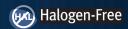

eGaN® FET DATASHEET EPC2033


### **EPC2033 – Enhancement Mode Power Transistor**

 $V_{DSS}$  , 150 V  $R_{DS(on)}$  , 7  $m\Omega$   $I_{D}$  , 48 A









Gallium Nitride is grown on Silicon Wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 60 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low  $R_{DS(on)}$ , while its lateral device structure and majority carrier diode provide exceptionally low  $Q_G$  and zero  $Q_{RR}$ . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

| Maximum Ratings  |                                                                     |            |    |  |  |  |
|------------------|---------------------------------------------------------------------|------------|----|--|--|--|
| V <sub>DS</sub>  | Drain-to-Source Voltage (Continuous)                                | 150        | V  |  |  |  |
| I <sub>D</sub>   | Continuous ( $T_A = 25^{\circ}C$ , $R_{\theta JA} = 4^{\circ}C/W$ ) | 48         | ۸  |  |  |  |
|                  | Pulsed (25°C, T <sub>PULSE</sub> = 300 μs)                          | 260        | A  |  |  |  |
| $V_{GS}$         | Gate-to-Source Voltage                                              | 6          | V  |  |  |  |
|                  | Gate-to-Source Voltage                                              | -4         | V  |  |  |  |
| Tı               | Operating Temperature                                               | -40 to 150 | °C |  |  |  |
| T <sub>STG</sub> | Storage Temperature                                                 | -40 to 150 | C  |  |  |  |



EPC2033 eGaN® FETs are supplied only in passivated die form with solder bumps. Die Size: 4.6 mm x 2.6 mm

- High Frequency DC-DC Conversion
- Motor Drive
- Industrial Automation
- · Class-D Audio

www.epc-co.com/epc/Products/eGaNFETs/EPC2033.aspx

|                     | Static Characteristics (T <sub>J</sub> = 25°C unless otherwise stated) |                                                |     |     |     |      |  |  |
|---------------------|------------------------------------------------------------------------|------------------------------------------------|-----|-----|-----|------|--|--|
|                     | PARAMETER                                                              | TEST CONDITIONS MIN                            |     | ТҮР | MAX | UNIT |  |  |
| BV <sub>DSS</sub>   | Drain-to-Source Voltage                                                | $V_{GS} = 0 \text{ V, } I_D = 0.7 \text{ mA}$  | 150 |     |     | V    |  |  |
| I <sub>DSS</sub>    | Drain Source Leakage                                                   | $V_{DS} = 120 \text{ V}, V_{GS} = 0 \text{ V}$ |     | 0.1 | 0.5 | mA   |  |  |
|                     | Gate-to-Source Forward Leakage                                         | $V_{GS} = 5 V$                                 |     | 1   | 8   | mA   |  |  |
| I <sub>GSS</sub>    | Gate-to-Source Reverse Leakage                                         | $V_{GS} = -4 V$                                |     | 0.1 | 0.5 | mA   |  |  |
| $V_{GS(TH)}$        | Gate Threshold Voltage                                                 | $V_{DS} = V_{GS}$ , $I_D = 9 \text{ mA}$       | 0.8 | 1.4 | 2.5 | V    |  |  |
| R <sub>DS(on)</sub> | Drain-to-Source On Resistance                                          | $V_{GS} = 5 \text{ V}, I_D = 25 \text{ A}$     |     | 5   | 7   | mΩ   |  |  |
| $V_{SD}$            | Source-to-Drain Forward Voltage                                        | $I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$    |     | 1.9 |     | V    |  |  |

All measurements were done with substrate shorted to source.

| Thermal Characteristics |                                                  |      |      |  |  |
|-------------------------|--------------------------------------------------|------|------|--|--|
|                         |                                                  | ТҮР  | UNIT |  |  |
| $R_{\theta JC}$         | Thermal Resistance, Junction to Case             | 0.45 | °C/W |  |  |
| $R_{	heta JB}$          | Thermal Resistance, Junction to Board            | 3.9  | °C/W |  |  |
| $R_{\theta JA}$         | Thermal Resistance, Junction to Ambient (Note 1) | 45   | °C/W |  |  |

Note 1:  $R_{ijk}$  is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote\_Thermal\_Performance\_of\_eGaN\_FETs.pdf for details.

