dB)

0 1 0 0 0 0 0 0 = 100% (0 dB)

1 0 0 1 0 0 0 0 = 141% (3 dB)

1 1 0 0 0 0 0 0 = 200% (6 dB)

1 1 1 1 1 1 1 1 = 28.3% (9 dB)

2.15.28 TXF Filter #1 Parameters

VIP address	190 – 194
VMI address	90 – 94
I ² C address	90 – 94

Address	7	6	5	4	3	2	1	0
90				Filter #1 mask_1[3:0]				Filter #1 pattern_1[3:0]
91				Filter #1 mask_2[3:0]				Filter #1 pattern_2[3:0]
92				Filter #1 mask_3[3:0]				Filter #1 pattern_3[3:0]
93				Filter #1 mask_4[3:0]				Filter #1 pattern_4[3:0]
94				Filter #1 mask_5[3:0]				Filter #1 pattern_5[3:0]

These registers hold the search parameters for filter #1. The parameters parse the first five bytes of NABTS teletext transactions or the first two bytes of WST transactions. These bytes of teletext always contain four data bits interlaced with four hamming protection bits. The filter ignores the protection bits.

For an NABTS system, the packet prefix consists of five bytes: P1, P2, P3, CI, and PS. Each byte contains 4 data bits interlaced with 4 hamming protection bits.

Pattern_1[3:0]	corresponds to P1[7], P1[5], P1[3], P1[1]	(Packet address)
Pattern_2[3:0]	corresponds to P2[7], P2[5], P2[3], P2[1]	(Packet address)
Pattern_3[3:0]	corresponds to P3[7], P3[5], P3[3], P3[1]	(Packet address)
Pattern_4[3:0]	corresponds to CI[7], CI[5], CI[3], CI[1]	(Continuity index)
Pattern_5[3:0]	corresponds to PS[7], PS[5], PS[3], PS[1]	(Packet structure)

For a WST system (PAL or NTSC), the magazine and row address group consists of two bytes. The two bytes contain three bits of magazine number (M[2:0]) and 5 bits of row address (R[4:0]), interlaced with eight hamming protection bits.

Pattern_1[3:0]	corresponds to R[0], M[2], M[1], M[0]	(Magazine and row LSB)
Pattern_2[3:0]	corresponds to R[4], R[3], R[2], R[1]	(Upper bits of row address)
Pattern_3[3:0]	is ignored	
Pattern_4[3:0]	is ignored	
Pattern_5[3:0]	is ignored	

The mask bits enable filtering using the corresponding bit in the pattern register. For example, A 1 in the LSB of Mask_1 means that the VBI data processor (VDP) should compare the LSB of Nybble_1 in the pattern register to the first data bit of the transaction. A 0 in the LSB of Mask_1 means that the VDP should ignore the first data bit of the transaction.

NOTE:

The TXF filter #1 parameters can only be written and read when both the filter #1 enable and the filter #2 enable bits are 0. When reading the values, the values must be read consecutively, starting with the first value.

2.15.29 TXF Filter #2 Parameters

VIP address	195 – 199
VMI address	95 – 99
I ² C address	99 – 99

Address	7	6	5	4	3	2	1	0
95				Filter #2 mask_1[3:0]			Filter #2 pattern_1[3:0]	
96				Filter #2 mask_2[3:0]			Filter #2 pattern_2[3:0]	
97				Filter #2 mask_3[3:0]			Filter #2 pattern_3[3:0]	
98				Filter #2 mask_4[3:0]			Filter #2 pattern_4[3:0]	
99				Filter #2 mask_5[3:0]			Filter #2 pattern_5[3:0]	

These registers hold the search parameters for Filter #2. The parameters parse the first five bytes of NABTS teletext transactions or the first two bytes of WST transactions. These bytes of teletext are expected to always contain four data bits interlaced with four hamming protection bits. The filter ignores the protection bits.

For an NABTS system, the packet prefix consists of five bytes: P1, P2, P3, CI, and PS. Each byte contains 4 data bits interlaced with 4 hamming protection bits.

Pattern_1[3:0]	corresponds to P1[7], P1[5], P1[3], P1[1]	(packet address)
Pattern_2[3:0]	corresponds to P2[7], P2[5], P2[3], P2[1]	(packet address)
Pattern_3[3:0]	corresponds to P3[7], P3[5], P3[3], P3[1]	(packet address)
Pattern_4[3:0]	corresponds to CI[7], CI[5], CI[3], CI[1]	(continuity index)
Pattern_5[3:0]	corresponds to PS[7], PS[5], PS[3], PS[1]	(packet structure)

For a WST system (PAL or NTSC), the magazine and row address group consists of two bytes. The two bytes contain three bits of magazine number (M[2:0]) and 5 bits of row address (R[4:0]), interlaced with eight hamming protection bits.

