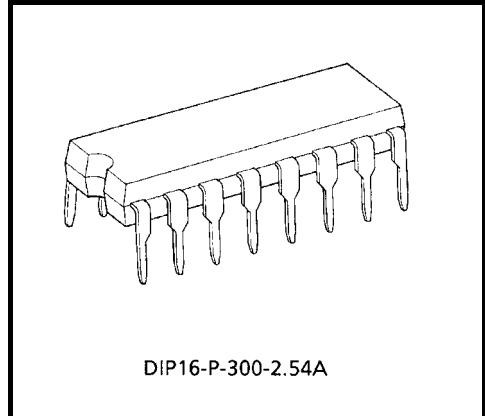


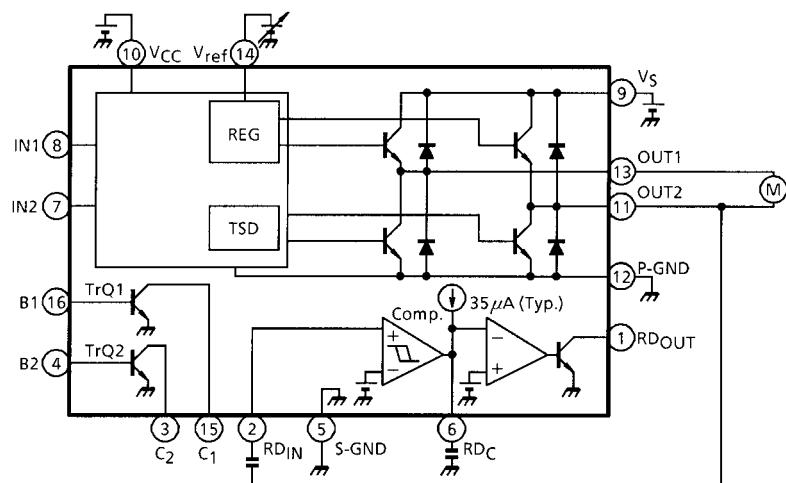
TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB6501P


Bridge Driver with Rotation Detector

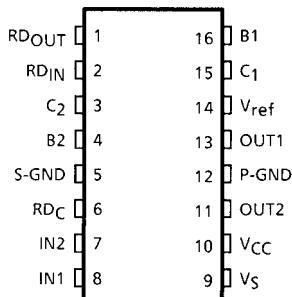
The TB6501P is Bridge Driver.

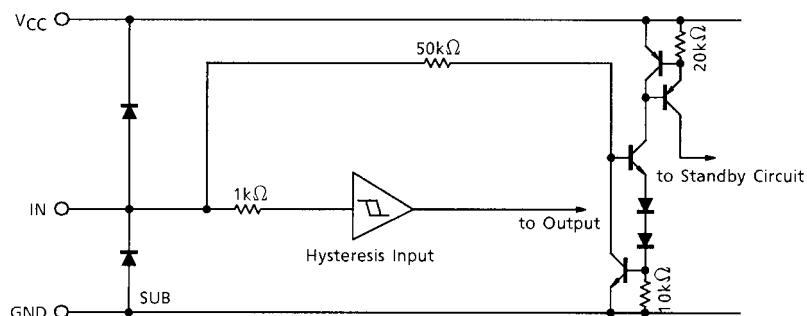
Forward Rotation, Reverse Rotation, Stop and Breaking Operations are available.