eGaN® FET DATASHEET EPC2033

|                      | <b>Dynamic Characteristics</b> (T <sub>j</sub> = 25°C unless otherwise stated) |                                                                      |     |      |      |      |  |  |
|----------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-----|------|------|------|--|--|
|                      | PARAMETER                                                                      | TEST CONDITIONS                                                      | MIN | ТҮР  | MAX  | UNIT |  |  |
| C <sub>ISS</sub>     | Input Capacitance                                                              |                                                                      |     | 1160 | 1400 |      |  |  |
| C <sub>RSS</sub>     | Reverse Transfer Capacitance                                                   | $V_{DS} = 120  V, V_{GS} = 0  V$                                     |     | 6    |      |      |  |  |
| C <sub>oss</sub>     | Output Capacitance                                                             |                                                                      |     | 480  | 720  | pF   |  |  |
| C <sub>OSS(ER)</sub> | Effective Output Capacitance,<br>Energy Related (Note 2)                       | $V_{DS} = 0$ to 120 V, $V_{CS} = 0$ V                                |     | 670  |      | ρr   |  |  |
| C <sub>OSS(TR)</sub> | Effective Output Capacitance,<br>Time Related (Note 3)                         | V <sub>DS</sub> = 0 to 120 v, v <sub>GS</sub> = 0 v                  |     | 900  |      |      |  |  |
| $R_{G}$              | Gate Resistance                                                                |                                                                      |     | 0.5  |      | Ω    |  |  |
| $Q_{G}$              | Total Gate Charge                                                              | $V_{DS} = 120 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$ |     | 12   | 15   |      |  |  |
| Q <sub>GS</sub>      | Gate-to-Source Charge                                                          |                                                                      |     | 3.8  |      |      |  |  |
| $Q_{GD}$             | Gate-to-Drain Charge                                                           | $V_{DS} = 120  V, I_{D} = 25  A$                                     |     | 3.2  |      | nC   |  |  |
| Q <sub>G(TH)</sub>   | Gate Charge at Threshold                                                       |                                                                      |     | 2.8  |      | IIC  |  |  |
| Qoss                 | Output Charge                                                                  | $V_{DS} = 120  V, V_{GS} = 0  V$                                     |     | 90   | 135  |      |  |  |
| $Q_{RR}$             | Source-to-Drain Recovery Charge                                                |                                                                      |     | 0    |      |      |  |  |

Note 2:  $C_{OSS(R)}$  is a fixed capacitance that gives the same stored energy as  $C_{oss}$  while  $V_{DS}$  is rising from 0 to 80% BV<sub>DSS</sub>. Note 3:  $C_{OSS(R)}$  is a fixed capacitance that gives the same charging time as  $C_{oss}$  while  $V_{DS}$  is rising from 0 to 80% BV<sub>DSS</sub>.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Transfer Characteristics

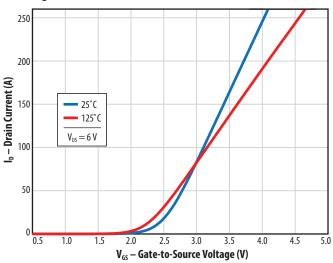



Figure 3: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Drain Currents

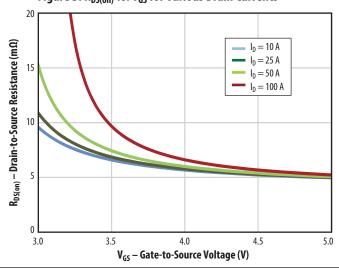
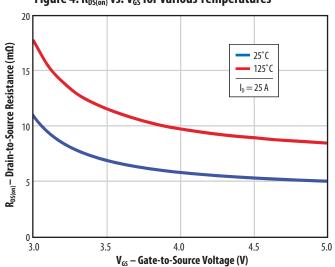




Figure 4: R<sub>DS(on)</sub> vs. V<sub>GS</sub> for Various Temperatures



eGaN® FET DATASHEET **EPC2033** 

### Figure 5a: Capacitance (Linear Scale)

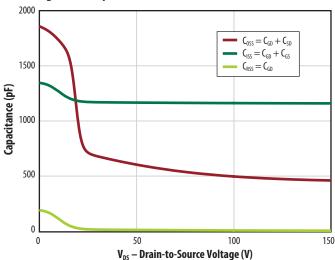



Figure 5b: Capacitance (Log Scale)