Pattern_1[3:0]	corresponds to R[0], M[2], M[1], M[0]	(magazine and row LSB)
Pattern_2[3:0]	corresponds to R[4], R[3], R[2], R[1]	(upper bits of row address)
Pattern_3[3:0]	is ignored	
Pattern_4[3:0]	is ignored	
Pattern_5[3:0]	is ignored	

The mask bits enable filtering using the corresponding bit in the pattern register. For example, A 1 in the LSB of Mask_1 means that the VBI data processor (VDP) should compare the LSB of Nybble_1 in the pattern register to the first data bit of the transaction. A 0 in the LSB of Mask_1 means that the VDP should ignore the first data bit of the transaction.

NOTE:

The TXF filter #2 parameters can only be written and read when both the filter #1 enable and the filter #2 enable bits are 0. When reading the values, the values must be read consecutively, starting with the TXF filter #1 parameters values.

2.15.30 TXF Error Filtering Enables

VIP address	19A
VMI address	9A
I ² C address	9A

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	LPC error enable	CCD parity error enable	Teletext parity error enable	Hamming error enable

Hamming Error Enable	0 = disable	1 = enable	default = 0
Teletext Parity Error Enable	0 = disable	1 = enable	default = 0
CCD Parity Error Enable	0 = disable	1 = enable	default = 0
LPC Error Enable	0 = disable	1 = enable	default = 0

These bits allow the VDP module to discard transactions based on bit errors. The hamming error enable allows error correction and detection of hamming encoded bytes. The teletext parity error enable allows the VDP to discard teletext transactions with parity errors. The closed caption data (CCD) parity error enable allows the VDP to discard closed caption transactions with parity errors. The LPC error enable allows the VDP to discard teletext transactions with longitudinal parity errors.

2.15.31 TXF Transaction Processing Enables

VIP address	19B
VMI address	9B
I ² C address	9B

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Filter #2 enable	Filter #1 enable	CCD odd field enable	CCD even field enable	Teletext enable

Teletext enable	0 = disable	1 = enable	default = 0
CCD even field enable	0 = disable	1 = enable	default = 0
CCD odd field enable	0 = disable	1 = enable	default = 0
Filter #1 enable	0 = disable	1 = enable	default = 0
Filter #2 enable	0 = disable	1 = enable	default = 0

These bits enable or disable certain features. The teletext enable allows the VBI data processor (VDP) to receive teletext data. If this bit is 0, all outputs from the VDP remain idle while teletext data is present. The CCD even field enable and CCD odd field enable allow the VDP to receive closed caption data. The filter #1 enable allows the VDP to parse data based on the values in the filter #1 parameters register. The filter #2 enable allows the VDP to parse data based on the values in the filter #2 parameters register.

2.15.32 TTX Control Register

VIP address	1A0
VMI address	A0
I ² C address	A0

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Full-field enable	Custom framing code	CCD enable	TTX mode

Teletext mode	0 = NABTS	1 = WST
CCD enable	0 = Closed caption is disabled	1 = Closed caption is enabled
Custom sync	0 = Use default teletext sync pattern	1 = Use sync pattern register
Full field enable	0 = No teletext search after VBI area	1 = Teletext search all lines after VBI

The TTX control register allows operating parameters of the VBI data processor to be controlled. The TTX mode selection is independent of PAL/NTSC mode, which is selected by the TVP5020. This effectively controls the default framing code and data rate. Closed caption data is affected by 525 lines versus 625 lines (but not NABTS/WST). For NTSC and PAL M, the CCD data search is on Line 21; for PAL B,G,H,I,N it is on Line 22. Custom framing code affects teletext data ONLY – closed caption data always uses the default sync pattern.