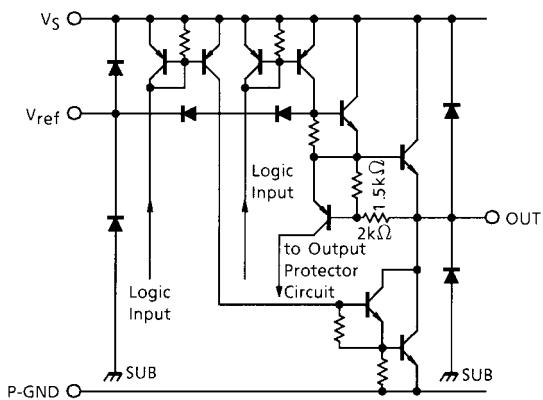
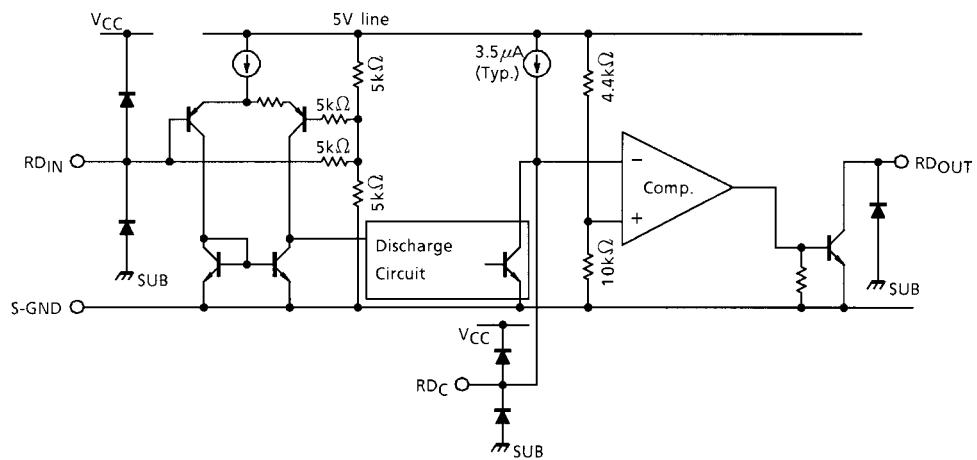
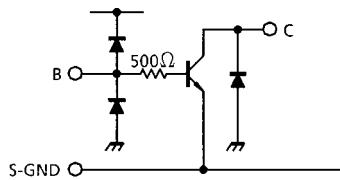

FEATURES

- TB6501P has RD (Rotation Detector).
- Output current up to 0.4A (AVE.) to 1.0A (PEAK).
- Wide Range of Operating Supply Voltage
 V_{CC} (opr.) = 4.5~20 V (6.0 to 20 V when RD is used.)
 V_S (opr.) = 0~20 V
 V_{ref} (opr.) = 0~20 V ($V_{ref} \leq V_S$)
 Can be operated with any combination of V_{CC} and V_S voltages within the range
- Thermal shutdown, Over current protector, and Standby circuit built in.

Weight: 1.11g (Typ.)


BLOCK DIAGRAM


PIN FUNCTION




PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION
1	RD _{OUT}	Rotation detector output terminal
2	RD _{IN}	Rotation detector input terminal
3	C ₂	NPN transistor collector terminal
4	B ₂	NPN transistor base terminal
5	S-GND	Signal GND terminal
6	R _{DC}	Rotation detector capacitor connection terminal
7	IN ₂	Input 2 terminal
8	IN ₁	Input 1 terminal
9	V _S	Power voltage supply terminal for motor driver
10	V _{CC}	Power voltage supply terminal for logic
11	OUT ₂	Output 2 terminal
12	P-GND	Power GND terminal
13	OUT ₁	Output 1 terminal
14	V _{ref}	Power voltage supply terminal for controller
15	C ₁	NPN transistor collector terminal
16	B ₁	NPN transistor base terminal

PIN CONNECTION

INPUT CIRCUIT

OUTPUT CIRCUIT**ROTATION DETECTOR CIRCUIT****TrQ1, TrQ2 CIRCUIT**

FUNCTION

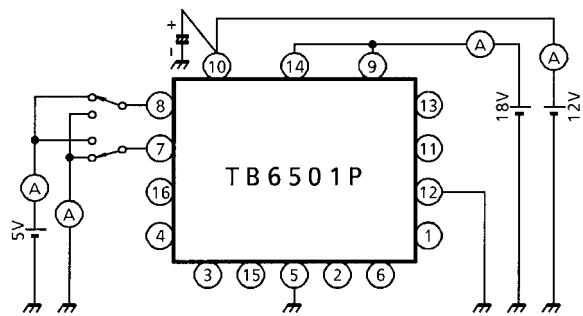
INPUT		OUTPUT		MODE
IN1	IN2	OUT1	OUT2	MOTOR
0	0	∞	∞	STOP
1	0	H	L	CW / CCW
0	1	L	H	CCW / CW
1	1	L	L	BRAKE

∞ : High Impedance

Note: Inputs are all high active type.

