AN1120

Basic Servo Loop Motor Control Using the MC68HC05B6 MCU

By Jim Gray

This application note describes a basic circuit and software implementing proportional derivative (PD) closed-loop speed control for a brush motor using four integrated circuits (ICs), two opto discretes, and less than 200 bytes of code.

Feedback control systems using digital algorithms implemented on microcontroller units (MCUs) are becoming increasingly commonplace. The use of an MCU in this type of control application is justified when system flexibility is needed, such as varying drive motors or storing wear parameters in electrically erasable programmable read-only memory (EEPROM). Typically, the system would be modeled mathematically in the discrete time domain due to the use of sampled rather than continuous data. The linear difference equations describing the transfer function of the system are solved using z-transforms, allowing, in the case of proportional-integral-derivative (PID) control, the determination of constants for proper system performance and stability. However, this level of analysis is not necessary to illustrate how straightforward the implementation is using the MC68HC05B6 and the MPM3004 TMOSTM H-bridge. The generalized flow of a PD loop is shown in Figure 1. The transfer function of $G_C(s)$ consists of the PD control, and $G_p(s)$ represents the power amplifier, motor, and load. Here s is a complex variable having both real and imaginary parts. The proportional term K_p can be accomplished with shifting operations, at least to the resolution of powers of 2. The derivative term, K_{DS} , of f(t) is approximately

$$\frac{df(t)}{dt}\Big|_{t=kT} \cong \frac{1}{T}[f(kT) - f(k-1)T]$$

where f(kT) is the current value of the controlled parameter, and f(k-1)T is the value of the same parameter at the previous sampling time. In this example, kDs is realized as the rate of change of the difference between the measured and the desired period of motor-shaft rotation.

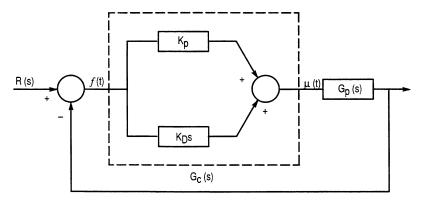


Figure 1. PD Loop Flow

TMOS is a trademark of Motorola Inc.

The MC68HC05B6 is an M68HC05 MCU Family member with two channels of programmable pulse-length modulation on-chip. When used with an H-bridge device such as the MPM3004, these channels can control bidirectional currents of up to 10-A continuous (25-A peak) at 60 V (see Figure 2). Two I/O pins and both pulse-length modulation (PLM) channels are used to control the MPM3004. Proper gate drive and level conversion is provided by the MC34151 dual inverting gate drivers. Input to the control loop consists of the MLED71 infrared emitter and MRD750 photo Schmitt trigger detector coupled through a slotted disc on the motor shaft. The TCAP2 pin and associated input capture registers are used to convert the optical index marks into a time measurement. Great care must be taken to ensure an adequate current source for the MPM3004 and to isolate the supply for the MC34151s. Separate circuit runs and 0.1-μF bypass capacitors on the MC34151 ICs were used in this case.

The justification for adding a derivative term to a proportional controller can be easily understood by examining the reasons for the overshoot and ringing typical of an underdamped proportional-only controller. When proportional control applies additional power to correct an underspeed condition, it does so continuously until the error term is zero, resulting in a power setting that ensures an overspeed condition. The converse occurs when reducing motor speed. The rate of change of the error signal as excessive power is being applied to correct underspeed will be a relatively large negative value (the error term is being rapidly reduced). Thus, the derivative of the error term is of the correct sign to compensate the proportional gain term. One effect of this compensation is to retard the loop's response time, but the proportional gain can be increased to offset this.

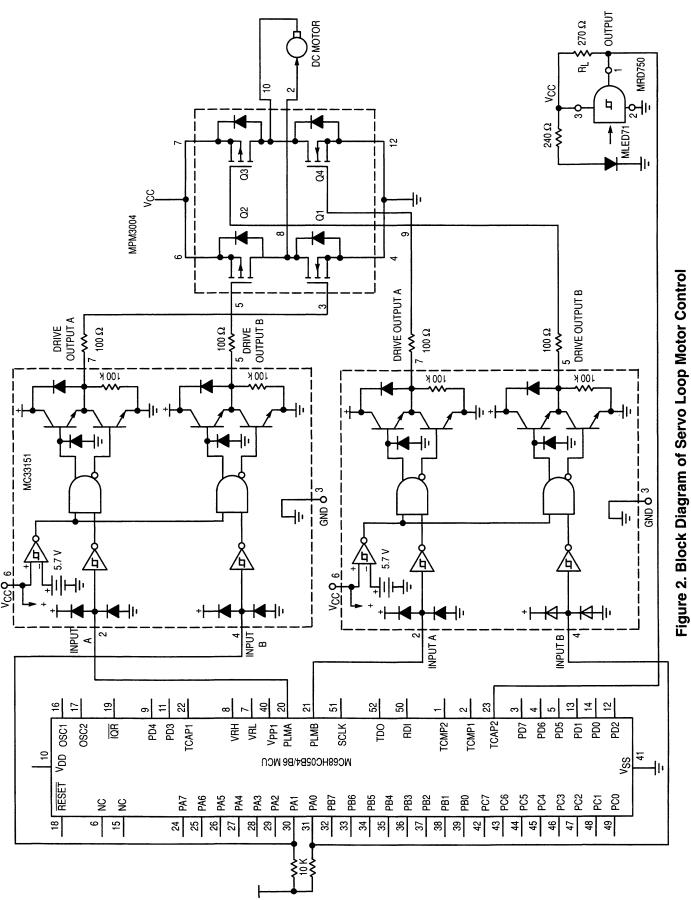

The listing (see Figure 3) shows the assembly source code for speed measurement and the PD control of PLMA, which drives the power H-bridge in one direction. The opposite direction of rotation is obtained by complementing bits 0 and 1 of port A and driving the opposite lower leg of the H-bridge with PLMB. Eight-bit arithmetic was used exclusively in this example for space and clarity. Although this approach is functional, 16-bit routines for multiply and divide, given in Reference 2, are better for finer control. Routines to set initial values, control direction of rotation, and check for motor stall are also necessary, although they are not shown in this application note.

Figure 4 shows the response of the system to various changes in load. The data was captured in an emulator trace buffer (Motorola CDS8 Jewelbox) and plotted using a data base program. Beginning from a no-load condition at 4 s, loading (an uncalibrated friction brake) was ramped to cause approximately a 50-percent duty cycle. Starting at 10 s, the load was then increased again until the system was at the limit of compliance — i.e., at full power and still maintaining the desired speed. Next, at 14 s, approximately half the load was rapidly (0.1 s) removed. The gain of the proportional term was 2, and the derivative constant was 1. In systems where a low-pass filter would be beneficial or the steady state error is potentially large, an integral term could be added for full PID control.

REFERENCES

- 1. Kuo, Benjamin C., Automatic Control Systems, New Jersey: Prentice-Hall, 1987.
- 2. M6805UM/AD2, M6805 HMOS/M146805 CMOS Family User's Manual, New Jersey: Prentice-Hall, 1983.
- 3. MC68HC05B6/D, MC68HC05B6 Data Sheet, Motorola, 1988.
- 4. M68HC05AG/AD, M68HC05 Applications Guide, Motorola, 1989.

Figure 2. Block Diagram of Servo Loop Motor Control


```
MC68HC05B6 SERVO LOOP MOTOR CONTROL EXAMPLE
                      ^{\star} This program performs a closed loop servo speed control using PLMA for
 3
                      * output. Speed is measured optically with a slotted disk. The optically
 5
                      * detected index mark, controls TCAP2 which allows calculation of the
                      * period of revolution for the loop input.
 6
 8
 9 0000
                              org .$0
10
                              cycles off
11 0000
12 0000
                      PADR
                              RMB
13 0001
                     PBDR
                              RMB
14 0002
                     PCDR
                              RMB
15 0003
                     PDIDR
                              RMB
16 0004
                     PADDR
                              RMB
                                     1
17 0005
                      PBDDR
                              RMB
18 0006
                      PCDDR
                              RMB
19
20 000A
                              ORG
                                      $0A
21
22 000A
                      PLMA
                              RMB
                                     1
23 000B
                      PLMB
                              RMB
                                     1
24 000C
                     MISC
                              RMB
                                     7
25
26 0012
                              ORG
                                     $12
27
28 0012
                      TCR
                              RMB
                                     1
29 0013
                      TSR
                              RMB
                                      1
30 0014
                     CAHR1
                              RMB
31 0015
                              RMB
                     CALR1
32 0016
                     COHR1
                              RMB
                                     1
33 0017
                     COLR1
                              RMB
                                     1
34 0018
                     CNTHR
                              RMB
35 0019
                     CNTLR
                              RMB
                                     1
36 001A
                     ACNTHR RMB
37 001B
                     ACNTLR RMB
                                     1
38 001C
                      CAHR2
                              RMB
                                     1
39 001D
                      CALR2
                              RMB
                                     1
40
41 0050
                              ORG
                                     $50
42
                      BCNTH
43 0050
                              RMB
                                     1
44 0051
                      BCNTL
                              RMB
45 0052
                     ECNTH
                              RMB
                                      1
46 0053
                     ECNTL
                              RMB
                                     1
47 0054
                     PERIOD RMB
                                                      MUST BE INITIALIZED WITH STARTING VALUE
48 0055
                     PLMTMP
                              RMB
                                                      MUST BE INITIALIZED WITH DESIRED PERIOD COUNT
49 0056
                      DESPRD
                              RMB
50 0057
                      DELTAN
                              RMB
51 0058
                     DELTAO
                              RMB
52 0059
                     DELTADC RMB
53 005A
54 OF00
                              ORG
                                   $F00
55
56 OF00 A604
                                                     SELECT SLOW PLM REPETION RATE
                      BEGIN
                              LDA
                                      #$4
57 OF02 B70C
                                                      SPEED
                              STA
                                     MISC
58 OF04 B655
                                   PLMTMP
                                                      LOAD PLM VALUE
59 OF06 B70A
                              STA
                                   PLMA
                                                      CLEAR FLAG AND ANY PENDING INT.
60 OF08 B613
                      KEYS
                              LDA
                                     TSR
61 OFOA B61C
                              LDA
                                      CAHR2
62 OFOC B61D
                                      CALR2
                              LDA
63 OFOE 1E12
                              BSET 7,TCR
                                                     SET INPUT CAPTURE INTERRUPT ENABLE
64 OF10 9A
                              CLI
                                                      CLEAR I BIT ALLOWING TIMER INTERRUPTS
                      WAIT
                                                      WAIT FOR OPTO INDEX TCIC INTERRUPT
65 OF11 20FE
                              BRA
                                     WAIT
66 OF13 B613
                                                      CLR TSR BIT 4 TO ENSURE
                      RPM
                              LDA
                                      TSR
67 OF15 B61C
                              LDA
                                      CAHR2
                                                      SYNCHRONIZATION TO INDEX
68 0F17 B61D
                              LDA
                                     CALR2
```

Figure 3. MC68HC05B6 Servo Loop Motor Control Example

		081302	TFLAG1	BRSET	4, TSR, INDEX1	TEST FLAG FOR INDEX1
	0F1C 0F1E		INDEX1	BRA LDA	TFLAG1 CAHR2	STORE COUNT
72	0F20	B750		STA	BCNTH	
73	0F22	B61D		LDA	CALR2	
	0F24			STA	BCNTL	
	0F26		5501	CLRA		DELAY TO AVOID RETRIGGER ON SAME INDEX
	0F27 0F28		DEC1	DECA	DEC1	
	OF2A			BNE LDA	DEC1 TSR	CLEAR FLAG AND WAIT
	0F2C			LDA	CAHR2	FOR INDEX2
80	0F2E	B61D		LDA	CALR2	
81	0F30	081302	TFLAG2	BRSET	4,TSR,INDEX2	
	0F33			BRA	TFLAG2	
	0F35		INDEX2	LDA	CAHR2	STORE SECOND COUNT
	0F37 0F39			STA LDA	ECNTH	
	0F3B			STA	CALR2 ECNTL	
	OF3D			LDA	ECNTH	CALCULATE PERIOD
88	0F3F	B050		SUB	BCNTH	THEN
89	0F41	B754		STA	PERIOD	STORE.
	0F43			LDA	DELTAN	GET PREVIOUS ERROR AND
	0F45			STA	DELTAO	STORE IT.
	0F47			LDA	DESPRD	LOAD DESIRED PERIOD, SUBTRACT ACTUAL
	0F49 0F4B			SUB BLO	PERIOD INCSPD	TO FORM DELTAN. GO TO INCREMENTING PLM
	OF4D			LSLA	INCSED	MULTIPLY ERROR BY 2.
	OF4E			STA	DELTAN	OR FALL THRU TO DECREMENTING HERE.
97	0F50	B658		LDA	DELTAO	FORM RATE OF CHANGE
	0F52			SUB	DELTAN	OF ERROR
	0F54			STA	DELTADC	AND STORE.
	0F56			LDA	DELTAN	GET CURRENT ERROR
	0F58 0F5A			SUB STA	DELTADO	AND APPLY DE/DT CORRECTION
	0F5C			LDA	DELTADC PLMTMP	THEN STORE. GET CURRENT PLM
	OF5E			SUB	DELTAN	AND APPLY CORRECTION.
105	0F60	2208		BHI	ADJDN	BRANCH TO DECREMENT IF RESULT POSITIVE
106	0F62	A610	PLMMIN	LDA	#\$10	OTHERWISE IN LOW SATURATION SO
	0F64			STA	PLMA	KEEP PLM AT MINIMUM.
	0F66			STA	PLMTMP	
	0F68 0F6A		ADJDN	BRA CMP	DONE #\$10	SEE IF PLM AT MINIMUM
	OF6C		ADODN	BHI	DECSPD	SEE II FEM AT MINIMOM
	OF6E			BRA	PLMMIN	
113	0F70	B70A	DECSPD	STA	PLMA	DECREMENT PLMA
	0F72			STA	PLMTMP	UPDATE PLMA TEMPORARY LOCATION
	0F74			BRA	DONE	
	0F76 0F77		INCSPD	LSLA	DET MAN	MULTIPLY ERROR BY 2
	0F77			STA LDA	DELTAN DELTAO	INCREMENT WITH SATURATION FORM RATE OF CHANGE
	0F7B			SUB	DELTAN	OF ERROR.
	0F7D			ADD	DELTAN	NOW ADD IT TO CURRENT DELTA
121	0F7F	B759		STA	DELTADC	TO FORM RATE OF CHANGE COMPENSATED ERROR.
	0F81			LDA	PLMTMP	GET CURRENT PLM
	0F83			SUB	DELTADC	AND APPLY CORRECTION.
	0F85 0F87			BLO	ADJUP	THE CAMPIDATION OF CORRECTION FOUNDS
	0F89		ADJUP	BRA STA	DONE PLMA	IN SATURATION OR CORRECTION EQUALS 0
	0F8B		110001	STA	PLMTMP	
	0F8D		DONE	RTI		RETURN TO WAIT
129						
130	1 0 0 0 ∩			OPC	¢1ppn	set westers
	1FF0 1FF0	0F00		ORG FDB	\$1FF0 BEGIN	set vectors R
	1FF2			FDB	BEGIN	SCI
	1FF4			FDB	BEGIN	TOV
135	1FF6	0F00		FDB	BEGIN	TOC
	1FF8			FDB	RPM	TIC
	1FFA			FDB	BEGIN	IRQ
138	1FFC	UF'UU		FDB	BEGIN	SWI

MOTOROLA 5 AN1120/D

MOTOROLA AN1120/D

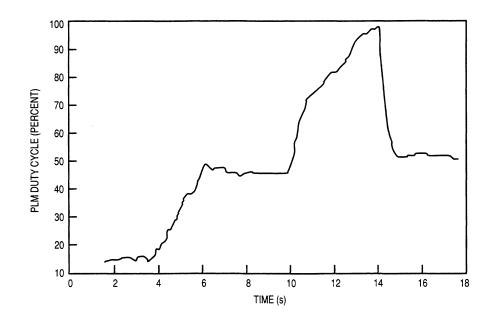


Figure 4. Step Response of PLM Motor Control

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products or any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