2.15.33 Line Enable Registers

VIP address	1A1
VMI address	A1
I ² C address	A1

7	6	5	4	3	2	1	0
Enable line 17/280 (14/327)	Enable line 16/279 (13/326)	Enable line 15/278 (12/325)	Enable line 14/277 (11/324)	Enable line 13/276 (10/323)	Enable line 12/275 (9/322)	Enable line 11/274 (8/321)	Enable line 10/273 (7/320)

VIP address	1A2
VMI address	A2
I ² C address	A2

7	6	5	4	3	2	1	0
Enable line 25/288 (22/335)	Enable line 24/287 (21/334)	Enable line 23/286 (20/333)	Enable line 22/285 (19/332)	Enable line 21/284 (18/331)	Enable line 20/283 (17/330)	Enable line 19/282 (16/329)	Enable line 18/281 (15/328)

Line enable XX 0 = No teletext search on line XX 1 = Search line XX for teletext data

NOTE: Line numbers in parentheses refer to 625 Line systems

In both VBI only and full field modes, the vertical interval lines can be individually enabled or disabled. Only lines that are enabled are searched for the selected type of teletext data. This allows some amount of filtering on a physical location basis. If closed caption data is enabled, this overrides the enable/disable bit for line 21 (22). If full field mode is enabled, all lines after the vertical interval are searched for the selected type of teletext data. The registers are initialized to 0x00 on reset.

2.15.34 Sync Pattern Register

VIP address	1A3							
VMI address	A3							
I ² C address	A3							
7	6	5	4	3	2	1	0	
Framing code[7:0]								

NOTE:

The custom sync option is only valid for NABTS or WST messages; closed caption always uses the EIA standard start bit pattern.

If the custom sync bit is set in the control register, the sync comparator uses the contents of the sync pattern register as the bit pattern for the teletext framing code. Otherwise, the default sync patterns are used. Relative to the sync pattern register, incoming bits are shifted in MSB first. To illustrate; the default WST framing code would be specified as 0xE4 and the default NABTS framing code would be specified as 0xE7 (although the MSB vs LSB is ambiguous for the latter).

2.15.35 Teletext FIFO

VIP address	1B0							
VMI address	B0							
I ² C address	B0							
7	6	5	4	3	2	1	0	
Teletext data FIFO [7:0]								

Reading this location returns 1 byte from the FIFO that stores teletext transactions. If the FIFO is empty, a read will return the same value as the previous read. The micro must know the number of bytes per transaction. The transaction length depends on whether the data is NABTS, WST-NTSC, or WST-PAL.

2.15.36 Closed Caption Data

VIP address	1B1 – 1B2							
VMI address	B1 – B2							
I ² C address	B1 – B2							
Address	7	6	5	4	3	2	1	0
B1	Odd field closed caption data [7:0]							
B2	Even field closed caption data [7:0]							

There are two registers reserved for closed-caption data. Since closed-caption data always contains two bytes per transaction, each register must be read twice. The first read returns the first byte of the message, the second read returns the second byte. Further reads return the first byte until new data is received.

2.15.37 Buffer Status

VIP address	1B3
VMI address	B3
I ² C address	B3

7	6	5	4	3	2	1	0
CCD field1 avail	CCD field2 avail		Tx count [3:0]		FIFO full	Teletext data avail	

Teletext avail

- This bit indicates that at least one complete teletext transaction is in the FIFO. This bit is cleared when the FIFO is emptied.

Tx count

- This value represents the number of complete teletext transactions in the FIFO.

CCD field 2 avail

- This status bit indicates that closed-caption data has been received in the even field. The status bit is cleared when both of the two bytes have been read.

CCD field 1 avail

- This status bit indicates that closed caption-data has been received in the odd field. The status bit is cleared when both bytes have been read.

2.15.38 Interrupt Threshold

VIP address	1B4
VMI address	B4
I ² C address	B4

7	6	5	4	3	2	1	0
Threshold value [3:0]							

Threshold value

- This value determines how many teletext transactions must be received before the teletext threshold status bit is set in the interrupt status register. The default value is 5.

2.15.39 Interrupt Line Number

VIP address	1B5
VMI address	B5
I ² C address	B5

7	6	5	4	3	2	1	0	
		Data required	Interrupt line number [4:0]					

Interrupt line number

- This value determines which video line number will be used to generate the teletext data, closed caption even field, and closed caption odd field bits in the interrupt status register. The register value is examined at the start of the line. Since there is no line 0, a value of all zeros in this register disables the three interrupt signals that use this condition. The default value is 24 (decimal).

Data required

- If this bit is set high, teletext data bit will only be set if there is data in the FIFO. This bit does not affect the closed caption even field, and closed caption odd field bits. The default value for this bit is 1.

2.15.40 FIFO Control

VIP address	1B6
VMI address	B6
I ² C address	B6

7	6	5	4	3	2	1	0
				Read in progress	Reserved	TTX VMI output enable	FIFO reset

FIFO reset – When a 1 is written to this register bit, the FIFO is flushed. This is done by clearing the read and write pointers to zero, clearing the Tx count to zero, and clearing all status flags. The status flags for the closed caption data are also cleared. This bit is automatically cleared back to 0.