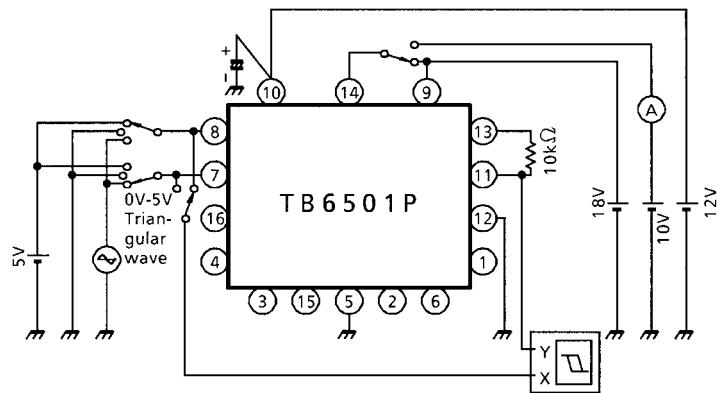
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTICS		SYMBOL	RATING	UNIT
Supply Voltage		V _{CC}	25	V
Motor Drive Voltage		V _S	25	V
Reference Voltage		V _{ref}	25	V
Output Current	PEAK	I _O (PEAK)	1.0 (Note)	A
	AVE.	I _O (AVE.)	0.4	
	RD	I _{RD} (PEAK)	20 (Note)	mA
	TR	I _{TR} (PEAK)	50 (Note)	
Power Dissipation		P _D	1.2	W
Operating Temperature		T _{opr}	-30~75	°C
Storage Temperature		T _{stg}	-55~150	°C

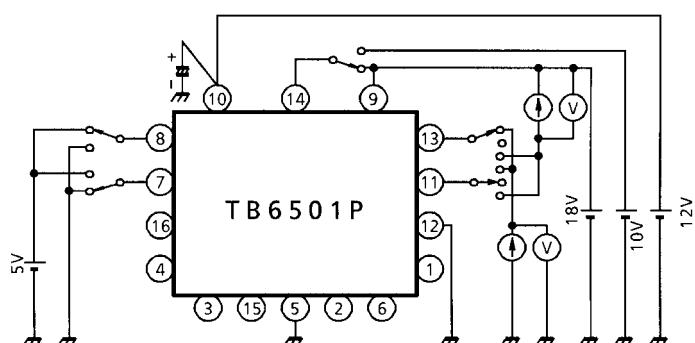

Note: t = 0.1s

ELECTRICAL CHARACTERISTICS (Ta = 25°C, VCC = 12V, VS = 18V)