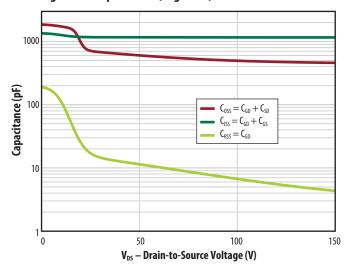
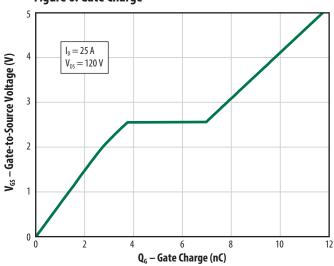




Figure 6: Gate Charge



**Figure 7: Reverse Drain-Source Characteristics** 

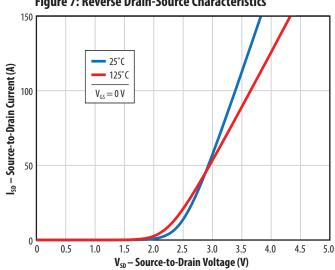



Figure 8: Normalized On-State Resistance vs. Temperature

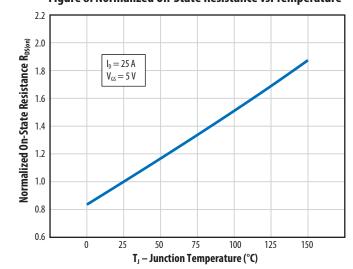
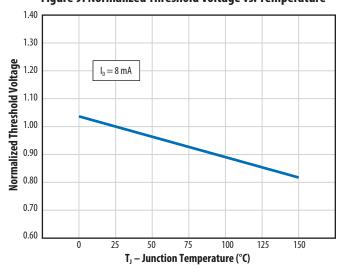




Figure 9: Normalized Threshold Voltage vs. Temperature



All measurements were done with substrate shortened to source. TJ= 25°C unless otherwise stated.

eGaN® FET DATASHEET EPC2033

Figure 10: Gate Leakage Current

40

25°C

125°C

125°C

10

10

10

10

V<sub>cs</sub> – Gate-to-Source Voltage (V)

Figure 11: Safe Operating Area

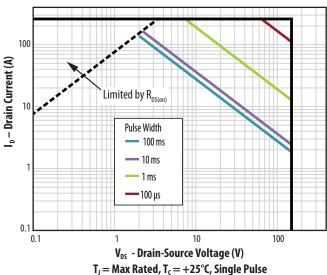
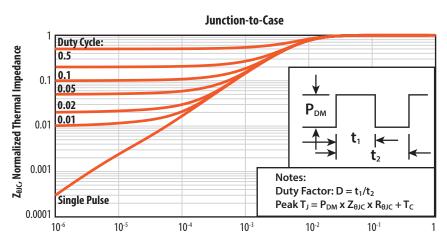
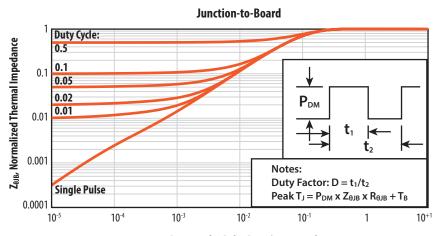
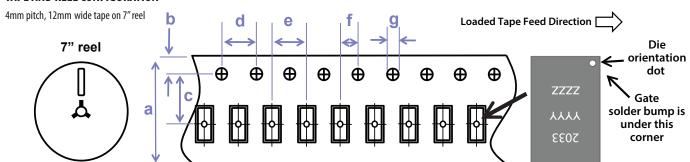





Figure 12: Transient Thermal Response Curves




t<sub>p</sub>, Rectangular Pulse Duration, seconds

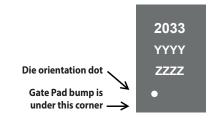


t<sub>p</sub>, Rectangular Pulse Duration, seconds

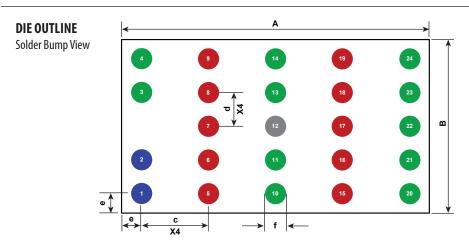
eGaN® FET DATASHEET **EPC2033** 

#### TAPE AND REEL CONFIGURATION




|                | EPC2033 (note 1) |       |       |  |
|----------------|------------------|-------|-------|--|
| Dimension (mm) | target           | min   | max   |  |
| а              | 12.00            | 11.70 | 12.30 |  |
| b              | 1.75             | 1.65  | 1.85  |  |
| c (see note)   | 5.50             | 5.45  | 5.55  |  |
| d              | 4.00             | 3.90  | 4.10  |  |
| е              | 4.00             | 3.90  | 4.10  |  |
| f (see note)   | 2.00             | 1.95  | 2.05  |  |
| g              | 1.50             | 1.50  | 1.60  |  |

Die is placed into pocket solder bump side down (face side down)


Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard. Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

#### **DIE MARKINGS**

Side View



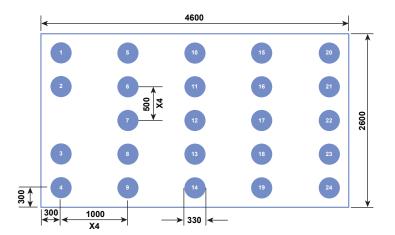
| Part    |                          | Laser Marking                   |                                 |
|---------|--------------------------|---------------------------------|---------------------------------|
| Number  | Part #<br>Marking Line 1 | Lot_Date Code<br>Marking Line 2 | Lot_Date Code<br>Marking Line 3 |
| EPC2033 | 2033                     | YYYY                            | ZZZZ                            |



|     | Micrometers |         |      |  |  |
|-----|-------------|---------|------|--|--|
| DIM | MIN         | Nominal | MAX  |  |  |
| Α   | 4570        | 4600    | 4630 |  |  |
| В   | 2570        | 2600    | 2630 |  |  |
| C   | 1000        | 1000    | 1000 |  |  |
| d   | 500         | 500     | 500  |  |  |
| е   | 285         | 300     | 315  |  |  |
| f   | 332         | 369     | 406  |  |  |

Pads 1 and 2 are Gate;

Pads 5, 6, 7, 8, 9, 15, 16, 17, 18, 19 are Drain;


Pads 3, 4, 10, 11, 13, 14, 20, 21, 22, 23, 24 are Source;

Pad 12 is Substrate

|  |               | 510 typ  | 790 typ  |
|--|---------------|----------|----------|
|  | SEATING PLANE | 280+/-28 | <u> </u> |

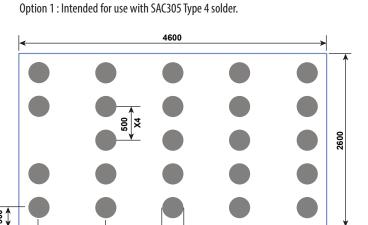
# RECOMMENDED LAND PATTERN

(units in  $\mu$ m)



Land pattern is solder mask defined Solder mask opening is 330 µm It is recommended to have on-Cu trace PCB vias

Pads 1 and 2 are Gate;

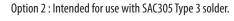

Pads 5, 6, 7, 8, 9, 15, 16, 17, 18, 19 are Drain;

Pads 3, 4, 10, 11, 13, 14, 20, 21, 22, 23, 24 are Source;

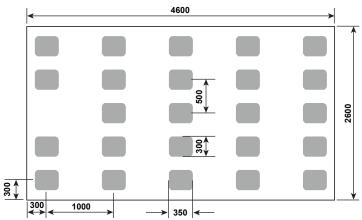
Pad 12 is Substrate

## RECOMMENDED STENCIL DRAWING

(units in  $\mu$ m)




Recommended stencil should be 4mil (100  $\mu$ m) thick, must be laser cut, openings per drawing.


Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

## RECOMMENDED STENCIL DRAWING

(units in µm)



1000



Recommended stencil should be 4mil (100  $\mu$ m) thick, must be laser cut, openings per drawing.

Additional assembly resources available at http://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice.
Revised December, 2016