TTX VMI output enable – A 1 in this register enables access to the teletext data in the FIFO through the VMI port and disables access from the output formatter. A 0 disables access from the VMI and enables access from the output formatter. The default value is one.

CCD Reset – When a 1 is written to this register bit, the closed caption registers are reset. Also, the flags are cleared to 0. This bit is automatically cleared back to 0.

Read in progress – This bit indicates that the first byte of a teletext transaction has been read, but the last byte has not been read. This bit can be used to verify data alignment as it is read from the FIFO.

2.15.41 Interrupt Status Register

VIP address	1C0
VMI address	C0
I ² C address	C0

7	6	5	4	3	2	1	0
tvpLock state	tvpLock interrupt	Cycle complete	Bus error	CC odd field	CC Even field	Teletext threshold	Teletext data
Teletext data	0 = Teletext data buffer empty or we have not reached the video line number that equals the interrupt line number register.	1 = Teletext data buffer contains a complete transaction and the video line number = interrupt line number register.					Note, this bit can be configured to occur whenever the video line number = interrupt line number register regardless of the data.
Teletext threshold	0 = Threshold not reached	1 = Teletext data in buffer has reached configurable threshold.					
CC even field	0 = Buffer empty	1 = Even field closed caption buffer contains data.					
CC odd field	0 = Buffer empty	1 = Odd field closed caption buffer contains data.					
Bus error	0 = No bus error	1 = VMI interface detected an illegal access.					
Cycle complete	0 = Read or write cycle in progress.	1 = Read or write cycle complete					
tvpLock interrupt	0 = A transition has not occurred on the horizontal lock signal.	1 = A transition has occurred on the horizontal lock signal.					Note, an interrupt will be generated on any transition of the horizontal lock signal.
tvpLock state	0 = TVP5020 not locked to video source.	1 = TVP5020 locked to video source					Reflects the present state of the tvpLock.

The interrupt status register is polled by the external processor to determine the interrupt source. After an interrupt condition is set, it can be reset by writing to this register with a 1 in the appropriate bit.

2.15.42 Interrupt Enable Register

VIP address	1C1
VMI address	C1
I ² C address	C1

7	6	5	4	3	2	1	0
Reserved	tvpLock Interrupt Enable	Cycle Complete Enable	Bus Error Enable	CC Odd Field Enable	CC Even Field Enable	Teletext Threshold Enable	Teletext Data Enable

The interrupt enable register is used by the external processor to mask unnecessary interrupt sources. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external terminal. Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an interrupt on the external terminal. This register only affects the external terminal, it does not affect the bits in the interrupt status register. A given condition can set the appropriate bit in the status register and not cause an interrupt on the external terminal. To determine if this device is driving the interrupt terminal, check either the interrupt status register with the interrupt enable register or check the state of the interrupt bit in the interrupt configuration register.

2.15.43 Interrupt Configuration Register

VIP address	1C2
VMI address	C2
I ² C address	C2

7	6	5	4	3	2	1	0
Reserved					YUV output enable	Interrupt	Interrupt polarity

Interrupt Polarity 0 = Interrupt is active low. 1 = Interrupt is active high.
 Interrupt 0 = Interrupt terminal is **not** active. 1 = Interrupt terminal is active. Reflects state of interrupt terminal.
 YUV output enable 0 = YUV terminals are high impedance. 1 = YUV terminals are active.

The interrupt configuration register configures the polarity of the external interrupt terminal.

2.15.44 Interrupt Status Register

VIP address	NA
VMI address	11 (direct)
I ² C address	NA

The status register is a duplicate of the interrupt status register at subaddress C0h.

3 Electrical Specifications

3.1 Absolute Maximum Ratings[†]

Supply voltage , AV _{DD}	7 V
Supply voltage, DV _{DD}	3.6 V
Input voltage range, AV _I	-0.5 V to 7 V
Input voltage range, DV _I	-0.3 V to DV _{DD} + 0.3 V
Storage temperature range	-65°C to 150°C
Operating free-air temperature	0°C to 70°C
Total power dissipation (Watts)	2.5 W