CHARACTERISTIC		SYMBOL	TEST CIR-CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Supply Current		I _{CC1}	—	Output open CW / CCW mode	—	8.2	12	mA	
		I _{CC2}	—	Output open STOP mode	—	400	750	μA	
		I _{CC3}	—	Output open BREAK mode	—	8.2	12	mA	
		I _{S1}	—	Output open CW / CCW mode V _{ref} = V _S	—	5.2	11	mA	
		I _{S2}	—	Output open STOP mode V _{ref} = V _S	—	0	50	μA	
		I _{S3}	—	Output open BREAK mode V _{ref} = V _S	—	6.8	13	mA	
Input OperatiLng Voltage	1 (High)	V _{IN1}	—	T _j = 25°C	3.5	—	5.5	V	
	2 (Low)	V _{IN2}	—	T _j = 25°C	GND	—	0.8		
Input Current		I _{IN}	—	Sink V _{IN} = 5V	—	37	80	μA	
Input Hysteresis Voltage		ΔV _T	—	—	—	0.55	—	V	
Saturation Voltage		V _{SAT U-1}	—	V _{ref} = V _S I _O = 0.2 A	Output V _S CW / CCW mode	—	1.6	—	V
		V _{SAT L-1}	—	V _{ref} = V _S I _O = 0.2 A	Output GND CW / CCW mode	—	0.8	—	V
		V _{SAT U-2}	—	V _{ref} = V _S I _O = 0.4 A	Output V _S CW / CCW mode	—	1.75	2.3	V
		V _{SAT L-2}	—	V _{ref} = V _S I _O = 0.4 A	Output GND CW / CCW mode	—	0.9	1.3	V
		V _{SAT U-3}	—	V _{ref} = V _S I _O = 1.0 A	Output V _S CW / CCW mode	—	2.25	2.6	V
		V _{SAT L-3}	—	V _{ref} = V _S I _O = 1.0 A	Output GND CW / CCW mode	—	1.2	1.6	V
Output Voltage		V _{SAT U-1'}	—	V _{ref} = 10 V I _O = 0.2 A	Output GND CW / CW mode	9.3	10	10.7	V
		V _{SAT U-2'}	—	V _{ref} = 10 V I _O = 0.4 A	Output GND CW / CCW mode	9.3	10	10.7	V
Leaking Current		I _{LU}	—	V _L = 25 V	—	0	50	μA	
		I _{LL}	—	V _L = 25 V	—	0	50		
Diode Forward Voltage	Upper	V _F U-1	—	I _F = 0.4 A	—	1.5	—	V	
		V _F U-2	—	I _F = 1 A	—	2.5	—		
	Lower	V _F L-1	—	I _F = 0.4 A	—	1.0	—		
		V _F L-2	—	I _F = 1 A	—	1.3	—		
Reference Current		I _{ref}	—	V _{ref} = 10 V Source Typ.	—	1	—	mA	
RD Output Saturation Voltage		V _{SAT RD}	—	I _{RD} = 5 mA	—	0.18	0.35	V	
TR Output Saturation Voltage		V _{SAT TR}	—	I _{TR} = 10 mA	—	4	0.65	V	
RDC Charge Current		I _{RDC}	—	—	21	35	55	μA	
RD Detective Sensitivity	Detective Level	R _D (ON)	—	AC coupling sine wave input RDC = 10 μF	14	—	—	mV	
	Undetective Level	R _D (OFF)	—		—	—	7		
Thermal Shutdown Operating Temperature		T _{TSD}	—	T _j	160	—	—	°C	

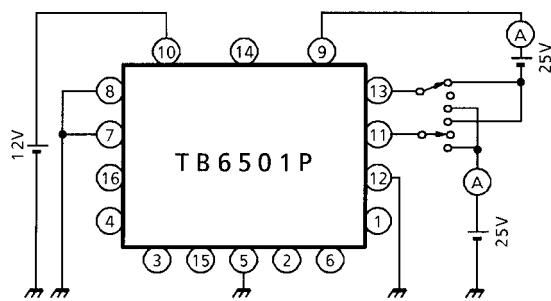

TEST CIRCUIT 1

I_{CC1} , I_{CC2} , I_{CC3} , I_{IN} , I_{S1} , I_{S2} , I_{S3}

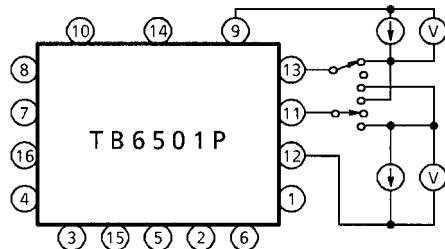

TEST CIRCUIT 2

V_{IN1} , V_{IN2} , ΔV_T

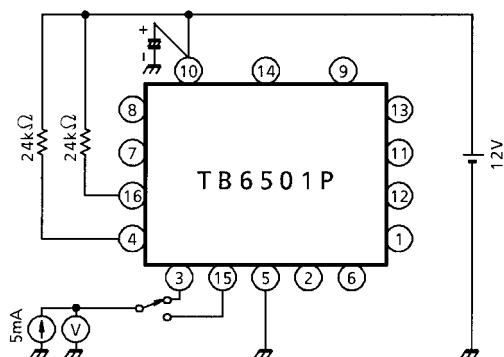
TEST CIRCUIT 3


$V_{SAT\ U-1, 2, 3}$ $V_{SAT\ L-1, 2, 3}$ $V_{SAT\ U-1', 2'}$

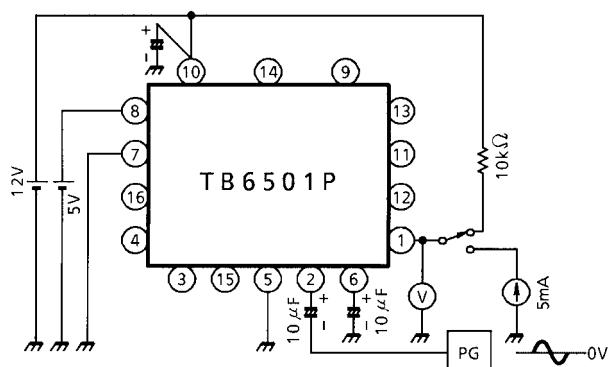
Note: Calibrate I_O to 0.2 / 0.4 / 1.0 A by R_L .


