

8-Mbit (512K x 16) MoBL® Static RAM

Features

· Very high speed: 55 ns

• Wide voltage range: 2.20V - 3.60V

 Pin-compatible with CY62157CV25, CY62157CV30, and CY62157CV33

Ultra-low active power

— Typical active current: 1.5 mA @ f = 1 MHz

— Typical active current: 12 mA @ f = f_{max}

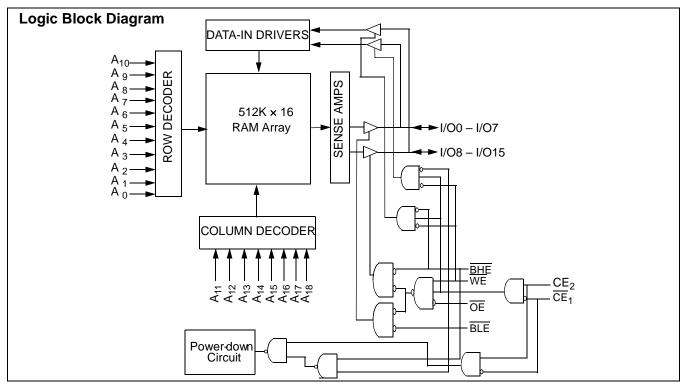
Ultra-low standby power

Easy memory expansion with CE₁, CE₂, and OE features

· Automatic power-down when deselected

• CMOS for optimum speed/power

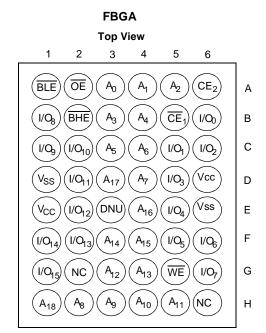
 Packages offered: 48-ball BGA, 48-pin TSOPI, and 44-pin TSOPII


Functional Description[1]

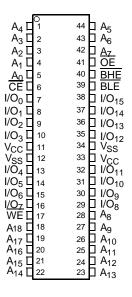
The CY62157DV30 is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in

portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The <u>device</u> can also be put into stand<u>by mode when</u> deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{CE_1}$ HIGH or $\overline{CE_2}$ LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , BLE HIGH), or during a write operation ($\overline{CE_1}$ LOW, $\overline{CE_2}$ HIGH and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1\text{LOW}$ and CE_2 HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A_0 through A_{18}). If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{18}).


Reading from the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table for a complete description of read and write modes.


Note:


1. For best practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, which is available at http://www.cypress.com.

Pin Configuration^[2, 3, 4, 5]

48TSOPI 44 TSOP II **Top View Top View**

Notes:

- NC pins are not internally connected on the die.
 DNU pins have to be left floating.
 The BYTE pin in the 48-TSOPI package has to be tied HIGH to use the device as a 512K x 16 SRAM. The 48-TSOPI package can also be used as a 1M x 8 SRAM by tying the BYTE signal LOW. For 1M x 8 Functionality, please refer to the CY62158DV30 datasheet. In the 1M x 8 configuration, Pin 45 is A19.
 The 44-TSOPII package device has only one chip enable pin (CE).

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied......–55°C to + 125°C Supply Voltage to Ground Potential-0.3V to + V_{CC(max)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[6,\ 7]}$ -0.3V to $V_{\text{CC(max)}}$ + 0.3V

DC Input Voltage ^[6, 7]	$-0.3V$ to $V_{CC(max)} + 0.3V$
Output Current into Outputs (LOW).	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature (T _A)	V cc ^[8]
CY62157DV30L	Industrial	-40°C to +85°C	2.20V to
CY62157DV30LL			3.60V

Product Portfolio

					Power Dissipation			n		
			Speed	(Operating	I _{CC} , (mA)			
Product	V _{CC} Range (V)		(ns)	f = 1	MHz	f = 1	max	Standby	I _{SB2} , (μΑ)	
	Min.	Typ. ^[9]	Max.		Typ. ^[9]	Max.	Typ. ^[9]	Max.	Typ. ^[9]	Max.
CY62157DV30L	2.20	3.0	3.60	55	1.5	3	12	20	2	20
CY62157DV30LL	2.20	3.0	3.60	55	1.5	3	12	15	2	8

Electrical Characteristics Over the Operating Range

					CY	62157D	V30-55	
Parameter	Description	Test Condit		Min.	Typ. ^[9]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$I_{OH} = -0.1 \text{ mA}$ $V_{CC} = 2.20 \text{V}$					V
		$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.70V$		2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 2.20V$				0.4	V
		I _{OL} = 2.1mA	$V_{CC} = 2.70V$				0.4	V
V _{IH}	Input HIGH Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$			1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V			2.2		$V_{CC} + 0.3V$	V
V _{IL}	Input LOW Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$			-0.3		0.6	V
		V _{CC} = 2.7V to 3.6V	-0.3		0.8	V		
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	-1		+1	μΑ		
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disa	bled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	L		12	20	mA
	Current		I _{OUT} = 0 mA CMOS levels	LL			15	mA
		f = 1 MHz		L		1.5	3	mΑ
				LL			3	mΑ
I _{SB1}	Automatic CE	$CE_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V$		L		2	20	μΑ
Power-Down Current — CMOS Inputs		$V_{IN} \ge V_{CC} - 0.2V$, $V_{IN} \le 0.2V$) $f = f_{MAX}$ (Address and Data Only), $f = 0$ (OE, WE, BHE and BLE), $V_{CC} = 3.60V$		LL		2	8	
I _{SB2}	Automatic CE	$\overline{CE}_1 \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0$		L		2	20	μΑ
	Power-Down Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V,$ $f = 0, V_{CC} = 3.60V$				2	8	

Notes:

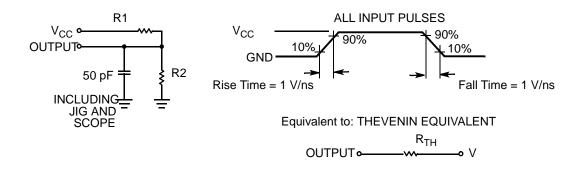
- Notes:

 6. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.

 7. V_{IH(max)}= V_{CC}+0.75V for pulse duration less than 20 ns.

 8. Full device AC operation assumes a 100 μs ramp time from 0 to V_{cc}(min) and 200 μs wait time after V_{cc} stabilization.

 9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.


Capacitance^[10, 11.]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance^[10]

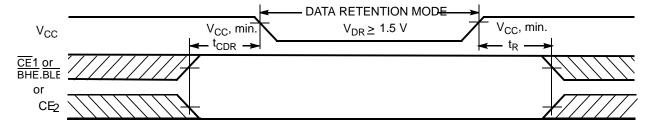
Parameter	Description	Test Conditions	BGA	TSOP II	TSOP I	Unit
Θ_{JA}		Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	72	75.13	74.88	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		8.86	8.95	8.6	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[9]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V$ $CE_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	L			10	μΑ
		$CE_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V,$	LL			4	
		$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$					
t _{CDR} ^[10]	Chip Deselect to Data Retention Time			0			ns
t _R ^[12]	Operation Recovery Time			t _{RC}			ns


10. Tested initially and after any design or process changes that may affect these parameters.

11. The input capacitance on the CE₂ pin of the FBGA and 48TSOPI packages and on the BHE pin of the 44TSOPII package is 15 pF.

12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 us or stable at V_{CC(min.)} ≥ 100 us.

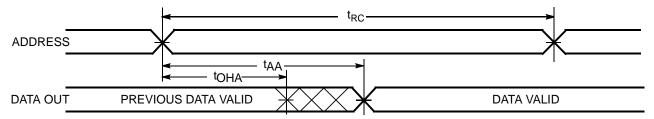
Data Retention Waveform^[13]

Switching Characteristics Over the Operating Range [14]

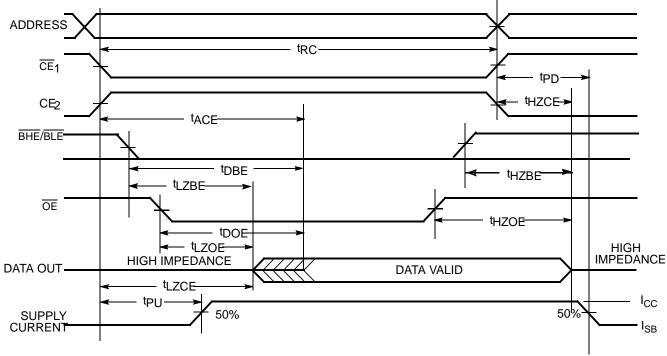
	55			
Description	Min.	Max.	Unit	
•	•	•		
Read Cycle Time	55		ns	
Address to Data Valid		55	ns	
Data Hold from Address Change	10		ns	
CE ₁ LOW and CE ₂ HIGH to Data Valid		55	ns	
OE LOW to Data Valid		25	ns	
OE LOW to LOW Z ^[15]	5		ns	
OE HIGH to High Z ^[15, 16]		20	ns	
CE ₁ LOW and CE ₂ HIGH to Low Z ^[15]	10		ns	
CE ₁ HIGH and CE ₂ LOW to High Z ^[15, 16]		20	ns	
CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns	
CE ₁ HIGH and CE ₂ LOW to Power-Down		55	ns	
BLE / BHE LOW to Data Valid		55	ns	
BLE / BHE LOW to Low Z ^[15]	10		ns	
BLE / BHE HIGH to HIGH Z ^[15, 16]		20	ns	
	•	I.		
Write Cycle Time	55		ns	
CE ₁ LOW and CE ₂ HIGH to Write End	40		ns	
Address Set-up to Write End	40		ns	
Address Hold from Write End	0		ns	
Address Set-up to Write Start	0		ns	
WE Pulse Width	40		ns	
BLE / BHE LOW to Write End	40		ns	
Data Set-up to Write End				
Data Hold from Write End	0		ns	
WE LOW to High-Z ^[15, 16]		20	ns	
WE HIGH to Low-Z ^[15]	10		ns	
	Read Cycle Time Address to Data Valid Data Hold from Address Change CE ₁ LOW and CE ₂ HIGH to Data Valid OE LOW to Data Valid OE LOW to LOW Z ^[15] OE HIGH to High Z ^[15, 16] CE ₁ LOW and CE ₂ HIGH to Low Z ^[15] CE ₁ HIGH and CE ₂ LOW to High Z ^[15, 16] CE ₁ HIGH and CE ₂ LOW to Power-Up CE ₁ HIGH and CE ₂ LOW to Power-Down BLE / BHE LOW to Data Valid BLE / BHE LOW to Low Z ^[15] BLE / BHE HIGH to HIGH Z ^[15, 16] Write Cycle Time CE ₁ LOW and CE ₂ HIGH to Write End Address Set-up to Write End Address Set-up to Write Start WE Pulse Width BLE / BHE LOW to Write End Data Set-up to Write End Data Hold from Write End WE LOW to High-Z ^[15, 16]	Read Cycle Time	Read Cycle Time	

^{13.} BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

 ^{14.} Test conditions for all parameters other than three-state parameters assume signal transition time of 3 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified l_{O.}/l_{O.H} as shown in the "AC Test Loads and Waveforms" section.
 15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

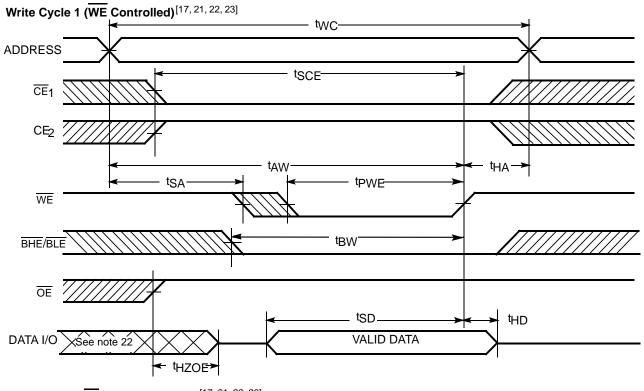

^{16.} t_{HZCE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outpu<u>ts enter a</u> high-impedence state.

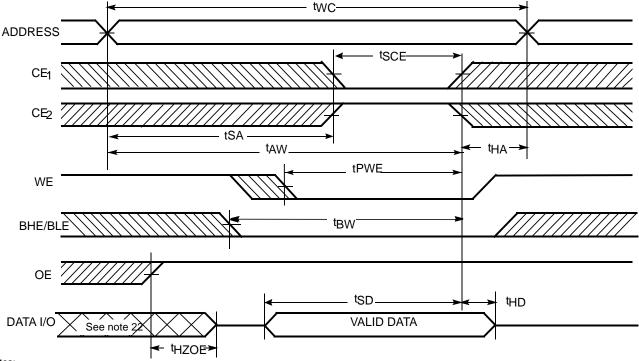
17. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[18, 19]

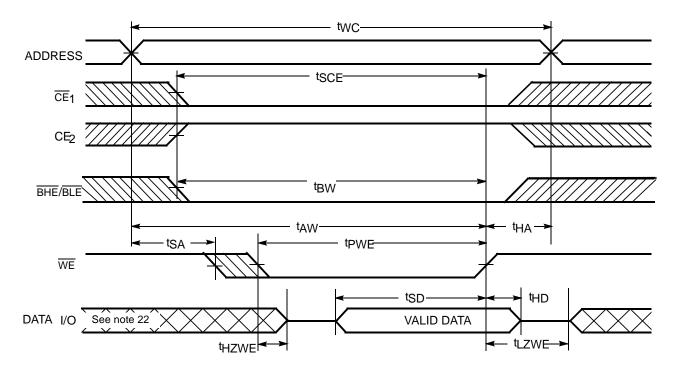

Read Cycle 2 (OE Controlled)[19, 20]


- 18. The device is continuously selected. OE, $CE_1 = V_{IL}$, BHE and/or BLE = V_{IL} , and $CE_2 = V_{IH}$. 19. WE is HIGH for read cycle.
- 20. Address valid prior to or coincident with $\overline{\text{CE}}_1$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ transition LOW and $\overline{\text{CE}}_2$ transition HIGH.

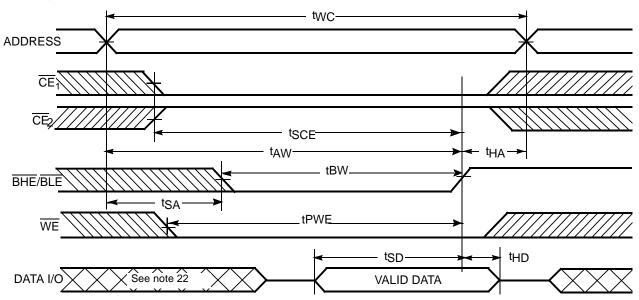
Switching Waveforms (continued)

Write Cycle 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[17, 21, 22, 23]

- 21. Data I/O is high impedance if $\overline{OE} = V_{IH}$.


 22. If \overline{CE}_1 goes HIGH and \overline{CE}_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.

 23. During this period, the I/Os are in output state and input signals should not be applied.

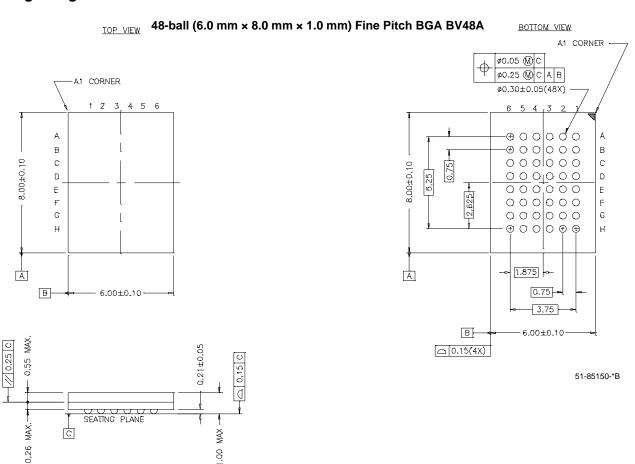


Switching Waveforms (continued)

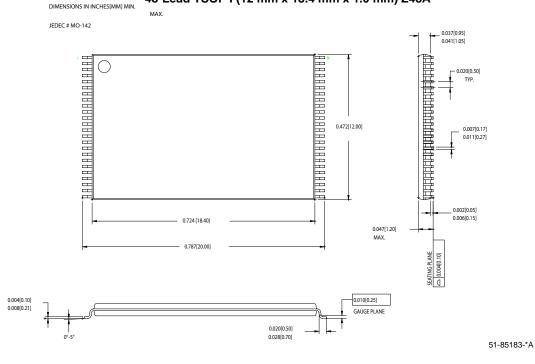
Write Cycle 3 (WE Controlled, OE LOW) $^{[22,\,23]}$

Write Cycle 4 (BHE/BLE Controlled, OE LOW)[22, 23]

Truth Table

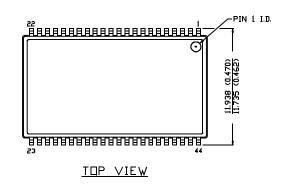

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X	Χ	Х	Х	Χ	High Z	Deselect/Power-Down	Standby (I _{SB})
X	L	Χ	Х	Х	Χ	High Z	Deselect/Power-Down	Standby (I _{SB})
X	X	Χ	Х	Н	Η	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Η	L	L	Ш	Data Out (I/O0 - I/O15)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O0 – I/O7); High Z (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O0 – I/O7); Data Out (I/O8 – I/O15)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O0 - I/O15)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O0 – I/O7); High Z (I/O8 – I/O15)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O0 – I/O7); Data In (I/O8 – I/O15)	Write	Active (I _{CC})

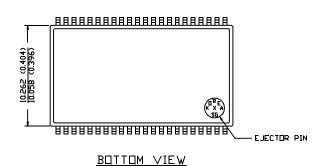
Ordering Information

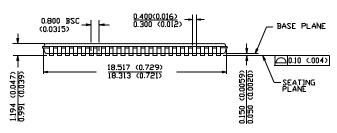

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62157DV30L-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm)	Industrial
	CY62157DV30LL-55BVI			
55	CY62157DV30L-55ZXI	Z-48	48-pin TSOP I (Pb-free)	Industrial
	CY62157DV30LL-55ZXI			
55	CY62157DV30L-55ZSXI	ZS-44	44-pin TSOP II (Pb-free)	Industrial
	CY62157DV30LL-55ZSXI			
55	CY62157DV30L-55ZSI	ZS-44	44-pin TSOP II	Industrial
	CY62157DV30LL-55ZSI			

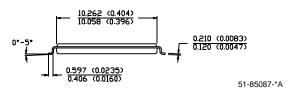
Package Diagrams

48-Lead TSOP I (12 mm x 18.4 mm x 1.0 mm) Z48A






Package Diagrams (continued)


DIMENSION IN MM (INCH)

44-Pin TSOP II ZS44

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Document Title:CY62157DV30 MoBL [®] 8-Mbit (512K x 16) MoBL [®] Static RAM Document Number: 38-05392								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	126316	05/22/03	HRT	New Data Sheet					
*A	131013	11/19/03	CBD/LDZ	Change from Advance to Preliminary					
*B	133115	01/24/04	CBD	Minor Change: Change MPN and upload.					
*C	211601	See ECN	AJU	Change from Preliminary to Final Changed Marketing part number from CY62157DV to CY62157DV30 in the title and in the Ordering Information table Added footnotes 4, 5 and 11 Modified footnote 8 to include ramp time and wait time Removed MAX value for VDR on Data Retention Characteristics table Changed ordering code for Pb-free parts Modified voltage limits in Maximum Ratings section					