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

3.2 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supply voltage, digital, DV _{DD}	3	3.3	3.6	V
Supply voltage, analog, AV _{DD}	4.75	5	5.25	V
Input voltage, analog (ac coupling necessary), V _I (p-p)	0.5	1	1.26	V
Input voltage high, digital, V _{IH}	2			V
Input voltage low, digital, V _{IL}			0.8	V
Input voltage high, VCO and VC1 in I ² C mode, V _{IH} I ² C	2.3			V
Input voltage low, VCO and VC1 in I ² C mode, V _{IL} I ² C			1.0	V
Output current, Vout = 2.4V, I _{OH}	-4	-8		mA
Output current, Vout = 0.4V, I _{OL}	6	8		mA
Operating free-air temperature, T _A	0		70	°C
Crystal Specifications				
Frequency (ITU.601 sampling – 13.5 MHz)		24.576		MHz
Frequency (square pixel sampling)		26.800		MHz
Frequency tolerance			±40	ppm

3.3 Electrical Characteristics

3.3.1 Analog Processing and Analog-to-Digital Converters

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Z_i	Input impedance, analog video inputs	By design	200		$\text{k}\Omega$	
C_i	Input capacitance, analog video inputs	By design		10	pF	
ΔG	Gain control range		-2	6	dB	
DNL	DC differential nonlinearity	A/D only		1	LSB	
INL	DC integral nonlinearity	A/D only		1.2	LSB	
Fr	Frequency response	6 MHz		-0.9	-3	dB
XTALK	Crosstalk	1 MHz		-50	dB	
SNR	Signal-to-noise ratio	1 MHz, 1 Vpp		42	dB	
NS	Noise spectrum	50% flat field		53	dB	
DP	Differential phase			0.5	deg	
DG	Differential gain			1.5%		

NOTE 1: Test Conditions: $\text{DV}_{\text{DD}} = 3.3\text{V}$, $\text{AV}_{\text{DD}} = 5.0\text{V}$, $T_A = 70^\circ\text{C}$ unless otherwise specified

3.3.2 DC Electrical Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{\text{IN(DIG)}}$	Digital supply current		225	300	mA
$I_{\text{IN(AN)}}$	Analog supply current		85	105	mA
I_{li}	Input leakage current			10	μA
C_i	Input capacitance digital inputs	By design		8	pF
V_{OL}	Output voltage	Low		0.4	V
V_{OH}		High		2.4	

NOTE 2: Measured with a load of $10\text{ k}\Omega$ in parallel to 15 pF .

3.4 Timing

3.4.1 Clocks, Video Data, Sync Timing

PARAMETER	TEST CONDITIONS (see NOTE 3)	MIN	TYP	MAX	UNIT
δ_{CLK}	Duty cycle PCLK, SCLK		40%	50%	60%
$t_r(SCLK)$	Rise time SCLK	10% to 90%		3	ns
$t_f(SCLK)$	Fall time SCLK	90% to 10%		2	ns
$t_r(PCLK)$	Rise time PCLK	10% to 90%		3	ns
$t_f(PCLK)$	Fall time PCLK	90% to 10%		2	ns
$t_d(PCLK)$	Delay time, SCLK rising edge to PCLK			5	ns
$t_d(PREF)$	Delay time, SCLK falling edge to PREF	See Note 3		3	ns
$t_d(Y:UV)$	Delay time, SCLK falling edge to Y, UV	See Note 3		4	ns
$t_d(OUT)$	Delay time, SCLK falling edge to digital outputs except PCLK, PREF, Y, UV			6	ns
$t_{su}(UV)$	Setup time, UV pins (in input mode) to SCLK falling edge, when PREF high		10		ns
$t_{hd}(UV)$	Hold time, UV pins (in input mode) from SCLK falling edge, when PREF high			2	ns
$f(I2C)$	I ² C clock frequency			400	kHz