TEST CIRCUIT 4

I_{LU} , I_{LL}


TEST CIRCUIT 5

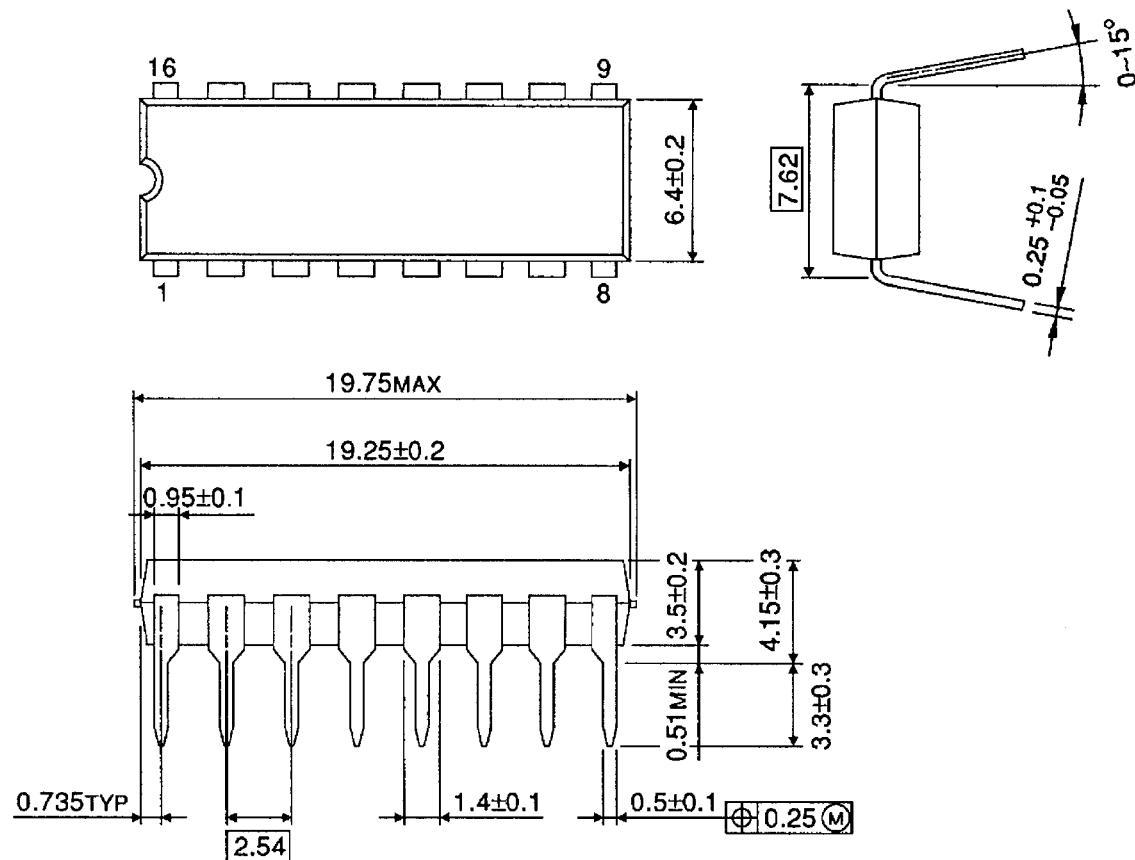
$V_{FU-1,2}$ $V_{FL-1,2}$


TEST CIRCUIT 6

$V_{SAT\ TR.}$

TEST CIRCUIT 7

$V_{SAT\ RD}$ RD Sensitivity



Note: Utmost care is necessary in the design of the output line, V_S , V_{CC} and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

DIP16-P-300-2.54A

Unit: mm

Weight: 1.11 g (Typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.