NOTES: 3. $C_L = 50 \text{ pF}$

4. SCLK falling edge may occur up to 2 ns after PREF, Y, UV output transitions.

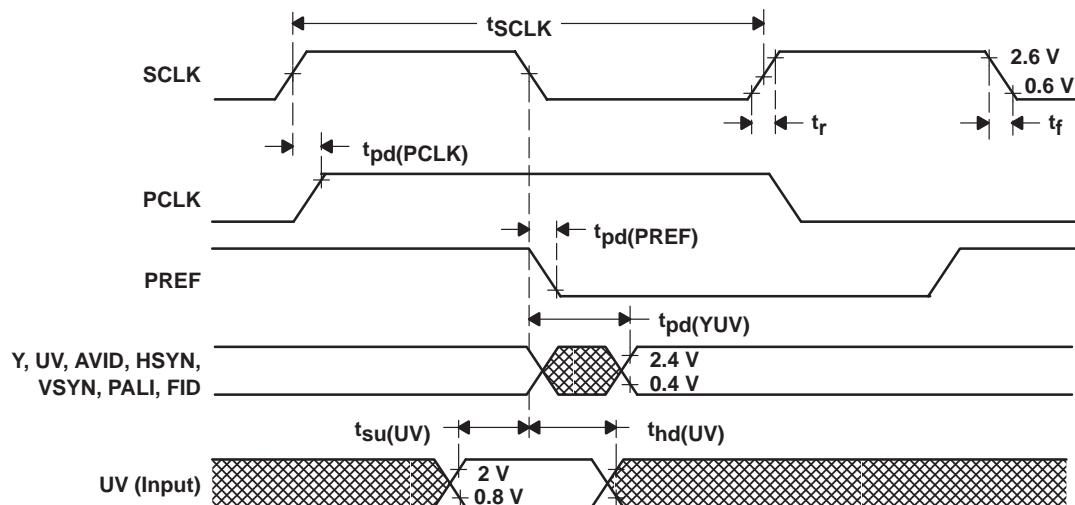


Figure 3-1. Clock, Video and Sync Timing

3.4.2 I²C Host Bus Timing

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{BUF}	Bus free time between STOP and START		1.3		μS
t _{SU:STA}	Setup time for a (repeated) START condition		0.6		μS
t _{HD:STA}	Hold time (repeated) START condition		0.6		μS
t _{SU:STO}	Setup time for a STOP condition		0.6		μS
t _{SU:DAT}	Data set-up time	100			nS
t _{HD:DAT}	Data hold time	0	0.9		μS
t _R	Rise time VC1 (SDA) and VC0 (SCL) signal		250		nS
t _F	Fall time VC1 (SDA) and VC0 (SCL) signal		250		nS
C _b	Capacitive load for each bus line		400		pF
f _{I²C}	I ² C clock frequency		400		kHz

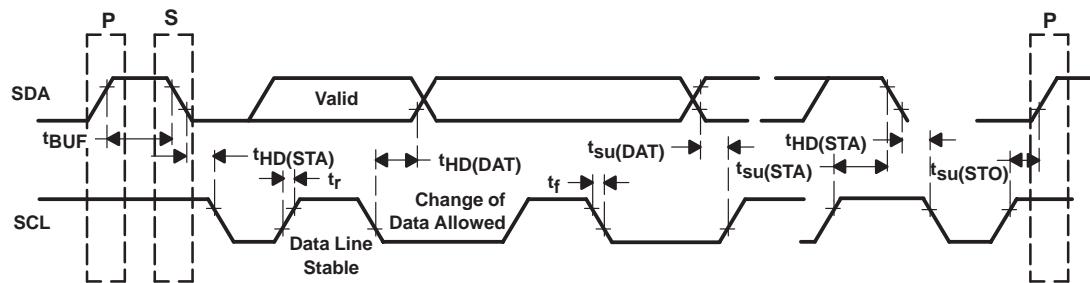


Figure 3–2. I²C Bus Timing

3.4.3 VIP Host Port Timing

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{su}	VC0, VC1, VC2 setup to VC3 (VIPCLK)		5		ns
t _{hd}	(VIPCLK) to VC0, VC1, VC2 hold time	0			ns
t _{pd}	VC3 (VIPCLK) to VC0, VC1, VC2, INTREQ propagation delay time			11	ns

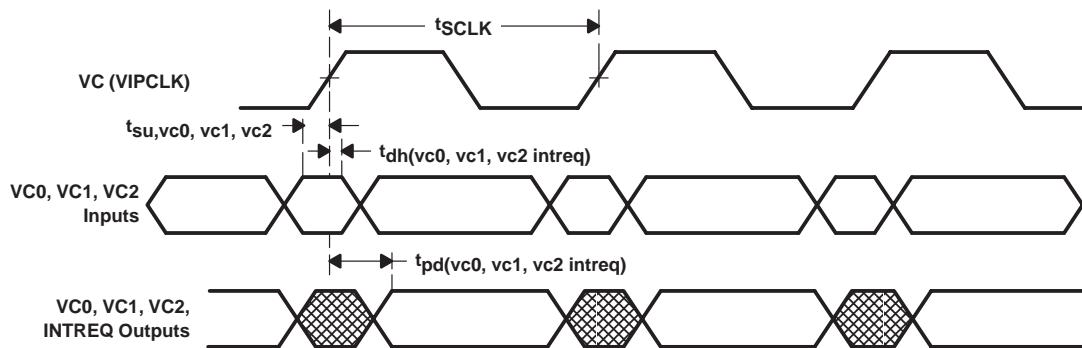


Figure 3–3. VIP Host Port Timing

3.4.4 VMI Host Port Timing (Mode A)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_1 A[1:0], D[0:7], VC1 setup until VC2 LOW		5			ns
t_2 Delay VC0 LOW after VC2 LOW		0			ns
t_3 A[1:0], D[0:7], VC1 hold after VC0 LOW		5			ns
t_5 Delay VC0 HIGH after VC2 HIGH		0			ns
t_6 Delay VC2 LOW (next cycle) after VC0 HIGH		5			ns
t_8 (Read Cycle) D[7:0] setup until VC0 LOW		10			ns
t_9 (Read Cycle) D[7:0] hold after VC2 HIGH		0			ns

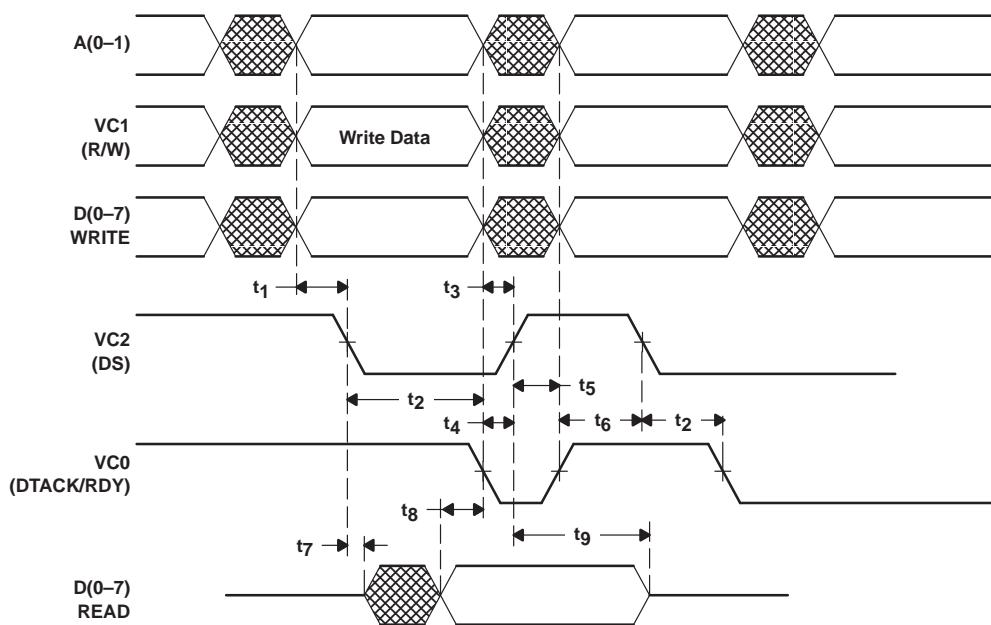


Figure 3–4. VMI Host Port Timing (Mode A)

3.4.5 VMI Host Port Timing (Mode B)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_1 Delay VC1 or VC2 active after valid A[1:0]		10			ns
t_2 A[1:0] hold after VC1 or VC2 inactive		10			ns
t_3 Delay VC0 LOW after VC1 or VC2 active				28	ns
t_4 D[7:0] setup until VC1 active		5			ns
t_5 D[7:0] hold after VC1 inactive		10			ns
t_6 VC0 inactive pulse width		10			ns
t_8 (Read Cycle) VC1 LOW until D[7:0] non-3-state		5			ns
t_9 (Read Cycle) D[7:0] setup until VC0 inactive		0			ns
t_{10} (Read Cycle) D[7:0] hold after VC0 inactive		0	15		ns
t_{11} Hold VC1 active after VC0 active		0			ns

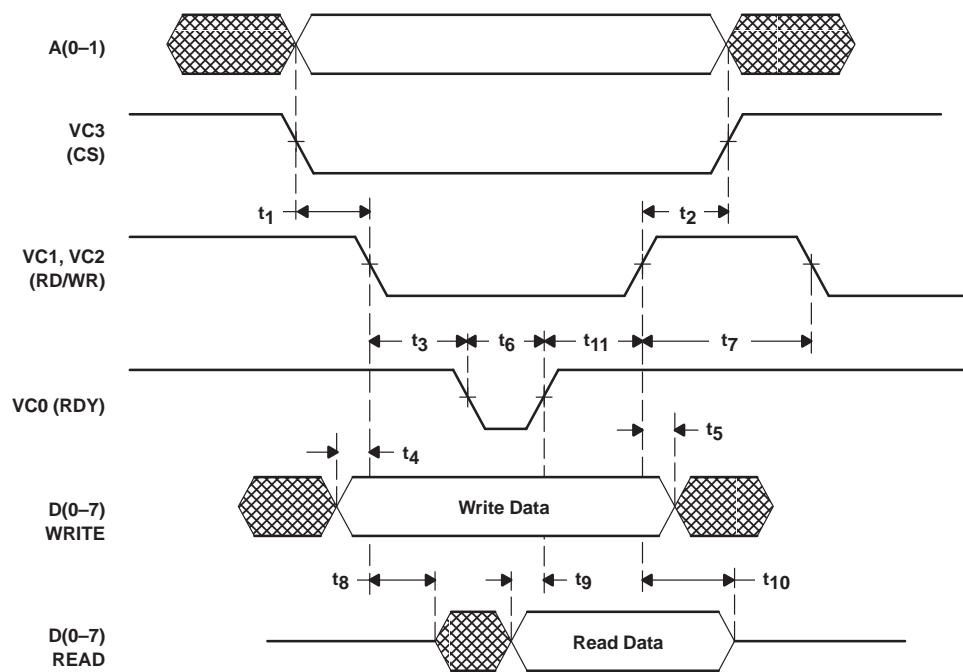
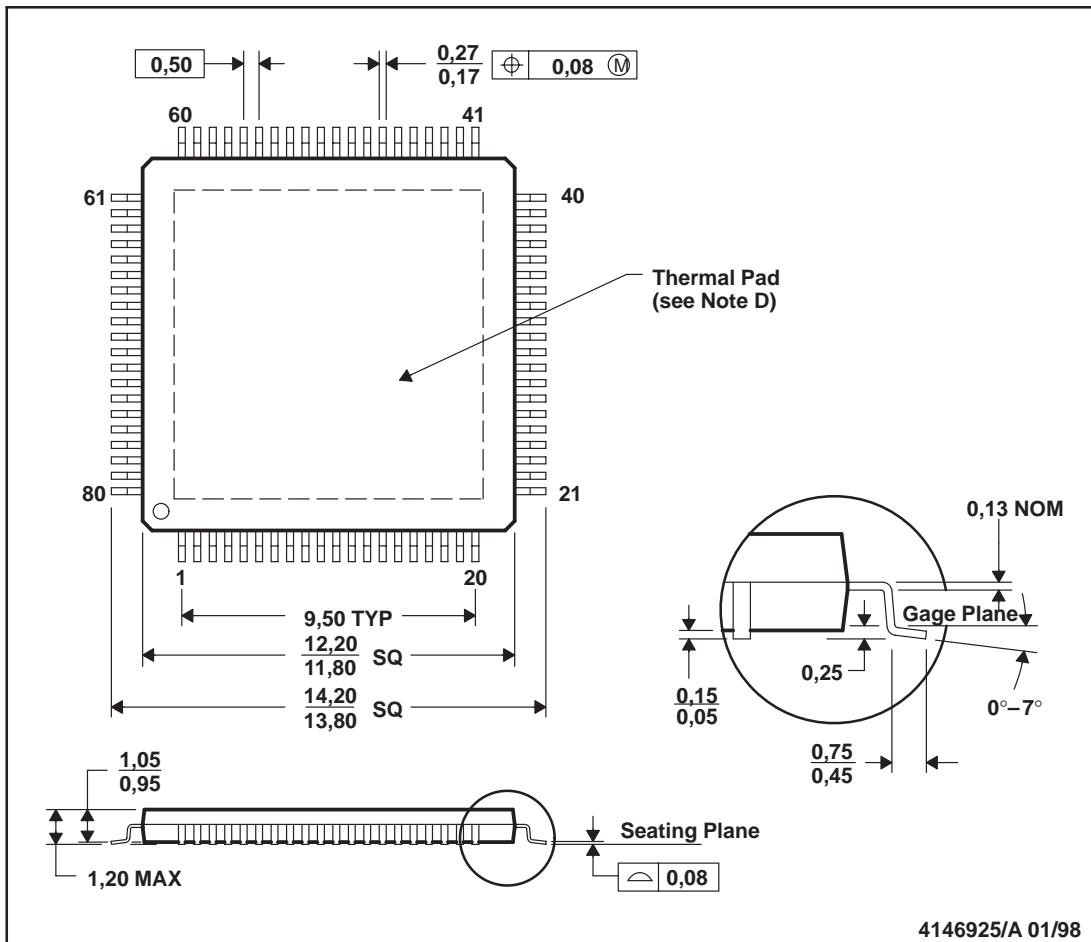



Figure 3–5. VMI Host Port Timing (Mode B)

4 Mechanical Data

PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions include mold flash or protrusions.
- The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments Incorporated.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated