

UM10524 LPC1315/16/17/45/46/47 User manual Rev. 4 — 12 March 2013

User manual

Document information

Info	Content
Keywords	LPC1315/16/17/45/46/47, ARM Cortex-M3, microcontroller, USB
Abstract	LPC1315/16/17/45/46/47 User manual

LPC1315/16/17/45/46/47 User manual

Revision history

Rev	Date	Description
4	20130312	LPC1315/16/17/45/46/47 user manual
Modifications:		 Table 379 "Flash configuration register (FLASHCFG, address 0x4003 C010) bit description" corrected. Description of the NMISRC register updated. See Section 3.5.29 "NMI Source Control register (NMISRC)"
2	20120121	Control register (NMISRC)". LPC1315/16/17/45/46/47 user manual
3	20130121	
Modifications:		Removed requirement to turn on the RIT clock in Section 19.2.
2	20121119	LPC1315/16/17/45/46/47 user manual
Modifications:		 Description of USB CDC device class updated in Table 192 "USBD_CDC_API class structure" and Table 193 "USBD_CDC_INIT_PARAM class structure".
		 Description of the BYPASS bit corrected in Table 12 "System oscillator control (SYSOSCCTRL, address 0x4004 8020) bit description".
		 Description of the FREQSEL bits corrected in Table 13 "Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description".
		 Removed remark "USB ISP commands are supported for the Windows operating system only.". USP ISP commands are supported in Windows, Linux, and Mac OS.
		 Remove the following step to execute before entering Deep power-down: Enable the IRC. This step is not longer required. See Section 3.9.6 "Deep power-down mode".
		BOD interrupt trigger level 0 removed in Table 31.
		 Explained use of interrupts with Power profiles in Section 5.3 "General description".
		 Register offset of the CR1 register corrected in timers CT16B0 and CT32B0. See Table 278 and Table 299.
		 Bit position of the CAP1 interrupt flag corrected in the IR registers of timers CT16B0 and CT32B0. See Table 280 and Table 301.
		 Bit positions of the CAP1 edge and interrupt control bits corrected in the CCR registers of timers CT16B0 and CT32B0. See Table 288 and Table 309.
		 Bit values of the CAP1 counter mode and capture input select bits corrected in the CTCR registers of timers CT16B0 and CT32B0. See Table 295 and Table 316.
		 Description of interrupt use with IAP calls updated. See Section 21.8.7.
		 ADC control register START bit description updated. See Table 334.
		 Polarity of the IOCON glitch filter FILTR bit changed: 0 = glitch filter on (default), 1 = glitch filter off. See Table 55.
		Editorial updates.
1	20120217	Initial version

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10524

Chapter 1: LPC1315/16/17/45/46/47 Introductory information

Rev. 4 — 12 March 2013

User manual

1.1 Introduction

The LPC1315/16/17/45/46/47 are ARM Cortex-M3 based microcontrollers for embedded applications featuring a high level of integration and low power consumption. The ARM Cortex-M3 is a next generation core that offers system enhancements such as enhanced debug features and a higher level of support block integration.

The LPC1315/16/17/45/46/47 operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with separate local instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3 CPU also includes an internal prefetch unit that supports speculative branching.

Equipped with a highly flexible and configurable Full-Speed USB 2.0 device controller available on the LPC1345/46/47, this series brings unparalleled design flexibility and seamless integration to today's demanding connectivity solutions.

The peripheral complement of the LPC1315/16/17/45/46/47 includes up to 64 kB of flash memory, 8 kB or 10 kB of SRAM data memory, one Fast-mode Plus I²C-bus interface, one RS-485/EIA-485 USART with support for synchronous mode and smart card interface, two SSP interfaces, four general purpose counter/timers, an 8-channel, 12-bit ADC, and up to 51 general purpose I/O pins.

1.2 Features

System:

ARM Cortex-M3 r2p1 processor, running at frequencies of up to 72 MHz. ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC). Non Maskable Interrupt (NMI) input selectable from several input sources. System tick timer.

Memory:

- Up to 64 kB on-chip flash program memory with a 256 byte page erase function.
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software. Flash updates via USB supported.
- Up to 4 kB on-chip EEPROM data memory with on-chip API support.
- Up to 12 kB SRAM data memory.
- 16 kB boot ROM with API support for USB API, power control, EEPROM, and flash IAP/ISP.

Chapter 1: LPC1315/16/17/45/46/47 Introductory information

· Debug options:

- Standard JTAG test interface for BSDL.
- Serial Wire Debug.
- Support for ETM ARM Cortex-M3 debug time stamping.

Digital peripherals:

- Up to 51 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors, repeater mode, input inverter, and pseudo open-drain mode. Eight pins support programmable glitch filter.
- Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources.
- Two GPIO grouped interrupt modules enable an interrupt based on a programmable pattern of input states of a group of GPIO pins.
- High-current source output driver (20 mA) on one pin (P0_7).
- High-current sink driver (20 mA) on true open-drain pins (P0_4 and P0_5).
- Four general purpose counter/timers with a total of up to 8 capture inputs and 13 match outputs.
- Programmable Windowed WatchDog Timer (WWDT) with a internal low-power WatchDog Oscillator (WDO).
- Repetitive Interrupt Timer (RI Timer).

Analog peripherals:

- 12-bit ADC with eight input channels and sampling rates of up to 500 kSamples/s.

Serial interfaces:

- USB 2.0 full-speed device controller (LPC1345/46/47) with on-chip ROM-based USB driver library.
- USART with fractional baud rate generation, internal FIFO, a full modem control handshake interface, and support for RS-485/9-bit mode and synchronous mode. USART supports an asynchronous smart card interface (ISO 7816-3).
- Two SSP controllers with FIFO and multi-protocol capabilities.
- I²C-bus interface supporting the full I²C-bus specification and Fast-mode Plus with a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode.

· Clock generation:

- Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator) with failure detector.
- 12 MHz high-frequency Internal RC oscillator (IRC) trimmed to 1 % accuracy over the entire voltage and temperature range. The IRC can optionally be used as a system clock.
- Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable frequency output.
- PLL allows CPU operation up to the maximum CPU rate with the system oscillator or the IRC as clock sources.
- A second, dedicated PLL is provided for USB (LPC1345/46/47).
- Clock output function with divider that can reflect the crystal oscillator, the main clock, the IRC, or the watchdog oscillator.
- Power control:

Chapter 1: LPC1315/16/17/45/46/47 Introductory information

- Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.
- Power profiles residing in boot ROM allow optimized performance and minimized power consumption for any given application through one simple function call.
- Processor wake-up from Deep-sleep and Power-down modes via reset, selectable GPIO pins, watchdog interrupt, or USB port activity.
- Processor wake-up from Deep power-down mode using one special function pin.
- Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, Power-down, and Deep power-down modes.
- Power-On Reset (POR).
- Brownout detect with four separate thresholds for interrupt and forced reset.
- Unique device serial number for identification.
- Single 3.3 V power supply (2.0 V to 3.6 V).
- Temperature range -40 °C to +85 °C.
- Available as LQFP64, LQFP48, and HVQFN33 package.

1.3 Ordering information

Table 1. Ordering information

Type number	Package		
	Name	Description	Version
LPC1345FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1345FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1346FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1346FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1347FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1347FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1347FBD64	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2
LPC1315FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1315FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1316FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1316FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1317FHN33	HVQFN33	plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a
LPC1317FBD48	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT313-2
LPC1317FBD64	LQFP64	LQFP64: plastic low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2

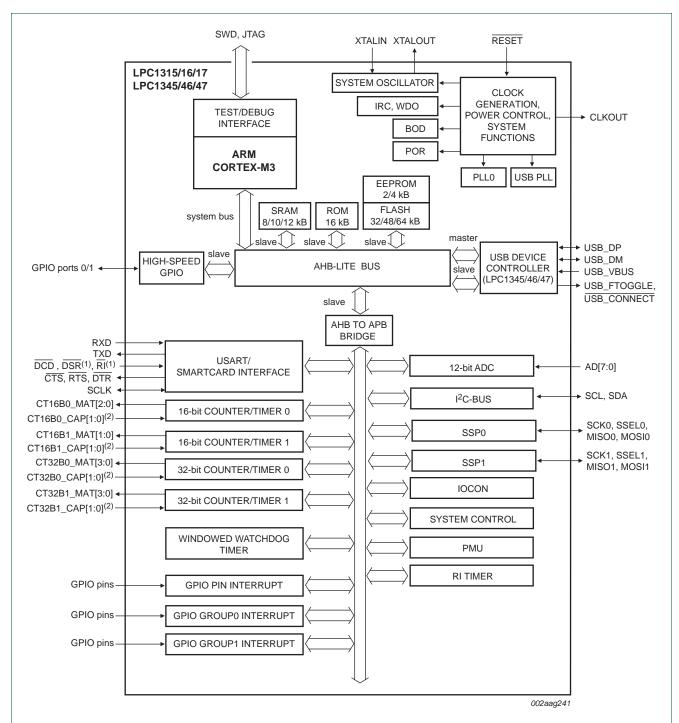

Chapter 1: LPC1315/16/17/45/46/47 Introductory information

Table 2. Ordering options

Type number	Flash [kB]	SRAM [kB]		EEPROM [kB]	USB device	SSP	I2C/ FM+	ADC channels	GPIO pins	
		SRAM0	USB SRAM	SRAM1						
LPC1345FHN33	32	8	2	-	2	yes	2	1	8	26
LPC1345FBD48	32	8	2	-	2	yes	2	1	8	40
LPC1346FHN33	48	8	2	-	4	yes	2	1	8	26
LPC1346FBD48	48	8	2	-	4	yes	2	1	8	40
LPC1347FHN33	64	8	2	2	4	yes	2	1	8	26
LPC1347FBD48	64	8	2	2	4	yes	2	1	8	40
LPC1347FBD64	64	8	2	2	4	yes	2	1	8	51
LPC1315FHN33	32	8	-	-	2	no	2	1	8	28
LPC1315FBD48	32	8	-	-	2	no	2	1	8	40
LPC1316FHN33	48	8	-	-	4	no	2	1	8	28
LPC1316FBD48	48	8	-	-	4	no	2	1	8	40
LPC1317FHN33	64	8	-	2	4	no	2	1	8	28
LPC1317FBD48	64	8	-	2	4	no	2	1	8	40
LPC1317FBD64	64	8	-	2	4	no	2	1	8	51

Chapter 1: LPC1315/16/17/45/46/47 Introductory information

1.4 Block diagram

- (1) Available on LQFP48 and LQFP64 packages only.
- (2) CT16B0_CAP1, CT16B1_CAP1, CT32B1_CAP1 inputs available on LQFP64 packages only. CT32B0_CAP0 input available on LQFP48 and LQFP64 packages only.

Fig 1. Block diagram

UM10524

Chapter 2: LPC1315/16/17/45/46/47 Memory mapping

Rev. 4 — 12 March 2013

User manual

2.1 How to read this chapter

See Table 3 for the memory configuration of the LPC1315/16/17/45/46/47 parts.

Table 3. LPC1315/16/17/45/46/47 memory configuration

Type number	Flash [kB]	SRAM [kB]	SRAM [kB]		
		SRAM0	USB SRAM	SRAM1	
LPC1345FHN33	32	8	2	-	2
LPC1345FBD48	32	8	2	-	2
LPC1346FHN33	48	8	2	-	4
LPC1346FBD48	48	8	2	-	4
LPC1347FHN33	64	8	2	2	4
LPC1347FBD48	64	8	2	2	4
LPC1347FBD64	64	8	2	2	4
LPC1315FHN33	32	8	-	-	2
LPC1315FBD48	32	8	-	-	2
LPC1316FHN33	48	8	-	-	4
LPC1316FBD48	48	8	-	-	4
LPC1317FHN33	64	8	-	2	4
LPC1317FBD48	64	8	-	2	4
LPC1317FBD64	64	8	-	2	4

2.2 Memory map

The LPC1315/16/17/45/46/47 incorporates several distinct memory regions, shown in the following figures. Figure 2 shows the overall map of the entire address space from the user program viewpoint following reset.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

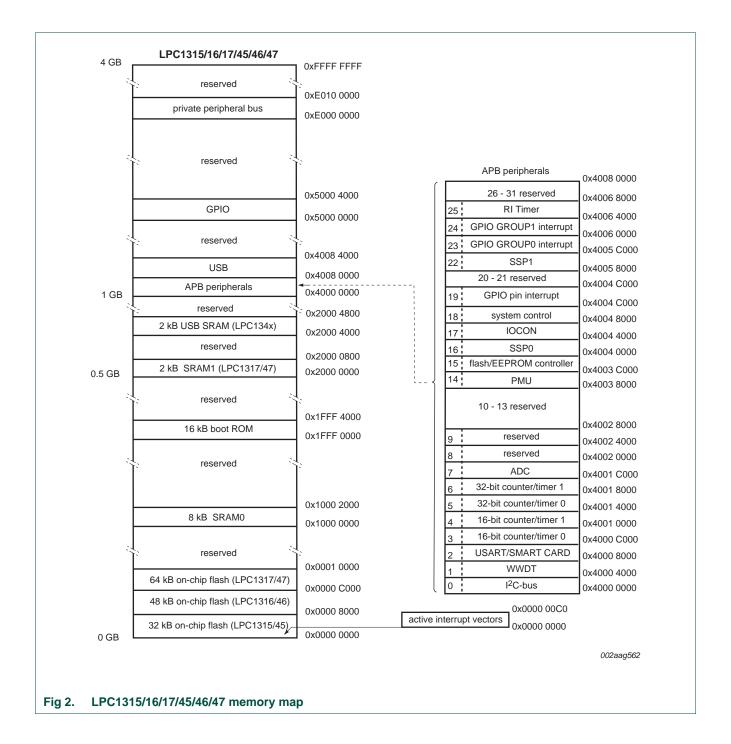
2.2.1 On-chip flash programming memory

The LPC1315/16/17/45/46/47 contain up to 128 kB on-chip flash program memory. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot loader software. Flash updates via USB are supported as well.

The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages. Individual pages of 256 byte each can be erased using the IAP erase page command.

Chapter 2: LPC1315/16/17/45/46/47 Memory mapping

2.2.2 EEPROM


The LPC1315/16/17/45/46/47 contain 2 kB or 4 kB of on-chip byte-erasable and byte-programmable EEPROM data memory. The EEPROM can be programmed using In-Application Programming (IAP) via the on-chip boot loader software.

2.2.3 **SRAM**

The LPC1315/16/17/45/46/47 contain a total of 8 kB, 10 kB, or 12 kB on-chip static RAM memory. The USB SRAM block is available on parts LPC134x only. SRAM block SRAM1 is available on parts LPC1347/17 only.

The SRAM1 and USB SRAM clocks are turned off by default. Enable the clocks in the SYSHBCLKCTRL register (Table 19).

Chapter 2: LPC1315/16/17/45/46/47 Memory mapping

10 of 416

UM10524

Chapter 3: LPC1315/16/17/45/46/47 System control block

Rev. 4 — 12 March 2013

User manual

3.1 How to read this chapter

All USB-related registers and register bits are available on parts LPC134x only. The USB PLL is available on parts LPC134x only.

Remark: The DEVICE_ID register is located at address offset 0x3F8. This register location is different from other LPC1xxx parts.

3.2 Introduction

The system configuration block controls oscillators, some aspects of the power management, and the clock generation of the LPC1315/16/17/45/46/47. Also included in this block is a register for remapping flash, SRAM, and ROM memory areas.

3.3 Pin description

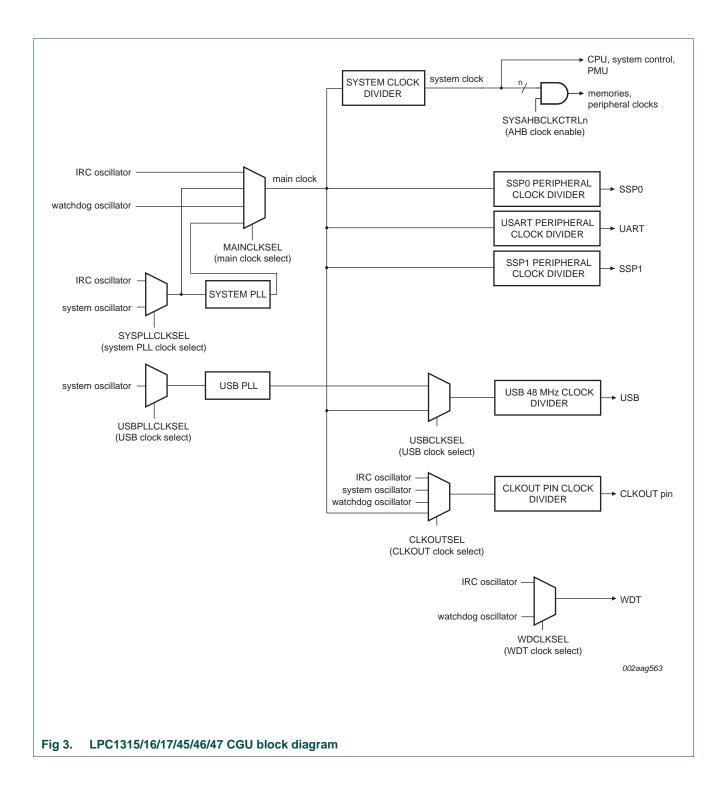
Table 4 shows pins that are associated with system control block functions.

Table 4. Pin summary

Pin name	Pin direction	Pin description
CLKOUT	0	Clockout pin
PIO0 and PIO1 pins	l	Eight pins can be selected as external interrupt pins from all available GPIO pins (see <u>Table 35</u>).

3.4 Clocking and power control

See Figure 3 for an overview of the LPC1315/16/17/45/46/47 Clock Generation Unit (CGU).


The LPC1315/16/17/45/46/47 include three independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application.

Following reset, the LPC1315/16/17/45/46/47 will operate from the Internal RC oscillator until switched by software. This allows systems to operate without an external crystal and the bootloader code to operate at a known frequency.

The SYSAHBCLKCTRL register gates the system clock to the various peripherals and memories. USART and SSP have individual clock dividers to derive peripheral clocks from the main clock.

The main clock, and the clock outputs from the IRC, the system oscillator, and the watchdog oscillator can be observed directly on the CLKOUT pin.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.5 Register description

Table 5. Register overview: SYSCON (base address: 0x4004 8000)

Name	Access	Address offset	Description	Reset value	Reference
SYSMEMREMAP	R/W	0x000	System memory remap	0	Table 6
PRESETCTRL	R/W	0x004	Peripheral reset control	0	Table 7
SYSPLLCTRL	R/W	0x008	System PLL control	0	Table 8
SYSPLLSTAT	R	0x00C	System PLL status	0	Table 9
USBPLLCTRL	R/W	0x010	USB PLL control	0	Table 10
USBPLLSTAT	R	0x014	USB PLL status	0	Table 11
SYSOSCCTRL	R/W	0x020	System oscillator control	0x000	Table 12
WDTOSCCTRL	R/W	0x024	Watchdog oscillator control	0x0A0	Table 13
-	-	0x028	Reserved	-	-
SYSRSTSTAT	R/W	0x030	System reset status register	0	Table 14
SYSPLLCLKSEL	R/W	0x040	System PLL clock source select	0	Table 15
-	-	0x044	Reserved	-	-
USBPLLCLKSEL	R/W	0x048	USB PLL clock source select	0	Table 16
-	-	0x04C	Reserved	-	
MAINCLKSEL	R/W	0x070	Main clock source select	0	Table 17
-	-	0x074	Reserved	-	
SYSAHBCLKDIV	R/W	0x078	System clock divider	0x001	Table 18
SYSAHBCLKCTRL	R/W	0x080	System clock control		Table 19
SSP0CLKDIV	R/W	0x094	SSP0 clock divider	0	Table 20
UARTCLKDIV	R/W	0x098	UART clock divider	0	Table 21
SSP1CLKDIV	R/W	0x09C	SSP1 clock divider	0x0000	Table 22
TRACECLKDIV	R/W	0x0AC	ARM trace clock divider	0x0000 0000	Table 23
SYSTICKCLKDIV	R/W	0x0B0	SYSTICK clock divider	0x0000 0000	Table 24
USBCLKSEL	R/W	0x0C0	USB clock source select	0	Table 25
-	-	0x0C4	Reserved	-	
USBCLKDIV	R/W	0x0C8	USB clock source divider	0	Table 26
CLKOUTSEL	R/W	0x0E0	CLKOUT clock source select	0	Table 27
-	-	0x0E4	Reserved	-	
CLKOUTDIV	R/W	0x0E8	CLKOUT clock divider	0	Table 28
PIOPORCAP0	R	0x100	POR captured PIO status 0	user dependent	Table 29
PIOPORCAP1	R	0x104	POR captured PIO status 1	user dependent	Table 30
BODCTRL	R/W	0x150	Brown-Out Detect	0	Table 31
SYSTCKCAL	R/W	0x154	System tick counter calibration		Table 32
IRQLATENCY	R/W	0x170	IQR delay. Allows trade-off between interrupt latency and determinism.	0x0000 0010	Table 33

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 5. Register overview: SYSCON (base address: 0x4004 8000)

Name	Access	Address offset	Description	Reset value	Reference
NMISRC	R/W	0x174	NMI Source Control	0	Table 34
PINTSEL0	R/W	0x178	GPIO Pin Interrupt Select register 0	0	Table 35
PINTSEL1	R/W	0x17C	GPIO Pin Interrupt Select register 1	0	Table 35
PINTSEL2	R/W	0x180	GPIO Pin Interrupt Select register 2	0	Table 35
PINTSEL3	R/W	0x184	GPIO Pin Interrupt Select register 3	0	Table 35
PINTSEL4	R/W	0x188	GPIO Pin Interrupt Select register 4	0	Table 35
PINTSEL5	R/W	0x18C	GPIO Pin Interrupt Select register 5	0	Table 35
PINTSEL6	R/W	0x190	GPIO Pin Interrupt Select register 6	0	Table 35
PINTSEL7	R/W	0x194	GPIO Pin Interrupt Select register 7	0	Table 35
USBCLKCTRL	R/W	0x198	USB clock control		Table 36
USBCLKST	R	0x19C	USB clock status		Table 37
STARTERP0	R/W	0x204	Start logic 0 interrupt wake-up enable register 0	0	Table 38
STARTERP1	R/W	0x214	Start logic 1 interrupt wake-up enable register 1	0	Table 39
PDSLEEPCFG	R/W	0x230	Power-down states in deep-sleep mode		Table 40
PDAWAKECFG	R/W	0x234	Power-down states for wake-up from deep-sleep		Table 41
PDRUNCFG	R/W	0x238	Power configuration register		Table 42
DEVICE_ID	R	0x3F8	Device ID	part dependent	Table 43

3.5.1 System memory remap register (SYSMEMREMAP)

The system memory remap register selects whether the exception vectors are read from boot ROM, flash, or SRAM. By default, the flash memory is mapped to address 0x0000 0000. When the MAP bits in the SYSMEMREMAP register are set to 0x0 or 0x1, the boot ROM or RAM respectively are mapped to the bottom 512 bytes of the memory map (addresses 0x0000 0000 to 0x0000 0200).

Table 6. System memory remap (SYSMEMREMAP, address 0x4004 8000) bit description

Bit	Symbol	Value	Description	Reset value	
1:0	MAP		System memory remap. Value 0x3 is reserved.	0x2	
		0x0	Boot Loader Mode. Interrupt vectors are re-mapped to Boot ROM.		
			0x1	User RAM Mode. Interrupt vectors are re-mapped to Static RAM.	
		0x2	User Flash Mode. Interrupt vectors are not re-mapped and reside in Flash.		
31:2	-		Reserved	-	

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.5.2 Peripheral reset control register (PRESETCTRL)

This register allows software to reset specific peripherals. A 0 in an assigned bit in this register resets the specified peripheral. A 1 negates the reset and allows peripheral operation.

Remark: Before accessing the SSP and I2C peripherals, write a 1 to this register to ensure that the reset signals to the SSP and I2C are de-asserted.

Table 7. Peripheral reset control (PRESETCTRL, address 0x4004 0004) bit description

Bit	Symbol	Value	Description	Reset value
0	SSP0_RST_N		SSP0 reset control	0
		0	Resets the SSP0 peripheral.	
		1	SSP0 reset de-asserted.	
1	I2C_RST_N		I2C reset control	0
		0	Resets the I2C peripheral.	
		1	I2C reset de-asserted.	
2	SSP1_RST_N		SSP1 reset control	0
		0	Resets the SSP0 peripheral.	
		1	SSP1 reset de-asserted.	
3	-		Reserved	-
31:4	-		Reserved	-

3.5.3 System PLL control register (SYSPLLCTRL)

This register connects and enables the system PLL and configures the PLL multiplier and divider values. The PLL accepts an input frequency from 10 MHz to 25 MHz from various clock sources. The input frequency is multiplied to a higher frequency and then divided down to provide the actual clock used by the CPU, peripherals, and memories. The PLL can produce a clock up to the maximum allowed for the CPU.

Table 8. System PLL control (SYSPLLCTRL, address 0x4004 8008) bit description

Bit	Symbol	Value	Description	Reset value	
4:0	MSEL		Feedback divider value. The division value M is the programmed MSEL value \pm 1. 00000: Division ratio M = 1 to 11111: Division ratio M = 32	0	
6:5	PSEL		Post divider ratio P. The division ratio is 2 x P.	0	
			0x0	P = 1	
			0x1	P = 2	
		0x2	P = 4		
		0x3	P = 8		
31:7	-		Reserved. Do not write ones to reserved bits.	-	

3.5.4 System PLL status register (SYSPLLSTAT)

This register is a Read-only register and supplies the PLL lock status (see Section 3.10.1).

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 9. System PLL status (SYSPLLSTAT, address 0x4004 800C) bit description

Bit	Symbol	Value	Description	Reset value
0	LOCK		PLL lock status	0
		0	PLL not locked	
		1	PLL locked	
31:1	-		Reserved	-

3.5.5 USB PLL control register (USBPLLCTRL)

The USB PLL is identical to the system PLL and is used to provide a dedicated clock to the USB block if available (see Section 3.1).

This register connects and enables the USB PLL and configures the PLL multiplier and divider values. The PLL accepts an input frequency from 10 MHz to 25 MHz from various clock sources. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock 48 MHz clock used by the USB subsystem.

Table 10. USB PLL control (USBPLLCTRL, address 0x4004 8010) bit description

Bit	Symbol	Value	Description	Reset value
4:0	MSEL		Feedback divider value. The division value M is the programmed MSEL value $+$ 1. 00000: Division ratio M = 1 to 11111: Division ratio M = 32	0x000
6:5	PSEL		Post divider ratio P. The division ratio is 2 x P.	0x00
		0x0	P = 1	
		0x1	P = 2	
		0x2	P = 4	
		0x3	P = 8	
31:7	-		Reserved. Do not write ones to reserved bits.	0x00

3.5.6 USB PLL status register (USBPLLSTAT)

This register is a Read-only register and supplies the PLL lock status (see Section 3.10.1).

Table 11. USB PLL status (USBPLLSTAT, address 0x4004 8014) bit description

Bit	Symbol	Value	Description	Reset value
0	LOCK		PLL lock status	0x0
		0	PLL not locked	
		1	PLL locked	
31:1	-		Reserved	0x00

3.5.7 System oscillator control register (SYSOSCCTRL)

This register configures the frequency range for the system oscillator.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Bit **Symbol** Value Description Reset value **BYPASS** 0 Bypass system oscillator 0x0 0 Oscillator is not bypassed. 1 Bypass enabled. PLL input (sys_osc_clk) is fed directly from the XTALIN pin bypassing the oscillator. Use this mode when using an external clock source instead of the crystal oscillator. 1 **FREQRANGE** Determines frequency range for Low-power oscillator. 0x0 0 1 - 20 MHz frequency range.

15 - 25 MHz frequency range

Reserved

Table 12. System oscillator control (SYSOSCCTRL, address 0x4004 8020) bit description

3.5.8 Watchdog oscillator control register

31:2

1

This register configures the watchdog oscillator. The oscillator consists of an analog and a digital part. The analog part contains the oscillator function and generates an analog clock (Fclkana). With the digital part, the analog output clock (Fclkana) can be divided to the required output clock frequency wdt_osc_clk. The analog output frequency (Fclkana) can be adjusted with the FREQSEL bits between 600 kHz and 4.6 MHz. With the digital part Fclkana will be divided (divider ratios = 2, 4,...,64) to wdt_osc_clk using the DIVSEL bits.

The output clock frequency of the watchdog oscillator can be calculated as $wdt_osc_clk = Fclkana/(2 \times (1 + DIVSEL)) = 9.3 kHz$ to 2.3 MHz (nominal values).

Remark: Any setting of the FREQSEL bits will yield a Fclkana value within $\pm 40\%$ of the listed frequency value. The watchdog oscillator is the clock source with the lowest power consumption. If accurate timing is required, use the IRC or system oscillator.

Remark: The frequency of the watchdog oscillator is undefined after reset. The watchdog oscillator frequency must be programmed by writing to the WDTOSCCTRL register before using the watchdog oscillator.

Table 13. Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description

Bit	Symbol	Value	Description	Reset value
4:0	DIVSEL		Select divider for Fclkana. wdt_osc_clk = Fclkana/ $(2 \times (1 + DIVSEL))$ 00000: $2 \times (1 + DIVSEL) = 2$ 00001: $2 \times (1 + DIVSEL) = 4$ to 11111: $2 \times (1 + DIVSEL) = 64$	0

0x00

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 13. Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description

	_			
Bit	Symbol	Value	Description	Reset value
8:5 FREQSEL	FREQSEL		Select watchdog oscillator analog output frequency (Fclkana).	0x00
	0x1	0.6 MHz		
		0x2	1.05 MHz	
		0x3	1.4 MHz	
		0x4	1.75 MHz	
		0x5	2.1 MHz	
		0x6	2.4 MHz	
		0x7	2.7 MHz	
		0x8	3.0 MHz	
		0x9	3.25 MHz	
		0xA	3.5 MHz	
		0xB	3.75 MHz	
		0xC	4.0 MHz	
		0xD	4.2 MHz	
		0xE	4.4 MHz	
		0xF	4.6 MHz	
31:9	-	-	Reserved	0x00

3.5.9 System reset status register (SYSRSTSTAT)

If another reset signal - for example the external RESET pin - remains asserted after the POR signal is negated, then its bit is set to detected.

Table 14. System reset status register (SYSRSTSTAT, address 0x4004 8030) bit description

Bit	Symbol	Value	Description	Reset value	
0	POR		POR reset status	0	
		0	No POR detected		
		1	POR detected		
1	EXTRST		Status of the external RESET pin	0	
		0	No reset event detected		
		1	Reset detected		
2	WDT		Status of the Watchdog reset	0	
		0	No WDT reset detected		
		1	WDT reset detected		
3	BOD		Status of the Brown-out detect reset	0	
		0	No BOD reset detected		
		1	BOD reset detected		

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 14. System reset status register (SYSRSTSTAT, address 0x4004 8030) bit description

Bit	Symbol	Value	Description	Reset value
4	SYSRST		Status of the software system reset	0
		0	No System reset detected	
		1	System reset detected	
31:5	-		Reserved	-

3.5.10 System PLL clock source select register (SYSPLLCLKSEL)

This register selects the clock source for the system PLL.

Table 15. System PLL clock source select (SYSPLLCLKSEL, address 0x4004 8040) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		System PLL clock source	0
		0x0	IRC	
		0x1	Crystal Oscillator (SYSOSC)	
		0x2	Reserved	
		0x3	Reserved	
31:2	-		Reserved	-

3.5.11 USB PLL clock source select register (USBPLLCLKSEL)

This register selects the clock source for the dedicated USB PLL.

Remark: When switching clock sources, both clocks must be running.

Table 16. USB PLL clock source select (USBPLLCLKSEL, address 0x4004 8048) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		USB PLL clock source	0x00
		0x0	IRC. The USB PLL clock source must be switched to system oscillator for correct USB operation.	
		0x1	System oscillator	
		0x2	Reserved	
		0x3	Reserved	
31:2	-		Reserved	0x00

3.5.12 Main clock source select register (MAINCLKSEL)

This register selects the main system clock, which can be the system PLL (sys_pllclkout), or the watchdog oscillator, or the IRC oscillator. The main system clock clocks the core, the peripherals, and the memories.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 17. Main clock source select (MAINCLKSEL, address 0x4004 8070) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		Clock source for main clock	0
		0x0	IRC Oscillator	
		0x1	PLL input	
		0x2	Watchdog oscillator	
		0x3	PLL output	
31:2	-		Reserved	-

3.5.13 System clock divider register (SYSAHBCLKDIV)

This register controls how the main clock is divided to provide the system clock to the core, memories, and the peripherals. The system clock can be shut down completely by setting the DIV field to zero.

Table 18. System clock divider (SYSAHBCLKDIV, address 0x4004 8078) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	System AHB clock divider values 0: System clock disabled. 1: Divide by 1. to 255: Divide by 255.	0x01
31:8	-	Reserved	-

3.5.14 System clock control register (SYSAHBCLKCTRL)

The SYSAHBCLKCTRL register enables the clocks to individual system and peripheral blocks. The system clock (bit 0) provides the clock for the AHB, the APB bridge, the ARM Cortex-M3, the Syscon block, and the PMU. This clock cannot be disabled.

Table 19. System clock control (SYSAHBCLKCTRL, address 0x4004 8080) bit description

Bit	Symbol	Value	Description	Reset value	
0	SYS		Enables the clock for the AHB, the APB bridge, the Cortex-M3 FCLK and HCLK, SysCon, and the PMU. This bit is read only and always reads as 1.	1	
	0	Reserved			
	1	Enable			
1 ROM		Enables clock for ROM.	1		
	0 Disable	Disable			
		1	Enable		
2	RAM0	RAM0		Enables clock for SRAM0.	1
		0	Disable		
		1	Enable		
3 FLASHRE	FLASHREG		Enables clock for flash register interface.	1	
		0	Disabled		
		1	Enabled		

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 19. System clock control (SYSAHBCLKCTRL, address 0x4004 8080) bit description

Bit	Symbol	Value	Description	Reset value
4	FLASHARRAY		Enables clock for flash array access.	1
		0	Disabled	
		1	Enabled	
5	I2C		Enables clock for I2C.	1
		0	Disable	
		1	Enable	
6	GPIO		Enables clock for GPIO port registers.	0
		0	Disable	
		1	Enable	
7	CT16B0		Enables clock for 16-bit counter/timer 0.	0
		0	Disable	
	1	Enable		
8	CT16B1		Enables clock for 16-bit counter/timer 1.	0
	0	Disable		
	1	Enable		
9 CT32B0	CT32B0		Enables clock for 32-bit counter/timer 0.	0
	0	Disable		
		1	Enable	
10	CT32B1		Enables clock for 32-bit counter/timer 1.	0
	0	Disable		
		1	Enable	
11	SSP0		Enables clock for SSP0.	0
		0	Disable	
		1	Enable	
12	USART		Enables clock for UART.	0
		0	Disable	
		1	Enable	
13	ADC		Enables clock for ADC.	0
		0	Disable	
		1	Enable	
14	USB		Enables clock to the USB register interface.	0
		0	Disable	
		1	Enable	
15	WWDT		Enables clock for WWDT.	0
		0	Disable	
		1	Enable	
16	IOCON		Enables clock for I/O configuration block.	0
		0	Disable	
		1	Enable	
17	-		Reserved	0

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 19. System clock control (SYSAHBCLKCTRL, address 0x4004 8080) bit description

Bit	Symbol	Value	Description	Reset value
18	SSP1		Enables clock for SSP1.	0
		0	Disable	
		1	Enable	
19	PINT	Enables clock to GPIO Pin interrupts register interface.		0
		0	Disable	
		1	Enable	
22:20	-		Reserved	-
23 GROUP0INT			Enables clock to GPIO GROUP0 interrupt register interface.	0
		0	Disable	
		1	Enable	
24	GROUP1INT		Enables clock to GPIO GROUP1 interrupt register interface.	0
		0	Disable	
		1	Enable	
25	-		Reserved	-
26	RAM1		Enables clock for SRAM1 located at 0x2000 0000 to 0x2000 0800.	1
		0	Disable	
		1	Enable	
27	USBSRAM		Enables USB SRAM block located at 0x2000 4000 to 0x2000 4800.	0
		0	Disable	
		1	Enable	
31:28	-		Reserved	-

3.5.15 SSP0 clock divider register (SSP0CLKDIV)

This register configures the SSP0 peripheral clock SPI0_PCLK. SPI0_PCLK can be shut down by setting the DIV field to zero.

Table 20. SSP0 clock divider (SSP0CLKDIV, address 0x4004 8094) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	SPI0_PCLK clock divider values. 0: System clock disabled. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.16 UART clock divider register (UARTCLKDIV)

This register configures the USART peripheral clock UART_PCLK. The UART_PCLK can be shut down by setting the DIV field to zero.

22 of 416

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 21. UART clock divider (UARTCLKDIV, address 0x4004 8098) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	UART_PCLK clock divider values 0: Disable UART_PCLK. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.17 SSP1 clock divider register (SSP1CLKDIV)

This register configures the SSP1 peripheral clock SSP1_PCLK. The SSP1_PCLK can be shut down by setting the DIV bits to 0x0.

Table 22. SSP1 clock divider (SSP1CLKDIV, address 0x4004 809C) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	SSP1_PCLK clock divider values 0: Disable SSP1_PCLK. 1: Divide by 1. to 255: Divide by 255.	0x00
31:8	-	Reserved	0x00

3.5.18 ARM trace clock divider register (TRACECLKDIV)

This register configures the ARM trace clock. The ARM trace clock can be shut down by setting the DIV field to zero.

Table 23. ARM trace clock divider (TRACECLKDIV, address 0x4004 80AC) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	ARM trace clock divider values. 0: Disable TRACE_CLK. 1: Divide by 1. to 255: Divide by 255.	0x00
31:8	-	Reserved	0x00

3.5.19 SYSTICK clock divider register (SYSTICKCLKDIV)

This register configures the SYSTICK peripheral clock. The SYSTICK timer clock can be shut down by setting the DIV field to zero.

Table 24. SYSTICK clock divider (SYSTICKCLKDIV, address 0x4004 80B0) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	SYSTICK clock divider values. 0: Disable SYSTICK timer clock. 1: Divide by 1. to 255: Divide by 255.	0x00
31:8	-	Reserved	0x00

User manual

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.5.20 USB clock source select register (USBCLKSEL)

This register selects the clock source for the USB usb_clk. The clock source can be either the USB PLL output or the main clock, and the clock can be further divided by the USBCLKDIV register (see Table 26) to obtain a 48 MHz clock.

Remark: When switching clock sources, both clocks must be running before the clock source is updated. The default clock source for the USB controller is the USB PLL output. For switching the clock source to the main clock, ensure that the system PLL and the USB PLL are running to make both clock sources available for switching. The main clock must be set to 48 MHz and configured with the main PLL and the system oscillator. After the switch, the USB PLL can be turned off.

Table 25. USB clock source select (USBCLKSEL, address 0x4004 80C0) bit description

Bit	Symbol	Value	Description	Reset value
1:0 SEL	SEL	SEL	USB clock source. Values 0x2 and 0x3 are reserved.	0x00
		0x0	USB PLL out	
		0x1	Main clock	
31:2	-		Reserved	0x00

3.5.21 USB clock source divider register (USBCLKDIV)

This register allows the USB clock usb_clk to be divided to 48 MHz. The usb_clk can be shut down by setting the DIV bits to 0x0.

Table 26. USB clock source divider (USBCLKDIV, address 0x4004 80C8) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	USB clock divider values 0: Disable USB clock. 1: Divide by 1. to 255: Divide by 255.	0x01
31:8	-	Reserved	0x00

3.5.22 CLKOUT clock source select register (CLKOUTSEL)

This register selects the signal visible on the CLKOUT pin. Any oscillator or the main clock can be selected.

To change the clock source visible on the CLKOUT pin, first enable the new clock source with the currently selected clock source still running, change the clock source using the SEL bit, and then remove the current clock source.

If the clock source selected on the CLKOUT pin is powered down in the PDRUNCFG or PDSLEEPCFG registers, this same clock source must be re-enabled before another clock source can be selected through this register.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 27. CLKOUT clock source select (CLKOUTSEL, address 0x4004 80E0) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		CLKOUT clock source	0
		0x0	IRC oscillator	
		0x1	Crystal oscillator (SYSOSC)	
		0x2	Watchdog oscillator	
		0x3	Main clock	
31:2	-		Reserved	0

3.5.23 CLKOUT clock divider register (CLKOUTDIV)

This register determines the divider value for the signal on the CLKOUT pin.

Table 28. CLKOUT clock divider (CLKOUTDIV, address 0x4004 80E8) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	CLKOUT clock divider values 0: Disable CLKOUT clock divider. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.24 POR captured PIO status 0 register (PIOPORCAP0)

The PIOPORCAP0 register captures the state of GPIO port 0 at power-on-reset. Each bit represents the reset state of one GPIO pin. This register is a read-only status register.

Table 29. POR captured PIO status 0 (PIOPORCAP0, address 0x4004 8100) bit description

Bit	Symbol	Description	Reset value
23:0	PIOSTAT	State of P0_23 through P0_0 at power-on reset	Implementation dependent
31:24	-	Reserved	-

3.5.25 POR captured PIO status 1 register (PIOPORCAP1)

The PIOPORCAP1 register captures the state of GPIO port 1 at power-on-reset. Each bit represents the reset state of one GPIO pin. This register is a read-only status register.

Table 30. POR captured PIO status 1 (PIOPORCAP1, address 0x4004 8104) bit description

Bit	Symbol	Description	Reset value
31:0	PIOSTAT	State of P1_31 through P1_0 at power-on reset	Implementation dependent

3.5.26 Brown-Out Detect register (BODCTRL)

The BOD control register selects up to four separate threshold values for sending a BOD interrupt to the NVIC and for forced reset. Reset and interrupt threshold values listed in Table 31 are typical values.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Both the BOD interrupt and the BOD reset, depending on the value of bit BODRSTENA in this register, can wake-up the chip from Sleep, Deep-sleep, and Power-down modes. See Section 3.9.

Table 31. Brown-Out Detect (BODCTRL, address 0x4004 8150) bit description

Bit	Symbol	Value	Description	Reset value	
1:0	BODRSTLEV		BOD reset level	00	
		0x0	Level 0: The reset assertion threshold voltage is 1.46 V; the reset de-assertion threshold voltage is 1.63 V.		
		0x1	Level 1: The reset assertion threshold voltage is 2.06 V; the reset de-assertion threshold voltage is 2.15 V.		
		0x2	Level 2: The reset assertion threshold voltage is 2.35 V; the reset de-assertion threshold voltage is 2.43 V.		
		0x3	Level 3: The reset assertion threshold voltage is 2.63 V; the reset de-assertion threshold voltage is 2.71 V.		
3:2	BODINTVAL		BOD interrupt level	00	
		0x0	Reserved.		
		0x1	Level 1:The interrupt assertion threshold voltage is 2.22 V; the interrupt de-assertion threshold voltage is 2.35 V.		
		0x2	Level 2: The interrupt assertion threshold voltage is 2.52 V; the interrupt de-assertion threshold voltage is 2.66 V.		
		0x3	Level 3: The interrupt assertion threshold voltage is 2.80 V; the interrupt de-assertion threshold voltage is 2.90 V.		
4	BODRSTENA		BOD reset enable	0	
		0	Disable reset function.		
		1	Enable reset function.		
31:5	-		Reserved	0x00	

3.5.27 System tick counter calibration register (SYSTCKCAL)

This register determines the value of the SYST_CALIB register (see Table 323).

Table 32. System tick counter calibration (SYSTCKCAL, address 0x4004 8154) bit description

Bit	Symbol	Description	Reset value
25:0	CAL	System tick timer calibration value	
31:26	-	Reserved	-

3.5.28 IQR delay register (IRQLATENCY)

The IRQLATENCY register is an 8-bit register which specifies the minimum number of cycles (0-255) permitted for the system to respond to an interrupt request. The intent of this register is to allow the user to select a trade-off between interrupt response time and determinism.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Setting this parameter to a very low value (e.g. zero) will guarantee the best possible interrupt performance but will also introduce a significant degree of uncertainty and jitter. Requiring the system to always take a larger number of cycles (whether it needs it or not) will reduce the amount of uncertainty but may not necessarily eliminate it.

Theoretically, the ARM Cortex-M3 core should always be able to service an interrupt request within 15 cycles. System factors external to the cpu, however, bus latencies, peripheral response times, etc. can increase the time required to complete a previous instruction before an interrupt can be serviced. Therefore, accurately specifying a minimum number of cycles that will ensure determinism will depend on the application.

The default setting for this register is 0x010.

Table 33. IQR delay (IRQLATENCY, address 0x4004 8170) bit description

Bit	Symbol	Description	Reset value
7:0	LATENCY	8-bit latency value	0x010
31:8	-	Reserved	-

3.5.29 NMI Source Control register (NMISRC)

The NMI source selection register selects a peripheral interrupts as source for the NMI interrupt of the ARM Cortex-M3 core. For a list of all peripheral interrupts and their IRQ numbers see <u>Table 53</u>. For a description of the NMI functionality, see *ARM Cortex-M3 technical reference manual*.

Remark: When you want to change the interrupt source for the NMI, you must first disable the NMI source by setting bit 31 in this register to 0. Then change the source by updating the IRQN bits and re-enable the NMI source by setting bit 31 to 1.

Table 34. NMI Source Control (NMISRC, address 0x4004 8174) bit description

Bit	Symbol	Description	Reset value
4:0	IRQN	The IRQ number of the interrupt that acts as the Non-Maskable Interrupt (NMI) if bit 31 is 1. See <u>Table 53</u> for the list of interrupt sources and their IRQ numbers.	0
30:5	-	Reserved	-
31	NMIEN	Write a 1 to this bit to enable the Non-Maskable Interrupt (NMI) source selected by bits 4:0.	0

Remark: If the NMISRC register is used to select an interrupt as the source of Non-Maskable interrupts, and the selected interrupt is enabled, one interrupt request can result in both a Non-Maskable and a normal interrupt. This can be avoided by disabling the normal interrupt in the NVIC, as described in the *ARM Cortex-M3 technical reference manual*.

3.5.30 GPIO Pin Interrupt Select register (PINTSEL0 to 7)

Each of these 8 registers selects one GPIO pin from all GPIO pins on both ports as the source of a pin interrupt. To select a pin for any of the eight pin interrupts, write the pin number as 0 to 23 for pins PIO0_0 to PIO0_23 and 24 to 55 for pins PIO1_0 to PIO1_31

Chapter 3: LPC1315/16/17/45/46/47 System control block

to the INTPIN bits. For example, setting INTPIN to 0x5 in PINTSEL0 selects pin PIO0_5 for pin interrupt 0. Setting INTPIN in PINTSEL7 to 0x32 (pin 50) selects pin PIO1_26 for pin interrupt 7.

Each of the 8 pin interrupts must be enabled in the NVIC using interrupt slots # 0 to 7 (see Table 53).

To enable each pin interrupt and configure its edge or level sensitivity, use the GPIO pin interrupt registers (see Section 9.4.1).

Table 35. GPIO Pin Interrupt Select register (PINTSEL0 to 7, address 0x4004 8178 (PINTSEL0) to 0x4004 8194 (PINTSEL7)) bit description

	` `		, , ,		
Bit	Symbol	Value	Description	Reset value	
4:0	INTPIN		Pin number within the port selected by the PORTSEL bit in this register.	0	
5	PORTSEL		Select the port for the pin number to be selected in the INTPIN bits of this register.	0	
		0	Port 0		
		1	Port 1		
31:6	-		Reserved	-	

3.5.31 USB clock control register (USBCLKCTRL)

This register controls the use of the USB need_clock signal and the polarity of the need_clock signal for triggering the USB wake-up interrupt. For details of how to use the USB need_clock signal for waking up the part from Deep-sleep or Power-down modes, see Section 10.7.6.

Table 36. USB clock control (USBCLKCTRL, address 0x4004 8198) bit description

Bit	Symbol	Value	Description	Reset value	
0	AP_CLK		USB need_clock signal control	0x0	
		0	Under hardware control.		
		1	Forced HIGH.		
1	POL_CLK		USB need_clock polarity for triggering the USB wake-up interrupt	0x0	
		0	Falling edge of the USB need_clock triggers the USB wake-up (default).		
		1	Rising edge of the USB need_clock triggers the USB wake-up.		
31:2	-		Reserved	0x00	

3.5.32 USB clock status register (USBCLKST)

This register is read-only and returns the status of the USB need_clock signal. For details of how to use the USB need_clock signal for waking up the part from Deep-sleep or Power-down modes, see Section 10.7.6.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 37. USB clock status (USBCLKST, address 0x4004 819C) bit description

Bit	Symbol	Value	Description	Reset value
0	NEED_CLKST		USB need_clock signal status	0x0
		0	LOW	
		1	HIGH	
31:1	-		Reserved	0x00

3.5.33 Start logic 0 interrupt wake-up enable register 0 (STARTERP0)

The STARTERP0 register enables the individual GPIO pins selected through the Pin interrupt select registers (see <u>Table 35</u>) for wake-up. The pin interrupts must also be enabled in the NVIC (interrupts 0 to 8 in <u>Table 53</u>).

Table 38. Start logic 0 interrupt wake-up enable register 0 (STARTERP0, address 0x4004 8204) bit description

Bit	Symbol	Value	Description	Reset value
0	PINT0		Pin interrupt 0 wake-up	0
		0	Disabled	
		1	Enabled	
1	PINT1		Pin interrupt 1 wake-up	0
		0	Disabled	
		1	Enabled	
2	PINT2		Pin interrupt 2 wake-up	0
		0	Disabled	
		1	Enabled	
3	PINT3		Pin interrupt 3 wake-up	0
		0	Disabled	
		1	Enabled	
4	PINT4		Pin interrupt 4 wake-up	0
		0	Disabled	
		1	Enabled	
5	PINT5		Pin interrupt 5 wake-up	0
		0	Disabled	
		1	Enabled	
6	PINT6		Pin interrupt 6 wake-up	0
		0	Disabled	
		1	Enabled	
7	PINT7		Pin interrupt 7 wake-up	0
		0	Disabled	
		1	Enabled	
31:8	-		Reserved	-

29 of 416

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.5.34 Start logic 1 interrupt wake-up enable register (STARTERP1)

This register selects which interrupts will wake the part from deep-sleep and power-down modes. Interrupts selected by a one in these registers must be enabled in the NVIC (Table 53).

The STARTERP1 register enables the WWDT interrupt, the BOD interrupt, the USB wake-up interrupt and the two GPIO group interrupts for wake-up.

Table 39. Start logic 1 interrupt wake-up enable register (STARTERP1, address 0x4004 8214) bit description

Bit	Symbol	Value	Description	Reset value
11:0			Reserved.	-
12	WWDTINT		WWDT interrupt wake-up	0
		0	Disabled	
		1	Enabled	
13	BODINT		Brown Out Detect (BOD) interrupt wake-up	0
		0	Disabled	
		1	Enabled	
18:14	-		Reserved	-
19	USB_WAKEUP		USB need_clock signal wake-up	0
		0	Disabled	
		1	Enabled	
20	GPIOINT0		GPIO GROUP0 interrupt wake-up	0
		0	Disabled	
		1	Enabled	
21	GPIOINT1		GPIO GROUP1 interrupt wake-up	0
		0	Disabled	
		1	Enabled	
31:22			Reserved.	-

3.5.35 Deep-sleep mode configuration register (PDSLEEPCFG)

The bits in this register (BOD_PD and WDTOSC_OD) can be programmed to control aspects of Deep-sleep and Power-down modes. The bits are loaded into corresponding bits of the PDRUNCFG register when Deep-sleep mode or Power-down mode is entered.

Remark: Hardware forces the analog blocks to be powered down in Deep-sleep and Power-down modes according to the power configuration described in <u>Section 3.9.4.1</u> and <u>Section 3.9.5.1</u>. An exception are the exception of BOD and watchdog oscillator, which can be configured to remain running through this register. The WDTOSC_PD value written to the PDSLEEPCFG register is overwritten if the LOCK bit in the WWDT MOD register (see <u>Table 269</u>) is set. See <u>Section 15.7</u> for details.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 40. Deep-sleep mode configuration register (PDSLEEPCFG, address 0x4004 8230) bit description

Bit	Symbol	Value	Description	Reset value
2:0			Reserved.	111
3	3 BOD_PD		BOD power-down control for Deep-sleep and Power-down mode	1
		1	Powered down	
			0	Powered
6	WDTOSC_PD		Watchdog oscillator power-down control for Deep-sleep and Power-down mode	1
		1	Powered down	
		0	Powered	
31:7	-		Reserved	-

3.5.36 Wake-up configuration (PDAWAKECFG)

This register controls the power configuration of the device when waking up from Deep-sleep or Power-down mode.

Table 41. Wake-up configuration (PDAWAKECFG, address 0x4004 8234) bit description

Bit	Symbol	Value	Description	Reset value
0	IRCOUT_PD		IRC oscillator output wake-up configuration	0
		1	Powered down	
		0	Powered	
1	IRC_PD		IRC oscillator power-down wake-up configuration	0
		1	Powered down	
		0	Powered	
2	FLASH_PD		Flash wake-up configuration	0
		1	Powered down	
		0	Powered	
3	BOD_PD		BOD wake-up configuration	0
		1	Powered down	
		0	Powered	
4	ADC_PD		ADC wake-up configuration	1
		1	Powered down	
		0	Powered	
5	SYSOSC_PD		Crystal oscillator wake-up configuration	1
		1	Powered down	
		0	Powered	
6	WDTOSC_PD		Watchdog oscillator wake-up configuration	1
		1	Powered down	
		0	Powered	

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 41. Wake-up configuration (PDAWAKECFG, address 0x4004 8234) bit description

Bit	Symbol	Value	Description	Reset value
7	SYSPLL_PD		System PLL wake-up configuration	1
		1	Powered down	
		0	Powered	
8	USBPLL_PD		USB PLL wake-up configuration	1
		0	Powered	
		1	Powered down	
9	-		Reserved. Always write this bit as 0.	
10	USBPAD_PD		USB transceiver wake-up configuration	1
		0	USB transceiver powered	
		1	USB transceiver powered down	
11	-		Reserved. This bit must be set to one in Run mode.	1
12	-		Reserved.	0
31:13	-		Reserved	-

3.5.37 Power configuration register (PDRUNCFG)

The PDRUNCFG register controls the power to the various analog blocks. This register can be written to at any time while the chip is running, and a write will take effect immediately with the exception of the power-down signal to the IRC.

To avoid glitches when powering down the IRC, the IRC clock is automatically switched off at a clean point. Therefore, for the IRC a delay is possible before the power-down state takes effect.

Table 42. Power configuration register (PDRUNCFG, address 0x4004 8238) bit description

Bit	Symbol	Value	Description	Reset value		
0	IRCOUT_PD		IRC oscillator output power-down	0		
		1	Powered down			
		0	Powered			
1	IRC_PD		IRC oscillator power-down	0		
			1	Powered down		
		0	Powered			
2	FLASH_PD		Flash power-down	0		
			1	1	Powered down	
		0	Powered			
3	BOD_PD	BOD_PD	BOD_PD 1		BOD power-down	0
				1	Powered down	
		0	Powered			
4	ADC_PD		ADC power-down	1		
		1	Powered down			
				0	Powered	

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 42. Power configuration register (PDRUNCFG, address 0x4004 8238) bit description

Bit	Symbol	Value	Description	Reset value	
5	SYSOSC_PD		Crystal oscillator power-down	1	
		1	Powered down		
		0	Powered		
6	WDTOSC_PD		Watchdog oscillator power-down	1	
		1	Powered down		
		0	Powered		
7	SYSPLL_PD		System PLL power-down	1	
		1	Powered down		
		0	Powered		
8	USBPLL_PD		USB PLL power-down	1	
		0	0 Powered1 Powered down		
		1			
9	-		Reserved. Always write this bit as 0.		
10	USBPAD_PD		USB transceiver power-down configuration	1	
			0 USB transceiver powered		
		1	USB transceiver powered down (suspend mode)		
11	-		Reserved. This bit must be set to one in Run mode.	1	
12	-		Reserved.	0	
15:13	-		Reserved. Always write these bits as 111.	111	
31:16	-		Reserved	-	

3.5.38 Device ID (DEVICE_ID)

This device ID register is a read-only register and contains the part ID for each part. This register is also read by the ISP/IAP commands (see <u>Table 358</u>).

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 43. Device ID (DEVICE_ID, address 0x4004 83F8) bit description

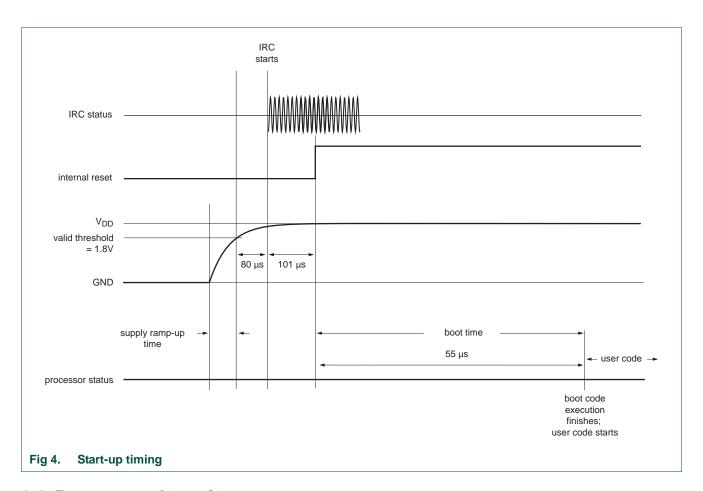
Bit	Symbol	Description	Reset value
31:0	DEVICEID	LPC1345FHN33 = 0x2801 0541 LPC1345FBD48 = 0x2801 0541 LPC1346FHN33 = 0x0801 8542 LPC1346FBD48 = 0x0801 8542 LPC1347FHN33 = 0x0802 0543 LPC1347FBD48 = 0x0802 0543 LPC1347FBD64 = 0x0802 0543	part-depen dent
		LPC1315FHN33 = 0x3A01 0523 LPC1315FBD48 = 0x3A01 0523 LPC1316FHN33 = 0x1A01 8524 LPC1316FBD48 = 0x1A01 8524 LPC1317FHN33 = 0x1A02 0525 LPC1317FBD48 = 0x1A02 0525 LPC1317FBD64 = 0x1A02 0525	

3.6 Reset

Reset has four sources on the LPC1315/16/17/45/46/47: the RESET pin, Watchdog Reset, Power-On Reset (POR), and Brown Out Detect (BOD). In addition, there is an ARM software reset.

The RESET pin is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating voltage attains a usable level, starts the IRC causing reset to remain asserted until the external Reset is de-asserted, the oscillator is running, and the flash controller has completed its initialization.

On the assertion of any reset source (Arm software reset, POR, BOD reset, External reset, and Watchdog reset), the following processes are initiated:


- 1. The IRC starts up. After the IRC-start-up time (maximum of 6 μ s on power-up), the IRC provides a stable clock output.
- 2. The boot code in the ROM starts. The boot code performs the boot tasks and may jump to the flash.
- 3. The flash is powered up. This takes approximately $100 \mu s$. Then the flash initialization sequence is started, which takes about 250 cycles.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

3.7 Start-up behavior

See <u>Figure 4</u> for the start-up timing after reset. The IRC is the default clock at Reset and provides a clean system clock shortly after the supply voltage reaches the threshold value of 1.8 V.

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.8 Brown-out detection

The LPC1315/16/17/45/46/47 includes up to four levels for monitoring the voltage on the V_{DD} pin. If this voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the NVIC or issues a reset, depending on the value of the BODRSTENA bit in the BOD control register (Table 31).

The interrupt signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC (see <u>Table 348</u>) in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register.

If the BOD interrupt is enabled in the STARTERP1 register (see <u>Table 39</u>) and in the NVIC, the BOD interrupt can wake up the chip from Deep-sleep and power-down mode.

If the BOD reset is enabled, the forced BOD reset can wake up the chip from Deep-sleep or Power-down mode.

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.9 Power management

The LPC1315/16/17/45/46/47 support a variety of power control features. In Active mode, when the chip is running, power and clocks to selected peripherals can be optimized for power consumption. In addition, there are four special modes of processor power reduction with different peripherals running: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode.

Table 44.	Peripheral	configuration i	n reduced	power modes

Peripheral	Sleep mode	Deep-sleep mode	Power-down mode	Deep power-down mode
IRC	software configurable	on	off[1]	off
IRC output	software configurable	off[1]	off <u>[1]</u>	off
Flash	software configurable	on	off	off
BOD	software configurable	software configurable	software configurable	off
PLL	software configurable	off	off	off
SysOsc	software configurable	off	off	off
WDosc/WWDT	software configurable	software configurable	software configurable	off
ADC	software configurable	off	off	off
Digital peripherals	software configurable	off	off	off
USB	software configurable	off	off	off

^[1] If bit 5, the clock source lock bit, in the WWDT MOD register is set and the IRC is selected as the WWDT clock source, the IRC and the IRC output are forced on during this mode (Table 274). This increases power consumption and may cause the part not to enter Power-down mode correctly. For details see Section 15.7.

Remark: The Debug mode is not supported in Sleep, Deep-sleep, Power-down, or Deep power-down modes.

3.9.1 Reduced power modes and WWDT lock features

The WWDT clock select lock feature influences the power consumption in any of the power modes because locking the WWDT clock source forces the selected WWDT clock source to be on, independently of the Deep-sleep and Power-down mode software configuration through the PDSLEEPCFG register. For details see <u>Section 15.7</u>.

If the part uses Deep-sleep mode with the WWDT running, the watchdog oscillator is the preferred clock source as it minimizes power consumption. If the clock source is not locked, the watchdog oscillator must be powered by using the PDSLEEPCFG register. Alternatively, the IRC may be selected and locked in WWDT MOD register, which forces the IRC on during Deep-sleep mode.

If the part uses Power-down mode with the WWDT running, the watchdog oscillator must be selected as the clock source. If the clock source is not locked, the watchdog oscillator must be powered by using the PDSLEEPCFG register. Do not lock the clock source with the IRC selected.

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.9.2 Active mode

In Active mode, the ARM Cortex-M3 core and memories are clocked by the system clock, and peripherals are clocked by the system clock or a dedicated peripheral clock.

The chip is in Active mode after reset and the default power configuration is determined by the reset values of the PDRUNCFG and SYSAHBCLKCTRL registers. The power configuration can be changed during run time.

3.9.2.1 Power configuration in Active mode

Power consumption in Active mode is determined by the following configuration choices:

- The SYSAHBCLKCTRL register controls which memories and peripherals are running (Table 19).
- The power to various analog blocks (PLL, oscillators, the ADC, the BOD circuit, and the flash block) can be controlled at any time individually through the PDRUNCFG register (Table 42).
- The clock source for the system clock can be selected from the IRC (default), the system oscillator, or the watchdog oscillator (see Figure 3 and related registers).
- The system clock frequency can be selected by the SYSPLLCTRL (Table 8) and the SYSAHBCLKDIV register (Table 18).
- Selected peripherals (USART, SSP0/1, USB, CLKOUT) use individual peripheral clocks with their own clock dividers. The peripheral clocks can be shut down through the corresponding clock divider registers (Table 20 to Table 24).

3.9.3 Sleep mode

In Sleep mode, the system clock to the ARM Cortex-M3 core is stopped, and execution of instructions is suspended until either a reset or an interrupt occurs.

Peripheral functions, if selected to be clocked in the SYSAHBCLKCTRL register, continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses. The processor state and registers, peripheral registers, and internal SRAM values are maintained, and the logic levels of the pins remain static.

3.9.3.1 Power configuration in Sleep mode

Power consumption in Sleep mode is configured by the same settings as in Active mode:

- The clock remains running.
- The system clock frequency remains the same as in Active mode, but the processor is not clocked.
- Analog and digital peripherals are selected as in Active mode.

3.9.3.2 Programming Sleep mode

The following steps must be performed to enter Sleep mode:

- 1. The PD bits in the PCON register must be set to the default value 0x0.
- 2. The SLEEPDEEP bit in the ARM Cortex-M3 SCR register must be set to zero.

UM10524

Chapter 3: LPC1315/16/17/45/46/47 System control block

3. Use the ARM Cortex-M3 Wait-For-Interrupt (WFI) instruction.

3.9.3.3 Wake-up from Sleep mode

Sleep mode is exited automatically when an interrupt enabled by the NVIC arrives at the processor or a reset occurs. After wake-up due to an interrupt, the microcontroller returns to its original power configuration defined by the contents of the PDRUNCFG and the SYSAHBCLKDIV registers. If a reset occurs, the microcontroller enters the default configuration in Active mode.

3.9.4 Deep-sleep mode

In Deep-sleep mode, the system clock to the processor is disabled as in Sleep mode. All analog blocks are powered down, except for the BOD circuit and the watchdog oscillator, which must be selected or deselected during Deep-sleep mode in the PDSLEEPCFG register. The main clock, and therefore all peripheral clocks, are disabled except for the clock to the watchdog timer if the watchdog oscillator is selected. The IRC is running, but its output is disabled. The flash is in stand-by mode.

Remark: If the LOCK bit is set in the WWDT MOD register (<u>Table 269</u>) and the IRC is selected as a clock source for the WWDT, the IRC continues to clock the WWDT in Deep-sleep mode.

Deep-sleep mode eliminates all power used by analog peripherals and all dynamic power used by the processor itself, memory systems and related controllers, and internal buses. The processor state and registers, peripheral registers, and internal SRAM values are maintained, and the logic levels of the pins remain static.

3.9.4.1 Power configuration in Deep-sleep mode

Power consumption in Deep-sleep mode is determined by the Deep-sleep power configuration setting in the PDSLEEPCFG (Table 40) register:

- The watchdog oscillator can be left running in Deep-sleep mode if required for the WWDT.
- If the IRC is locked as the WWDT clock source (see <u>Section 15.7</u>), the IRC continues to run and clock the WWDT in Deep-sleep mode independently of the setting in the PDSLEEPCFG register.
- The BOD circuit can be left running in Deep-sleep mode if required by the application.

3.9.4.2 Programming Deep-sleep mode

The following steps must be performed to enter Deep-sleep mode:

- 1. The PD bits in the PCON register must be set to 0x1 (Table 48).
- 2. Select the power configuration in Deep-sleep mode in the PDSLEEPCFG (Table 40) register.
- 3. Determine if the WWDT clock source must be locked to override the power configuration if the IRC is selected (see <u>Section 15.7</u>).
- 4. If the watchdog oscillator is shut down, ensure that the IRC is powered in the PDRUNCFG register and switch the clock source to IRC in the MAINCLKSEL register (Table 17). This ensures that the system clock is shut down glitch-free.

UM10524

Chapter 3: LPC1315/16/17/45/46/47 System control block

- 5. Select the power configuration after wake-up in the PDAWAKECFG (<u>Table 41</u>) register.
- 6. If any of the available wake-up interrupts are needed for wake-up, enable the interrupts in the interrupt wake-up registers (Table 38, Table 39) and in the NVIC.
- 7. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 8. Use the ARM WFI instruction.

3.9.4.3 Wake-up from Deep-sleep mode

The microcontroller can wake up from Deep-sleep mode in the following ways:

- Signal on one of the eight pin interrupts selected in <u>Table 35</u>. Each pin interrupt must also be enabled in the STARTERPO register (<u>Table 38</u>) and in the NVIC.
- BOD signal, if the BOD is enabled in the PDSLEEPCFG register:
 - BOD interrupt using the deep-sleep interrupt wake-up register 1 (<u>Table 39</u>). The BOD interrupt must be enabled in the NVIC. The BOD interrupt must be selected in the BODCTRL register.
 - Reset from the BOD circuit. In this case, the BOD circuit must be enabled in the PDSLEEPCFG register, and the BOD reset must be enabled in the BODCTRL register (<u>Table 31</u>).
- WWDT signal, if the watchdog oscillator is enabled in the PDSLEEPCFG register:
 - WWDT interrupt using the interrupt wake-up register 1 (<u>Table 39</u>). The WWDT interrupt must be enabled in the NVIC. The WWDT interrupt must be set in the WWDT MOD register.
 - Reset from the watchdog timer. The WWDT reset must be set in the WWDT MOD
 register. In this case, the watchdog oscillator must be running in Deep-sleep mode
 (see PDSLEEPCFG register), and the WDT must be enabled in the
 SYSAHBCLKCTRL register.
- USB wake-up signal using the interrupt wake-up register 1 (<u>Table 39</u>). For details, see <u>Section 10.7.6</u>.
- GPIO group interrupt signal (see <u>Table 39</u>).

Remark: If the watchdog oscillator is running in Deep-sleep mode, its frequency determines the wake-up time.

3.9.5 Power-down mode

In Power-down mode, the system clock to the processor is disabled as in Sleep mode. All analog blocks are powered down, except for the BOD circuit and the watchdog oscillator, which must be selected or deselected during Power-down mode in the PDSLEEPCFG register. The main clock and therefore all peripheral clocks are disabled except for the clock to the watchdog timer if the watchdog oscillator is selected. The IRC itself and the flash are powered down, decreasing power consumption compared to Deep-sleep mode.

Remark: Do not set the LOCK bit in the WWDT MOD register (<u>Table 269</u>) when the IRC is selected as a clock source for the WWDT. This prevents the part from entering the Power-down mode correctly.

Chapter 3: LPC1315/16/17/45/46/47 System control block

Power-down mode eliminates all power used by analog peripherals and all dynamic power used by the processor itself, memory systems and related controllers, and internal buses. The processor state and registers, peripheral registers, and internal SRAM values are maintained, and the logic levels of the pins remain static. Wake-up times are longer compared to the Deep-sleep mode.

3.9.5.1 Power configuration in Power-down mode

Power consumption in Power-down mode can be configured by the power configuration setting in the PDSLEEPCFG (<u>Table 40</u>) register in the same way as for Deep-sleep mode (see <u>Section 3.9.4.1</u>):

- The watchdog oscillator can be left running in Deep-sleep mode if required for the WWDT.
- The BOD circuit can be left running in Deep-sleep mode if required by the application.

3.9.5.2 Programming Power-down mode

The following steps must be performed to enter Power-down mode:

- 1. The PD bits in the PCON register must be set to 0x2 (Table 48).
- 2. Select the power configuration in Power-down mode in the PDSLEEPCFG (Table 40) register.
- 3. If the lock bit 5 in the WWDT MOD register is set (<u>Table 269</u>) and the IRC is selected as the WWDT clock source, reset the part to clear the lock bit and then select the watchdog oscillator as the WWDT clock source.
- 4. If the watchdog oscillator is shut down, ensure that the IRC is powered in the PDRUNCFG register and switch the clock source to IRC in the MAINCLKSEL register (Table 17). This ensures that the system clock is shut down glitch-free.
- 5. Select the power configuration after wake-up in the PDAWAKECFG (<u>Table 41</u>) register.
- 6. If any of the available wake-up interrupts are used for wake-up, enable the interrupts in the interrupt wake-up registers (Table 38, Table 39) and in the NVIC.
- 7. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 8. Use the ARM WFI instruction.

3.9.5.3 Wake-up from Power-down mode

The microcontroller can wake up from Power-down mode in the same way as from Deep-sleep mode:

- Signal on one of the eight pin interrupts selected in <u>Table 35</u>. Each pin interrupt must also be enabled in the STARTERP0 register (<u>Table 38</u>) and in the NVIC.
- BOD signal, if the BOD is enabled in the PDSLEEPCFG register:
 - BOD interrupt using the interrupt wake-up register 1 (<u>Table 39</u>). The BOD interrupt must be enabled in the NVIC. The BOD interrupt must be selected in the BODCTRL register.
 - Reset from the BOD circuit. In this case, the BOD reset must be enabled in the BODCTRL register (Table 31).
- WWDT signal, if the watchdog oscillator is enabled in the PDSLEEPCFG register:

UM10524

40 of 416

Chapter 3: LPC1315/16/17/45/46/47 System control block

- WWDT interrupt using the interrupt wake-up register 1 (<u>Table 39</u>). The WWDT interrupt must be enabled in the NVIC. The WWDT interrupt must be set in the WWDT MOD register.
- Reset from the watchdog timer. The WWDT reset must be set in the WWDT MOD register.
- USB wake-up signal interrupt wake-up register 1 (<u>Table 41</u>). For details, see Section 10.7.6.
- GPIO group interrupt signal (see Table 39).

3.9.6 Deep power-down mode

In Deep power-down mode, power and clocks are shut off to the entire chip with the exception of the WAKEUP pin. The Deep power-down mode is controlled by the PMU (see <u>Chapter 4</u>).

During Deep power-down mode, the contents of the SRAM and registers are not retained except for a small amount of data which can be stored in the general purpose registers of the PMU block.

All functional pins are tri-stated in Deep power-down mode except for the WAKEUP pin.

Remark: Setting bit 3 in the PCON register (<u>Section 4.3.1</u>) prevents the part from entering Deep-power down mode.

3.9.6.1 Power configuration in Deep power-down mode

Deep power-down mode has no configuration options. All clocks, the core, and all peripherals are powered down. Only the WAKEUP pin is powered.

3.9.6.2 Programming Deep power-down mode

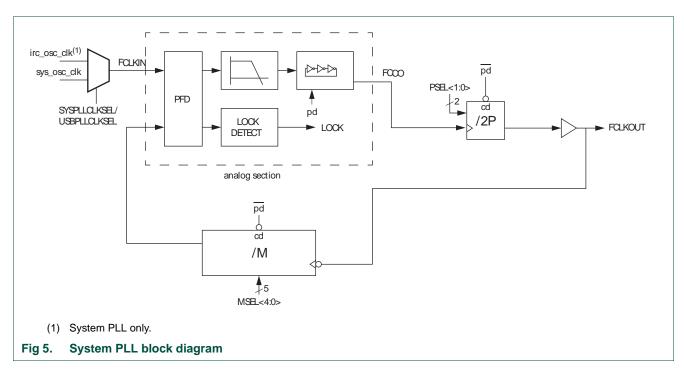
The following steps must be performed to enter Deep power-down mode:

- 1. Pull the WAKEUP pin externally HIGH.
- 2. Ensure that bit 3 in the PCON register (Table 48) is cleared.
- 3. Write 0x3 to the PD bits in the PCON register (see Table 48).
- 4. Store data to be retained in the general purpose registers (Section 4.3.2).
- 5. Write one to the SLEEPDEEP bit in the ARM Cortex-M3 SCR register.
- 6. Use the ARM WFI instruction.

3.9.6.3 Wake-up from Deep power-down mode

Pulling the WAKEUP pin LOW wakes up the LPC1315/16/17/45/46/47 from Deep power-down, and the chip goes through the entire reset process (Section 3.6).

- 1. On the WAKEUP pin, transition from HIGH to LOW.
 - The PMU will turn on the on-chip voltage regulator. When the core voltage reaches
 the power-on-reset (POR) trip point, a system reset will be triggered and the chip
 re-boots.
 - All registers except the GPREG0 to GPREG4 will be in their reset state.


Chapter 3: LPC1315/16/17/45/46/47 System control block

- Once the chip has booted, read the deep power-down flag in the PCON register (<u>Table 48</u>) to verify that the reset was caused by a wake-up event from Deep power-down and was not a cold reset.
- 3. Clear the deep power-down flag in the PCON register (Table 48).
- 4. (Optional) Read the stored data in the general purpose registers (Section 4.3.2).
- 5. Set up the PMU for the next Deep power-down cycle.

Remark: The RESET pin has no functionality in Deep power-down mode.

3.10 System PLL/USB PLL functional description

The LPC1315/16/17/45/46/47 uses the system PLL to create the clocks for the core and peripherals. An identical PLL is available for the USB.

The block diagram of this PLL is shown in Figure 5. The input frequency range is 10 MHz to 25 MHz. The input clock is fed directly to the Phase-Frequency Detector (PFD). This block compares the phase and frequency of its inputs, and generates a control signal when phase and/ or frequency do not match. The loop filter filters these control signals and drives the current controlled oscillator (CCO), which generates the main clock and optionally two additional phases. The CCO frequency range is 156 MHz to 320 MHz. These clocks are either divided by 2×P by the programmable post divider to create the output clocks, or are sent directly to the outputs. The main output clock is then divided by M by the programmable feedback divider to generate the feedback clock. The output signal of the phase-frequency detector is also monitored by the lock detector, to signal when the PLL has locked on to the input clock.

Chapter 3: LPC1315/16/17/45/46/47 System control block

3.10.1 Lock detector

The lock detector measures the phase difference between the rising edges of the input and feedback clocks. Only when this difference is smaller than the so called "lock criterion" for more than eight consecutive input clock periods, the lock output switches from low to high. A single too large phase difference immediately resets the counter and causes the lock signal to drop (if it was high). Requiring eight phase measurements in a row to be below a certain figure ensures that the lock detector will not indicate lock until both the phase and frequency of the input and feedback clocks are very well aligned. This effectively prevents false lock indications, and thus ensures a glitch free lock signal.

3.10.2 Power-down control

To reduce the power consumption when the PLL clock is not needed, a Power-down mode has been incorporated. This mode is enabled by setting the SYSPLL_PD bit to one in the Power-down configuration register (Table 42). In this mode, the internal current reference will be turned off, the oscillator and the phase-frequency detector will be stopped and the dividers will enter a reset state. While in Power-down mode, the lock output will be low to indicate that the PLL is not in lock. When the Power-down mode is terminated by setting the SYSPLL_PD bit to zero, the PLL will resume its normal operation and will make the lock signal high once it has regained lock on the input clock.

3.10.3 Divider ratio programming

Post divider

The division ratio of the post divider is controlled by the PSEL bits. The division ratio is two times the value of P selected by PSEL bits as shown in <u>Table 8</u> and <u>Table 10</u>. This guarantees an output clock with a 50% duty cycle.

Feedback divider

The feedback divider's division ratio is controlled by the MSEL bits. The division ratio between the PLL's output clock and the input clock is the decimal value on MSEL bits plus one, as specified in Table 8 and Table 10.

Changing the divider values

Changing the divider ratio while the PLL is running is not recommended. As there is no way to synchronize the change of the MSEL and PSEL values with the dividers, the risk exists that the counter will read in an undefined value, which could lead to unwanted spikes or drops in the frequency of the output clock. The recommended way of changing between divider settings is to power down the PLL, adjust the divider settings and then let the PLL start up again.

3.10.4 Frequency selection

The PLL frequency equations use the following parameters (also see Figure 3):

Chapter 3: LPC1315/16/17/45/46/47 System control block

Table 45. PLL frequency parameters

Parameter	System PLL
FCLKIN	Frequency of sys_pllclkin (input clock to the system PLL) from the PLL clock multiplexer (see <u>Table 15</u> and <u>Table 16</u>).
FCCO	Frequency of the Current Controlled Oscillator (CCO); 156 to 320 MHz.
FCLKOUT	Frequency of sys_pllclkout
Р	System PLL post divider ratio; PSEL bits in PLL control registers (see $\underline{\text{Table 8}}$ and $\underline{\text{Table 10}}$).
M	System PLL feedback divider register; MSEL bits in the PLL control registers (see <u>Table 8</u> and <u>Table 10</u>).

3.10.4.1 Normal mode

In this mode the post divider is enabled, giving a 50% duty cycle clock with the following frequency relations:

(1)

$$Fclkout = M \times Fclkin = (FCCO)/(2 \times P)$$

To select the appropriate values for M and P, it is recommended to follow these steps:

- 1. Specify the input clock frequency Fclkin.
- 2. Calculate M to obtain the desired output frequency Fclkout with $M = F_{clkout} / F_{clkin}$.
- 3. Find a value so that FCCO = $2 \times P \times F_{clkout}$.
- 4. Verify that all frequencies and divider values conform to the limits specified in <u>Table 8</u> and <u>Table 10</u>.

<u>Table 46</u> shows how to configure the PLL for a 12 MHz crystal oscillator using the SYSPLLCTRL register (<u>Table 8</u>). The main clock is equivalent to the system clock if the system clock divider SYSAHBCLKDIV is set to one (see <u>Table 19</u>).

Table 46. PLL configuration examples

PLL input clock sys_pllclkin (Fclkin)	Main clock (Fclkout)	MSEL bits Table 8	M divider value	PSEL bits Table 8	P divider value	FCCO frequency
12 MHz	48 MHz	00011(binary)	4	01 (binary)	2	192 MHz
12 MHz	36 MHz	00010(binary)	3	10 (binary)	4	288 MHz
12 MHz	24 MHz	00001(binary)	2	10 (binary)	4	192 MHz

3.10.4.2 Power-down mode

In this mode, the internal current reference will be turned off, the oscillator and the phase-frequency detector will be stopped and the dividers will enter a reset state. While in Power-down mode, the lock output will be low, to indicate that the PLL is not in lock. When the Power-down mode is terminated by SYSPLL_PD bit to zero in the Power-down configuration register (Table 42), the PLL will resume its normal operation and will make the lock signal high once it has regained lock on the input clock.

UM10524

Chapter 4: LPC1315/16/17/45/46/47 Power Management Unit (PMU)

Rev. 4 — 12 March 2013

User manual

4.1 How to read this chapter

The PMU is identical on all LPC1315/16/17/45/46/47 parts. Also refer to Chapter 5 for power control.

4.2 Introduction

The PMU controls the Deep power-down mode. Four general purpose register in the PMU can be used to retain data during Deep power-down mode.

4.3 Register description

Table 47. Register overview: PMU (base address 0x4003 8000)

Name	Access	Address offset	Description	Reset value	Reference
PCON	R/W	0x000	Power control register	0x0	Table 48
GPREG0	R/W	0x004	General purpose register 0	0x0	Table 49
GPREG1	R/W	800x0	General purpose register 1	0x0	Table 49
GPREG2	R/W	0x00C	General purpose register 2	0x0	Table 49
GPREG3	R/W	0x010	General purpose register 3	0x0	Table 49
GPREG4	R/W	0x014	General purpose register 4	0x0	Table 50

4.3.1 Power control register

The power control register selects whether one of the ARM Cortex-M3 controlled power-down modes (Sleep mode or Deep-sleep/Power-down mode) or the Deep power-down mode is entered and provides the flags for Sleep or Deep-sleep/Power-down modes and Deep power-down modes respectively. See Section 3.9 for details on how to enter the power-down modes.

Table 48. Power control register (PCON, address 0x4003 8000) bit description

Bit	Symbol	Value	Description	Reset value
2:0 PM		Power mode	000	
		0x0	Default. The part is in active or sleep mode.	
		0x1	ARM WFI will enter Deep-sleep mode.	
		0x2	ARM WFI will enter Power-down mode.	
		0x3	ARM WFI will enter Deep-power down mode (ARM Cortex-M3 core powered-down).	

Chapter 4: LPC1315/16/17/45/46/47 Power Management Unit (PMU)

Table 48. Power control register (PCON, address 0x4003 8000) bit description ...continued

Bit	Symbol	Value	Description	Reset value
3	NODPD		A 1 in this bit prevents entry to Deep power-down mode when 0x3 is written to the PM field above, the SLEEPDEEP bit is set, and a WFI is executed. This bit is cleared only by power-on reset, so writing a one to this bit locks the part in a mode in which Deep power-down mode is blocked.	0
7:4	-	-	Reserved. Do not write ones to this bit.	0
8	SLEEPFLAG		Sleep mode flag	0
		0	Read: No power-down mode entered. LPC1315/16/17/45/46/47 is in Active mode. Write: No effect.	
		1	Read: Sleep/Deep-sleep or Deep power-down mode entered. Write: Writing a 1 clears the SLEEPFLAG bit to 0.	
10:9	-	-	Reserved. Do not write ones to this bit.	0
11	DPDFLAG		Deep power-down flag	0
	1	Read: Deep power-down mode not entered. Write: No effect.	0	
		1	Read: Deep power-down mode entered. Write: Clear the Deep power-down flag.	
31:12	-	-	Reserved. Do not write ones to this bit.	0

4.3.2 General purpose registers 0 to 3

The general purpose registers retain data through the Deep power-down mode when power is still applied to the V_{DD} pin but the chip has entered Deep power-down mode. Only a "cold" boot when all power has been completely removed from the chip will reset the general purpose registers.

Table 49. General purpose registers 0 to 3 (GPREG0 - GPREG3, address 0x4003 8004 to 0x4003 8010) bit description

Bit	Symbol	Description	Reset value
31:0	GPDATA	Data retained during Deep power-down mode.	0x0

4.3.3 General purpose register 4

The general purpose register 4 retains data through the Deep power-down mode when power is still applied to the V_{DD} pin but the chip has entered Deep power-down mode. Only a "cold" boot, when all power has been completely removed from the chip, will reset the general purpose registers.

Remark: If there is a possibility that the external voltage applied on pin V_{DD} drops below 2.2 V during Deep power-down, the hysteresis of the WAKEUP input pin has to be disabled in this register before entering Deep power-down mode in order for the chip to wake up.

Chapter 4: LPC1315/16/17/45/46/47 Power Management Unit (PMU)

Table 50. General purpose register 4 (GPREG4, address 0x4003 8014) bit description

Bit	Symbol	Value	Description	Reset value
9:0	-	-	Reserved. Do not write ones to this bit.	0x0
10 WAKEUPHYS 0			WAKEUP pin hysteresis enable	0x0
		0	Hysteresis for WAKUP pin disabled.	
		1	Hysteresis for WAKEUP pin enabled.	
31:11	GPDATA		Data retained during Deep power-down mode.	0x0

4.4 Functional description

For details of entering and exiting reduced power modes, see Section 3.9.

UM10524

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

Rev. 4 — 12 March 2013

User manual

5.1 How to read this chapter

The power profiles are available for all LPC1315/16/17/45/46/47.

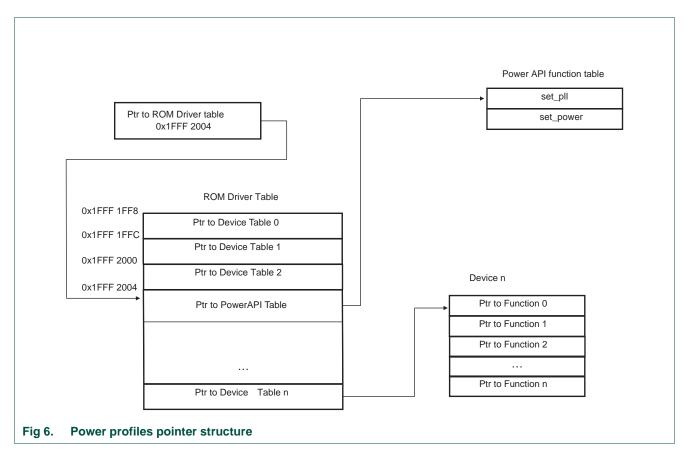
5.2 Features

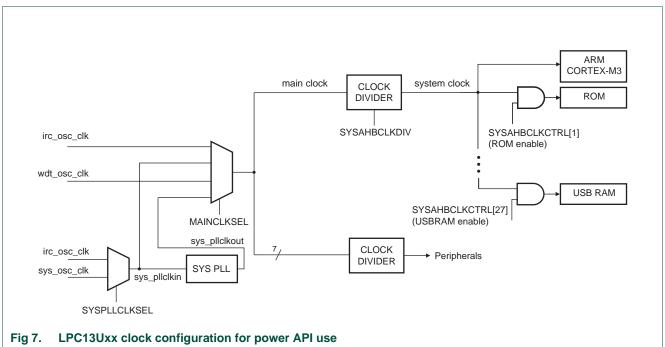
- Includes ROM-based application services
- Power Management services
- Clocking services

5.3 General description

The power consumption in Active and Sleep modes can be optimized for the application through simple calls to the power profile. The power configuration routine configures the LPC1315/16/17/45/46/47 for one of the following power modes:

- Default mode corresponding to power configuration after reset.
- CPU performance mode corresponding to optimized processing capability.
- Efficiency mode corresponding to optimized balance of current consumption and CPU performance.
- Low-current mode corresponding to lowest power consumption.


In addition, the power profile includes routines to select the optimal PLL settings for a given system clock and PLL input clock.


Remark: When using the USB, configure the power profiles in Default mode.

Remark: Disable all interrupts before making calls to the power profile API. You can re-enable the interrupts after the power profile API calls have completed.

The API calls to the ROM are performed by executing functions which are pointed by a pointer within the ROM Driver Table. Figure 6 shows the pointer structure used to call the Power Profiles API.

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

5.4 Definitions

The following elements have to be defined in an application that uses the power profiles:

```
typedef struct _PWRD {
    void (*set_pll)(unsigned int cmd[], unsigned int resp[]);
    void (*set_power)(unsigned int cmd[], unsigned int resp[]);
} PWRD;
typedef struct _ROM {
    const PWRD * pWRD;
} ROM;
ROM ** rom = (ROM **) 0x1FFF1FF8;
unsigned int command[4], result[2];
```

5.5 Clocking routine

5.5.1 set_pll

This routine sets up the system PLL according to the calling arguments. If the expected clock can be obtained by simply dividing the system PLL input, set_pll bypasses the PLL to lower system power consumption.

IMPORTANT: Before this routine is invoked, the PLL clock source (IRC/system oscillator) must be selected (<u>Table 15</u>), the main clock source must be set to the input clock to the system PLL (<u>Table 17</u>) and the system AHB clock divider must be set to 1 (<u>Table 18</u>).

set_pll attempts to find a PLL setup that matches the calling parameters. Once a combination of a feedback divider value (SYSPLLCTRL, M), a post divider ratio (SYSPLLCTRL, P) and the system/AHB clock divider (SYSAHBCLKDIV) is found, set_pll applies the selected values and switches the main clock source selection to the system PLL clock out (if necessary).

The routine returns a result code that indicates if the system PLL was successfully set (PLL_CMD_SUCCESS) or not (in which case the result code identifies what went wrong). The current system frequency value is also returned. The application should use this information to adjust other clocks in the device (the SSP, UART, and USB clocks, and/or clockout).

Table 51. set_pll routine

Routine	set_pll			
Input	Param0: system PLL input frequency (in kHz)			
	Param1: expected system clock (in kHz)			
	Param2: mode (CPU_FREQ_EQU, CPU_FREQ_LTE, CPU_FREQ_GTE, CPU_FREQ_APPROX)			
	Param3: system PLL lock timeout			
Result	Result0: PLL_CMD_SUCCESS PLL_INVALID_FREQ PLL_INVALID_MODE PLL_FREQ_NOT_FOUND PLL_NOT_LOCKED			
	Result1: system clock (in kHz)			

The following definitions are needed when making set_pll power routine calls:

```
/* set_pll mode options */
```

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

```
#define
        CPU FREQ EQU
                              0
#define CPU_FREQ_LTE
                              1
#define CPU_FREQ_GTE
                              2
#define CPU_FREQ_APPROX
                              3
/* set_pll result0 options */
#define PLL_CMD_SUCCESS
                              0
#define PLL INVALID FREQ
                              1
#define PLL_INVALID_MODE
                              2
#define PLL FREQ NOT FOUND
                              3
#define
         PLL NOT LOCKED
                              4
```

5.5.1.1 System PLL input frequency and expected system clock

set_pll looks for a setup in which the system PLL clock does not exceed 50 MHz. It easily finds a solution when the ratio between the expected system clock and the system PLL input frequency is an integer value, but it can also find solutions in other cases.

The system PLL input frequency (*Param0*) must be between 10000 to 25000 kHz (10 MHz to 25 MHz) inclusive. The expected system clock (*Param1*) must be between 1 and 50000 kHz inclusive. If either of these requirements is not met, *set_pll* returns PLL_INVALID_FREQ and returns *Param0* as *Result1* since the PLL setting is unchanged.

5.5.1.2 Mode

The first priority of set_pll is to find a setup that generates the system clock at exactly the rate specified in Param1. If it is unlikely that an exact match can be found, input parameter mode (Param2) should be used to specify if the actual system clock can be less than or equal, greater than or equal or approximately the value specified as the expected system clock (Param1).

A call specifying CPU_FREQ_EQU will only succeed if the PLL can output exactly the frequency requested in *Param1*.

CPU_FREQ_LTE can be used if the requested frequency should not be exceeded (such as overall current consumption and/or power budget reasons).

CPU_FREQ_GTE helps applications that need a minimum level of CPU processing capabilities.

CPU_FREQ_APPROX results in a system clock that is as close as possible to the requested value (it may be greater than or less than the requested value).

If an illegal mode is specified, set_pll returns PLL_INVALID_MODE. If the expected system clock is out of the range supported by this routine, set_pll returns PLL_FREQ_NOT_FOUND. In these cases the current PLL setting is not changed and Param0 is returned as Result1.

5.5.1.3 System PLL lock time-out

It should take no more than 100 μ s for the system PLL to lock if a valid configuration is selected. If *Param3* is zero, set_pll will wait indefinitely for the PLL to lock. If a non-zero value is provided, that is how many times the code will check for a successful PLL lock event before it returns PLL_NOT_LOCKED. In this case the PLL settings are unchanged and Param0 is returned as Result1.

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

Hint: setting *Param3* equal to the system PLL frequency [Hz] divided by 10000 will provide more than enough PLL lock-polling cycles.

5.5.1.4 Code examples

The following examples illustrate some of the features of set pll discussed above.

5.5.1.4.1 Invalid frequency (device maximum clock rate exceeded)

```
command[0] = 12000;
command[1] = 60000;
command[2] = CPU_FREQ_EQU;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock and a system clock of exactly 60 MHz. The application was ready to infinitely wait for the PLL to lock. But the expected system clock of 60 MHz exceeds the maximum of 50 MHz. Therefore set_pll returns PLL_INVALID_FREQ in result[0] and 12000 in result[1] without changing the PLL settings.

5.5.1.4.2 Invalid frequency selection (system clock divider restrictions)

```
command[0] = 12000;
command[1] = 40;
command[2] = CPU_FREQ_LTE;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of no more than 40 kHz and no time-out while waiting for the PLL to lock. Since the maximum divider value for the system clock is 255 and running at 40 kHz would need a divide by value of 300, set_pll returns PLL_INVALID_FREQ in result[0] and 12000 in result[1] without changing the PLL settings.

5.5.1.4.3 Exact solution cannot be found (PLL)

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_EQU;
command[3] = 0;
(*rom)->pWRD->set pl1(command, result);
```

The above code specifies a 12 MHz PLL input clock and a system clock of exactly 25 MHz. The application was ready to infinitely wait for the PLL to lock. Since there is no valid PLL setup within earlier mentioned restrictions, set_pll returns PLL_FREQ_NOT_FOUND in result[0] and 12000 in result[1] without changing the PLL settings.

5.5.1.4.4 System clock less than or equal to the expected value

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_LTE;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

UM10524

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

The above code specifies a 12 MHz PLL input clock, a system clock of no more than 25 MHz and no locking time-out. set_pll returns PLL_CMD_SUCCESS in result[0] and 24000 in result[1]. The new system clock is 24 MHz.

5.5.1.4.5 System clock greater than or equal to the expected value

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_GTE;
command[3] = 0;
(*rom)->pWRD->set pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of at least 25 MHz and no locking time-out. set_pll returns PLL_CMD_SUCCESS in result[0] and 36000 in result[1]. The new system clock is 36 MHz.

5.5.1.4.6 System clock approximately equal to the expected value

```
command[0] = 12000;
command[1] = 16500;
command[2] = CPU_FREQ_APPROX;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of approximately 16.5 MHz and no locking time-out. *set_pll* returns PLL_CMD_SUCCESS in *result[0]* and 16000 in *result[1]*. The new system clock is 16 MHz.

5.6 Power routine

5.6.1 set_power

This routine configures the device's internal power control settings according to the calling arguments. The goal is to reduce active power consumption while maintaining the feature of interest to the application close to its optimum.

set_power returns a result code that reports if the power setting was successfully changed or not.

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

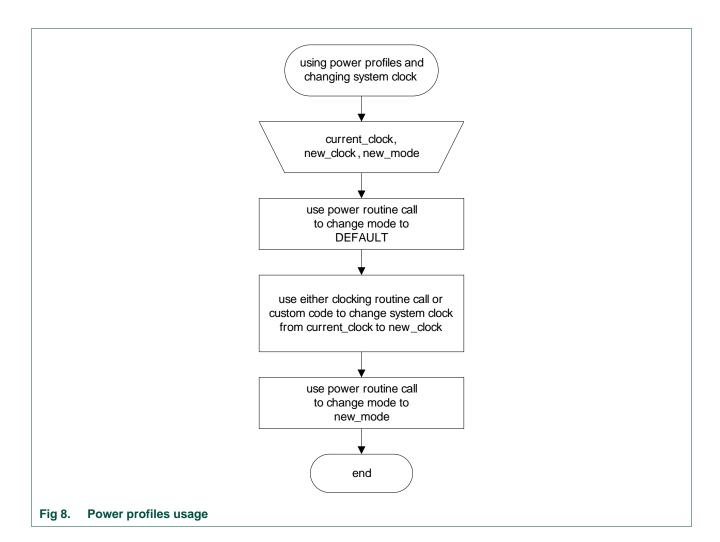


Table 52. set_power routine

Routine	set_power				
Input	Param0: new system clock (in MHz)				
	Param1: mode (PWR_DEFAULT, PWR_CPU_PERFORMANCE, PWR_EFFICIENCY, PWR_LOW_CURRENT)				
	Param2: current system clock (in MHz)				
Result	Result0: PWR_CMD_SUCCESS PWR_INVALID_FREQ PWR_INVALID_MODE				

The following definitions are needed for set_power routine calls:

```
/* set_power mode options */
#define
        PWR_DEFAULT
                               0
#define
          PWR_CPU_PERFORMANCE
                               1
#define PWR EFFICIENCY
                               2
#define PWR_LOW_CURRENT
                               3
/* set_power result0 options */
#define
        PWR CMD SUCCESS
#define
          PWR_INVALID_FREQ
                               1
#define
                               2
          PWR_INVALID_MODE
```

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

5.6.1.1 New system clock

The new system clock is the clock rate at which the microcontroller will be running after either a successful execution of a clocking routine call or a similar code provided by the user. This operand must be an integer between 1 to 50 MHz inclusive. If a value out of this range is supplied, <code>set_power</code> returns PWR_INVALID_FREQ and does not change the power control system.

5.6.1.2 Mode

The input parameter mode (*Param1*) specifies one of four available power settings. If an illegal selection is provided, *set_power* returns PWR_INVALID_MODE and does not change the power control system.

PWR_DEFAULT keeps the device in a baseline power setting similar to its reset state.

PWR_CPU_PERFORMANCE configures the microcontroller so that it can provide more processing capability to the application. CPU performance is 30% better than the default option.

PWR_EFFICIENCY setting was designed to find a balance between active current and the CPU's ability to execute code and process data. In this mode the device outperforms the default mode both in terms of providing higher CPU performance and lowering active current.

PWR_LOW_CURRENT is intended for those solutions that focus on lowering power consumption rather than CPU performance.

5.6.1.3 Current system clock

The current system clock is the clock rate at which the microcontroller is running when set_power is called. This parameter is an integer between from 1 and 50 MHz inclusive.

5.6.1.4 Code examples

The following examples illustrate some of the set power features discussed above.

5.6.1.4.1 Invalid frequency (device maximum clock rate exceeded)

```
command[0] = 55;
command[1] = PWR_CPU_PERFORMANCE;
command[2] = 12;
(*rom)->pWRD->set power(command, result);
```

The above setup would be used in a system running at 12 MHz attempting to switch to 55 MHz system clock, with a need for maximum CPU processing power. Since the specified 55 MHz clock is above the 50 MHz maximum, set_power returns PWR_INVALID_FREQ in result[0] without changing anything in the existing power setup.

5.6.1.4.2 An applicable power setup

```
command[0] = 24;
command[1] = PWR_CPU_EFFICIENCY;
command[2] = 12;
(*rom)->pWRD->set_power(command, result);
```

Chapter 5: LPC1315/16/17/45/46/47 Power profiles

The above code specifies that an application running at a system clock of 12 MHz will switch to 24 MHz with emphasis on efficiency. set_power returns PWR_CMD_SUCCESS in result[0] after configuring the microcontroller's internal power control features.

UM10524

Chapter 6: LPC1315/16/17/45/46/47 NVIC

Rev. 4 — 12 March 2013

User manual

6.1 How to read this chapter

The USB related interrupts #22, 23, and 30 are only available on LPC134x parts.

6.2 Introduction

The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

6.3 Features

- Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3
- Tightly coupled interrupt controller provides low interrupt latency
- Controls system exceptions and peripheral interrupts
- The NVIC supports 32 vectored interrupts
- 8 programmable interrupt priority levels with hardware priority level masking
- Software interrupt generation
- Support for NMI

6.4 Interrupt sources

Table 53 lists the interrupt sources for each peripheral function. Each peripheral device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent more than one interrupt source. There is no significance or priority about what line is connected where, except for certain standards from ARM.

See Section 21.5.2 for the NVIC register bit descriptions.

Table 53. Connection of interrupt sources to the Vectored Interrupt Controller

Interrupt number	Name	Description	Flag(s)
0	PIN_INT0	GPIO pin interrupt 0	-
1	PIN_INT1	GPIO pin interrupt 1	-
2	PIN_INT2	GPIO pin interrupt 2	-
3	PIN_INT3	GPIO pin interrupt 3	-
4	PIN_INT4	GPIO pin interrupt 4	-
5	PIN_INT5	GPIO pin interrupt 5	-
6	PIN_INT6	GPIO pin interrupt 6	-
7	PIN_INT7	GPIO pin interrupt 7	-
8	GINT0	GPIO GROUP0 interrupt	-

Chapter 6: LPC1315/16/17/45/46/47 NVIC

Table 53. Connection of interrupt sources to the Vectored Interrupt Controller

Table 53.	Connection of interrupt sources to the Vectored Interrupt Controller				
Interrupt number	Name	Description	Flag(s)		
9	GINT1	GPIO GROUP1 interrupt	-		
11 to 10	-	-	Reserved		
12	RIT	RIT interrupt	Reserved		
13	-	-	Reserved		
14	SSP1	SSP1 interrupt	Tx FIFO half empty		
			Rx FIFO half full		
			Rx Timeout		
			Rx Overrun		
15	I2C	I2C interrupt	SI (state change)		
16	CT16B0	CT16B0 interrupt	Match 0 - 2		
			Capture 0 - 1		
17	CT16B1	CT16B1 interrupt	Match 0 - 1		
			Capture 0		
18	CT32B0	CT32B0 interrupt	Match 0 - 3		
			Capture 0 - 1		
19	CT32B1	CT32B1 interrupt	Match 0 - 3		
			Capture 0 -1		
20	SSP0	SSP0 interrupt	Tx FIFO half empty		
			Rx FIFO half full		
			Rx Timeout		
			Rx Overrun		
21	USART	USART interrupt	Rx Line Status (RLS)		
			Transmit Holding Register Empty (THRE)		
			Rx Data Available (RDA)		
			Character Time-out Indicator (CTI)		
			End of Auto-Baud (ABEO)		
			Auto-Baud Time-Out (ABTO) Modem control interrupt		
22	USB_IRQ	USB_IRQ interrupt	USB IRQ interrupt		
23	USB_FIQ	USB_FIQ interrupt	USB FIQ interrupt		
24	ADC	ADC interrupt	A/D Converter end of conversion		
25	WWDT	WWDT interrupt	Windowed Watchdog interrupt (WDINT)		
26	BOD	BOD interrupt	Brown-out detect		
27	FLASH	Flash interrupt	-		
28	-	-	Reserved		
29	-	-	Reserved		
30	USB_WAKEUP	USB_WAKEUP interrupt	USB wake-up interrupt		
31	-	-	Reserved		

58 of 416

UM10524 **NXP Semiconductors**

Chapter 6: LPC1315/16/17/45/46/47 NVIC

6.5 Register description

See the ARM Cortex-M3 technical reference manual.

UM10524

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Rev. 4 — 12 March 2013

User manual

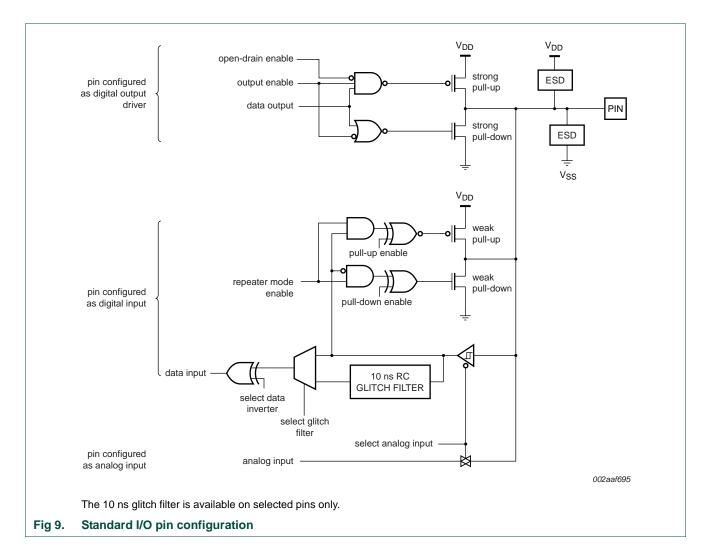
7.1 How to read this chapter

The IOCON register map depends on the package type (see <u>Table 54</u>). Registers for pins that are not available are reserved.

Table 54. IOCON registers available

Package	Port 0	Port 1
LQFP64	PIO0_0 to PIO0_23	PIO1_0 to PIO1_5; PIO1_7 to PIO1_8; PIO1_10 to PIO1_29
LQFP48	PIO0_0 to PIO0_23	PIO1_13 to PIO1_16; PIO1_19 to PIO1_23 to PIO1_29; PIO1_31
HVQFN (no USB)	PIO0_0 to PIO0_23	PIO1_15; PIO1_19; PIO1_23 to PIO1_24
HVQFN (USB)	PIO0_0 to PIO0_23	PIO1_15; PIO1_19

7.2 Introduction


The I/O configuration registers control the electrical characteristics of the pads. The following features are programmable:

- Pin function
- Internal pull-up/pull-down resistor or bus keeper function (repeater mode)
- Open-drain mode for standard I/O pins
- Hysteresis
- Input inverter
- · Glitch filter on selected pins
- Analog input or digital mode for pads hosting the ADC inputs
- I²C mode for pads hosting the I²C-bus function

7.3 General description

The IOCON registers control the function (GPIO or peripheral function) and the electrical characteristics of the port pins (see <u>Figure 9</u>).

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.3.1 Pin function

The FUNC bits in the IOCON registers can be set to GPIO (FUNC = 0) or to a peripheral function. If the pins are GPIO pins, the DIR registers determine whether the pin is configured as an input or output (see Section 9.5.3.3). For any peripheral function, the pin direction is controlled automatically depending on the pin's functionality. The DIR registers have no effect for peripheral functions.

7.3.2 Pin mode

The MODE bits in the IOCON register allow the selection of on-chip pull-up or pull-down resistors for each pin or select the repeater mode.

The possible on-chip resistor configurations are pull-up enabled, pull-down enabled, or no pull-up/pull-down. The default value is pull-up enabled.

The repeater mode enables the pull-up resistor if the pin is at a logic HIGH and enables the pull-down resistor if the pin is at a logic LOW. This causes the pin to retain its last known state if it is configured as an input and is not driven externally. The state retention is

61 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

not applicable to the Deep power-down mode. Repeater mode may typically be used to prevent a pin from floating (and potentially using significant power if it floats to an indeterminate state) if it is temporarily not driven.

7.3.3 Hysteresis

The input buffer for digital functions can be configured with hysteresis or as plain buffer through the IOCON registers.

If the external pad supply voltage V_{DD} is between 2.5 V and 3.6 V, the hysteresis buffer can be enabled or disabled. If V_{DD} is below 2.5 V, the hysteresis buffer must be **disabled** to use the pin in input mode.

7.3.4 Input inverter

If the input inverter is enabled, a HIGH pin level is inverted to 0 and a LOW pin level is inverted to 1.

7.3.5 Input glitch filter

Selected pins (pins PIO0_22, PIO0_23, and PIO0_11 to PIO0_16) provide the option of turning on or off a 10 ns input glitch filter. The glitch filter is turned on by default. The RESET pin has a 20 ns glitch filter (not configurable).

7.3.6 Open-drain mode

A pseudo open-drain mode can be enabled for all digital pins. Note that except for the I²C-bus pins, this is not a true open-drain mode.

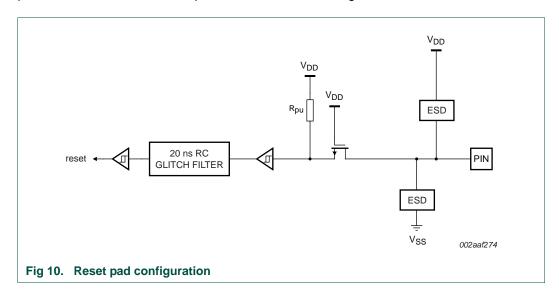
7.3.7 Analog mode

In analog mode, the digital receiver is disconnected to obtain an accurate input voltage for analog-to-digital conversions. This mode can be selected in those IOCON registers that control pins with an analog function. If analog mode is selected, hysteresis, pin mode, inverter, glitch filter, and open-drain settings have no effect.

For pins without analog functions, the analog mode setting has no effect.

7.3.8 I²C mode

If the I²C function is selected by the FUNC bits of registers PIO0_4 (<u>Table 60</u>) and PIO0_5 (<u>Table 61</u>), then the I²C-bus pins can be configured for different I²C-modes:


- Standard mode/Fast-mode I²C with 50 ns input glitch filter. An open-drain output according to the I²C-bus specification can be configured separately.
- Fast-mode Plus I²C with 50 ns input glitch filter. In this mode, the pins function as high-current sinks. An open-drain output according to the I²C-bus specification can be configured separately.
- Standard functionality without input filter.

Remark: Either Standard mode/Fast-mode I²C or Standard I/O functionality should be selected if the pin is used as GPIO pin.

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.3.9 RESET pin (pin RESET_PIO0_0)

See <u>Figure 10</u> for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. The reset pin includes a fixed 20 ns glitch filter.

7.3.10 WAKEUP pin (pin PIO0_16)

The WAKEUP pin is combined with pin PIOO_16 and includes a 20 ns fixed glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part.

7.4 Register description

Table 55. Register overview: IOCON (base address: 0x4004 4000)

Name	Access	Address offset	Description	Reset value	Reference
RESET_PIO0_0	R/W	0x000	I/O configuration for pin RESET/PIO0_0	0x0000090	Table 56
PIO0_1	R/W	0x004	I/O configuration for pin PIO0_1/CLKOUT/CT32B0_MAT2/ USB_FTOGGLE	0x0000090	Table 57
PIO0_2	R/W	0x008	I/O configuration for pin PIO0_2/SSEL0/CT16B0_CAP0	0x0000090	Table 58
PIO0_3	R/W	0x00C	I/O configuration for pin PIO0_3/USB_VBUS	0x0000090	Table 59
PIO0_4	R/W	0x010	I/O configuration for pin PIO0_4/SCL	0x0000080	Table 60
PIO0_5	R/W	0x014	I/O configuration for pin PIO0_5/SDA	0x0000080	Table 61
PIO0_6	R/W	0x018	I/O configuration for pin PIO0_6/USB_CONNECT/SCK0	0x0000090	Table 62
PIO0_7	R/W	0x01C	I/O configuration for pin PIO0_7/CTS	0x0000090	Table 63
PIO0_8	R/W	0x020	I/O configuration for pin PIO0_8/MISO0/CT16B0_MAT0/ARM_TRACE_C LK	0x0000090	Table 64

UM10524

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 55. Register overview: IOCON (base address: 0x4004 4000)

Name	Access	Address offset	Description	Reset value	Reference
PIO0_9	R/W	0x024	I/O configuration for pin PIO0_9/MOSI0/CT16B0_MAT1/ARM_TRACE_S WV	0x0000090	Table 65
SWCLK_PIO0_10	R/W	0x028	I/O configuration for pin SWCLK/PIO0_10/ SCK0/CT16B0_MAT2	0x0000090	Table 66
TDI_PIO0_11	R/W	0x02C	I/O configuration for pin TDI/PIO0_11/AD0/CT32B0_MAT3	0x0000090	Table 67
TMS_PIO0_12	R/W	0x030	I/O configuration for pin TMS/PIO0_12/AD1/CT32B1_CAP0	0x0000090	Table 68
TDO_PIO0_13	R/W	0x034	I/O configuration for pin TDO/PIO0_13/AD2/CT32B1_MAT0	0x0000090	Table 69
TRST_PIO0_14	R/W	0x038	I/O configuration for pin TRST/PIO0_14/AD3/CT32B1_MAT1	0x0000090	Table 70
SWDIO_PIO0_15	R/W	0x03C	I/O configuration for pin SWDIO/PIO0_15/AD4/CT32B1_MAT2	0x0000090	Table 71
PIO0_16	R/W	0x040	I/O configuration for pin PIO0_16/AD5/CT32B1_MAT3/ WAKEUP	0x0000090	Table 72
PIO0_17	R/W	0x044	I/O configuration for pin PIO0_17/RTS/CT32B0_CAP0/SCLK	0x0000090	Table 73
PIO0_18	R/W	0x048	I/O configuration for pin PIO0_18/RXD/CT32B0_MAT0	0x0000090	Table 74
PIO0_19	R/W	0x04C	I/O configuration for pin PIO0_19/TXD/CT32B0_MAT1	0x0000090	Table 75
PIO0_20	R/W	0x050	I/O configuration for pin PIO0_20/CT16B1_CAP0	0x0000090	Table 76
PIO0_21	R/W	0x054	I/O configuration for pin PIO0_21/CT16B1_MAT0/MOSI1	0x0000090	Table 77
PIO0_22	R/W	0x058	I/O configuration for pin PIO0_22/AD6/CT16B1_MAT1/MISO1	0x0000090	Table 78
PIO0_23	R/W	0x05C	I/O configuration for pin PIO0_23/AD7	0x0000090	Table 79
PIO1_0	R/W	0x060	I/O configuration for pin PIO1_0/CT32B1_MAT0	0x0000090	Table 80
PIO1_1	R/W	0x064	I/O configuration for pin PIO1_1/CT32B1_MAT1	0x0000090	Table 81
PIO1_2	R/W	0x068	I/O configuration for pin PIO1_2/CT32B1_MAT2	0x0000090	Table 82
PIO1_3	R/W	0x06C	I/O configuration for pin PIO1_3/CT32B1_MAT3	0x0000090	Table 83
PIO1_4	R/W	0x070	I/O configuration for pin PIO1_4/CT32B1_CAP0	0x0000090	Table 84
PIO1_5	R/W	0x074	I/O configuration for pin PIO1_5/CT32B1_CAP1	0x0000090	Table 85
-	-	0x078	Reserved	-	-
PIO1_7	R/W	0x07C	I/O configuration for pin PIO1_7	0x0000090	Table 86
PIO1_8	R/W	0x080	I/O configuration for pin PIO1_8	0x0000090	Table 87
-	-	0x084	Reserved	-	-
PIO1_10	R/W	0x088	I/O configuration for pin PIO1_10	0x0000090	Table 88
PIO1_11	R/W	0x08C	I/O configuration for pin PIO1_11	0x0000090	Table 89
-	-	0x090	Reserved	-	-
PIO1_13	R/W	0x094	I/O configuration for PIO1_13/DTR/CT16B0_MAT0/TXD	0x0000090	Table 90

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 55. Register overview: IOCON (base address: 0x4004 4000)

	regions. Gron rion		100 audi 0001 0x 1001 1000)		
Name	Access	Address offset	Description	Reset value	Reference
PIO1_14	R/W	0x098	I/O configuration for PIO1_14/DSR/CT16B0_MAT1/RXD	0x0000090	Table 91
PIO1_15	R/W	0x09C	I/O configuration for pin PIO1_15/DCD/ CT16B0_MAT2/SCK1	0x0000090	Table 92
PIO1_16	R/W	0x0A0	I/O configuration for pin PIO1_16/RI/CT16B0_CAP0	0x0000090	Table 93
PIO1_17	R/W	0x0A4	I/O configuration for PIO1_17/CT16B0_CAP1/RXD	0x0000090	Table 94
PIO1_18	R/W	0x0A8	I/O configuration for PIO1_18/CT16B1_CAP1/TXD	0x0000090	Table 95
PIO1_19	R/W	0x0AC	I/O configuration for pin PIO1_19/DTR/SSEL1	0x0000090	Table 96
PIO1_20	R/W	0x0B0	I/O configuration for pin PIO1_20/DSR/SCK1	0x0000090	Table 97
PIO1_21	R/W	0x0B4	I/O configuration for pin PIO1_21/DCD/MISO1	0x0000090	Table 98
PIO1_22	R/W	0x0B8	I/O configuration for pin PIO1_22/RI/MOSI1	0x0000090	Table 99
PIO1_23	R/W	0x0BC	I/O configuration for pin PIO1_23/CT16B1_MAT1/SSEL1	0x0000090	<u>Table 100</u>
PIO1_24	R/W	0x0C0	I/O configuration for pin PIO1_24/ CT32B0_MAT0	0x0000090	<u>Table 101</u>
PIO1_25	R/W	0x0C4	I/O configuration for pin PIO1_25/CT32B0_MAT1	0x0000090	Table 102
PIO1_26	R/W	0x0C8	I/O configuration for pin PIO1_26/CT32B0_MAT2/ RXD	0x0000090	<u>Table 103</u>
PIO1_27	R/W	0x0CC	I/O configuration for pin PIO1_27/CT32B0_MAT3/ TXD	0x0000090	<u>Table 104</u>
PIO1_28	R/W	0x0D0	I/O configuration for pin PIO1_28/CT32B0_CAP0/ SCLK	0x0000090	Table 105
PIO1_29	R/W	0x0D4	I/O configuration for pin PIO1_29/SCK0/ CT32B0_CAP1	0x0000090	<u>Table 106</u>
-	-	0x0D8	Reserved	-	-
PIO1_31	R/W	0x0DC	I/O configuration for pin PIO1_31	0x0000090	Table 107
-					

7.4.1 I/O configuration for pin RESET_PIO0_0

UM10524

Table 56. I/O configuration for pin RESET/PIO0_0 (RESET_PIO0_0, address 0x4004 4000) bit description

Bit	Symbol	Value	Description		Reset value	
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	/ed.	0	
		0x0	RESET.			
			0x1 PIO0_0.	PIO0_0.		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down control).	resistor	0x2	
		0x0	Inactive (no pull-down/pull-up resistor enabled).			
		0x1	Pull-down resistor enabled.			
		0x2	Pull-up resistor enabled.			
		0x3	Repeater mode.			
	All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013.			. All rights reserved.		

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 56. I/O configuration for pin RESET/PIO0_0 (RESET_PIO0_0, address 0x4004 4000) bit description

Bit	Symbol	Value	Description	Reset value							
5	HYS		Hysteresis.	0							
		0	Disable.								
		1	Enable.								
6	INV		Invert input	0							
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).								
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).								
9:7	-		Reserved.	0x1							
10	OD	OD	OD	OD	OD	OD	OD	OD		Open-drain mode.	0
			0	Disable.							
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.								
31:11	-		Reserved.	0							

7.4.2 I/O configuration for pin PIO0_1

Table 57. I/O configuration for pin PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE (PIO0_1, address 0x4004 4004) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO0_1.	
		0x1	CLKOUT.	
		0x2	CT32B0_MAT2.	
		0x3	USB_FTOGGLE.	
4:3 MODE	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 57. I/O configuration for pin PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE (PIO0_1, address 0x4004 4004) bit description

Bit	Symbol	Value	Description	Reset value
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.3 I/O configuration for pin PIO0_2

Table 58. I/O configuration for pin PIO0_2/SSEL0/CT16B0_CAP0 (PIO0_2, address 0x4004 4008) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0	
		0x0	PIO0_2.		
		0x1	SSEL0.		
		0x2	CT16B0_CAP0.		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2	
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
			0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
		0	Disable.		
		1	Enable.		
6	INV		Invert input	0	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).		
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).		
9:7	-		Reserved.	0x1	
10	OD		Open-drain mode.	0	
		0	Disable.		
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.		
31:11	-		Reserved.	0	

67 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.4 I/O configuration for pin PIO0_3

Table 59. I/O configuration for pin PIO0_3/USB_VBUS (PIO0_3, address 0x4004 400C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_3.	
		0x1	USB_VBUS.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3 Repeater m	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.5 I/O configuration for pin PIO0_4

Table 60. I/O configuration for pin PIO0_4/SCL (PIO0_4, address 0x4004 4010) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_4 (open-drain pin).	
		0x1	I2C SCL (open-drain pin).	
7:3	-		Reserved.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 60. I/O configuration for pin PIO0_4/SCL (PIO0_4, address 0x4004 4010) bit description

Bit	Symbol	Value	Description	Reset value
9:8	I2CMODE		Selects I2C mode (see Section 6.3.8). Select Standard mode (I2CMODE = 0, default) or Standard I/O functionality (I2CMODE = 1) if the pin function is GPIO (FUNC = 0).	0
		0x0	Standard mode/ Fast-mode I2C.	
		0x1	Standard I/O functionality	
		0x2	Fast-mode Plus I2C	
		0x3	Reserved.	
31:10	-		Reserved.	-

7.4.6 I/O configuration for pin PIO0_5

Table 61. I/O configuration for pin PIO0_5/SDA (PIO0_5, address 0x4004 4014) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_5 (open-drain pin).	
		0x1	I2C SDA (open-drain pin).	
7:3			Reserved.	
9:8	I2CMODE		Selects I2C mode (see Section 6.3.8). Select Standard mode (I2CMODE = 00, default) or Standard I/O functionality (I2CMODE = 01) if the pin function is GPIO (FUNC = 0).	0
		0x0	Standard mode/ Fast-mode I2C.	
		0x1	Standard I/O functionality	
		0x2	Fast-mode Plus I2C	
		0x3	Reserved.	
31:10) -		Reserved.	-

7.4.7 I/O configuration for pin PIO0_6

Table 62. I/O configuration for pin PIO0_6/USB_CONNECT/SCK0 (PIO0_6, address 0x4004 4018) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO0_6.	
		0x1	USB_CONNECT.	
		0x2	SCK0.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 62. I/O configuration for pin PIO0_6/USB_CONNECT/SCK0 (PIO0_6, address 0x4004 4018) bit description

D !:	• • •			_	
Bit	Symbol	Value	Description	Reset value	
4:3	4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
		0	Disable.		
		1	Enable.		
6	INV		Invert input	0	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).		
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).		
9:7	-		Reserved.	0x1	
10	OD		Open-drain mode.	0	
		0	Disable.		
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.		
31:11	-		Reserved.	0	

7.4.8 I/O configuration for pin PIO0_7

Table 63. I/O configuration for pin PIO0_7/CTS (PIO0_7, address 0x4004 401C) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_7.		
		0x1	CTS.		
4:3	4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
			0	Disable.	
		1	Enable.		

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 63. I/O configuration for pin PIO0_7/CTS (PIO0_7, address 0x4004 401C) bit description

Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.9 I/O configuration for pin PIO0_8

Table 64. I/O configuration for pin PIO0_8/MISO0/CT16B0_MAT0/ARM_TRACE_CLK (PIO0_8, address 0x4004 4020) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0	
			0x0	PIO0_8.	
		0x1	MISO0.		
		0x2	CT16B0_MAT0.		
		0x3	ARM_TRACE_CLK		
4:3	4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
		0	Disable.		
		1	Enable.		
6	INV		Invert input	0	
			0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).		
9:7	-		Reserved.	0x1	

71 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 64. I/O configuration for pin PIO0_8/MISO0/CT16B0_MAT0/ARM_TRACE_CLK (PIO0_8, address 0x4004 4020) bit description

Bit	Symbol	Value	Description	Reset value
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.10 I/O configuration for pin PIO0_9

Table 65. I/O configuration for pin PIO0_9/MOSI0/CT16B0_MAT1/ARM_TRACE_SWV (PIO0_9, address 0x4004 4024) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO0_9.	
		0x1	MOSI0.	
		0x2	CT16B0_MAT1.	
		0x3	ARM_TRACE_SWV	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

72 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.11 I/O configuration for pin SWCLK/PIO0_10

Table 66. I/O configuration for pin SWCLK/PIO0_10/ SCK0/CT16B0_MAT2 (SWCLK_PIO0_10, address 0x4004 4028) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	SWCLK.	
		0x1	PIO0_10.	
		0x2	SCK0.	
		0x3	CT16B0_MAT2.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
	0x1 Pull-down resistor enabled.	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0). $ \\$	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.12 I/O configuration for pin TDI/PIO0_11

Table 67. I/O configuration for pin TDI/PIO0_11/AD0/CT32B0_MAT3 (TDI_PIO0_11, address 0x4004 402C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	TDI.	
		0x1	PIO0_11.	
	0x2 AD0.	AD0.		
		0x3	CT32B0_MAT3.	

73 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 67. I/O configuration for pin TDI/PIO0_11/AD0/CT32B0_MAT3 (TDI_PIO0_11, address 0x4004 402C) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0 s
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.13 I/O configuration for pin TMS/PIO0_12

Table 68. I/O configuration for pin TMS/PIO0_12/AD1/CT32B1_CAP0 (TMS_PIO0_12, address 0x4004 4030) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	TMS.	
		0x1	PIO0_12.	
	0x2 AD1.	AD1.		
		0x3	CT32B1_CAP0.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 68. I/O configuration for pin TMS/PIO0_12/AD1/CT32B1_CAP0 (TMS_PIO0_12, address 0x4004 4030) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	0 0 0
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.14 I/O configuration for pin TDO/PIO0_13

Table 69. I/O configuration for pin TDO/PIO0_13/AD2/CT32B1_MAT0 (TDO_PIO0_13, address 0x4004 4034) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	TDO.	
		0x1	PIO0_13.	
		0x2	AD2.	
		0x3	CT32B1_MAT0.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 69. I/O configuration for pin TDO/PIO0_13/AD2/CT32B1_MAT0 (TDO_PIO0_13, address 0x4004 4034) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	_
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.15 I/O configuration for pin TRST/PIO0_14

Table 70. I/O configuration for pin TRST/PIO0_14/AD3/CT32B1_MAT1 (TRST_PIO0_14, address 0x4004 4038) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	TRST.	
		0x1	PIO0_14.	
		0x2	AD3.	
		0x3	CT32B1_MAT1.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 70. I/O configuration for pin TRST/PIO0_14/AD3/CT32B1_MAT1 (TRST_PIO0_14, address 0x4004 4038) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.16 I/O configuration for pin SWDIO/PIO0_15

Table 71. I/O configuration for pin SWDIO/PIO0_15/AD4/CT32B1_MAT2 (SWDIO_PIO0_15, address 0x4004 403C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	SWDIO.	
	0x2 AD4.	0x1	PIO0_15.	
		AD4.		
		0x3	CT32B1_MAT2.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 71. I/O configuration for pin SWDIO/PIO0_15/AD4/CT32B1_MAT2 (SWDIO_PIO0_15, address 0x4004 403C) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.17 I/O configuration for pin PIO0_16

Table 72. I/O configuration for pin PIO0_16/AD5/CT32B1_MAT3/ WAKEUP (PIO0_16, address 0x4004 4040) bit description

			•	
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. This pin functions as WAKEUP pin if the LPC1315/16/17/45/46/47 is in Deep power-down mode regardless of the value of FUNC. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO0_16.	
		0x1	AD5.	
		0x2	CT32B1_MAT3.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 72. I/O configuration for pin PIO0_16/AD5/CT32B1_MAT3/ WAKEUP (PIO0_16, address 0x4004 4040) bit description

Bit	Symbol	Value	Description	Reset value	
4:3	4:3 MODE	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
		0	Disable.		
		1	Enable.		
6	INV		Invert input	0 as	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).		
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).		
7	ADMODE		Selects Analog/Digital mode.	1	
		0	Analog input mode.		
		1	Digital functional mode.		
8	FILTR		Selects 10 ns input glitch filter.	0	
		0	Filter enabled.		
		1	Filter disabled.		
9	-		Reserved.	0	
10	OD		Open-drain mode.	0	
		0	Disable.		
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.		
31:11	-		Reserved.	0	

7.4.18 I/O configuration for pin PIO0_17

Table 73. I/O configuration for pin PIO0_17/RTS/CT32B0_CAP0/SCLK (PIO0_17, address 0x4004 4044) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO0_17.	
		0x1	RTS.	
		0x2	CT32B0_CAP0.	
		0x3	SCLK (UART synchronous clock).	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 73. I/O configuration for pin PIO0_17/RTS/CT32B0_CAP0/SCLK (PIO0_17, address 0x4004 4044) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.19 I/O configuration for pin PIO0_18

Table 74. I/O configuration for pin PIO0_18/RXD/CT32B0_MAT0 (PIO0_18, address 0x4004 4048) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO0_18.	
		0x1	RXD.	
		0x2	CT32B0_MAT0.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 74. I/O configuration for pin PIO0_18/RXD/CT32B0_MAT0 (PIO0_18, address 0x4004 4048) bit description

	- /			
Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0x1 0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.20 I/O configuration for pin PIO0_19

Table 75. I/O configuration for pin PIO0_19/TXD/CT32B0_MAT1 (PIO0_19, address 0x4004 404C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO0_19.	
		0x1	TXD.	
		0x2	CT32B0_MAT1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	0
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.21 I/O configuration for pin PIO0_20

Table 76. I/O configuration for pin PIO0_20/CT16B1_CAP0 (PIO0_20, address 0x4004 4050) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_20.	
		0x1	CT16B1_CAP0.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		00	Inactive (no pull-down/pull-up resistor enabled).	0
		01	Pull-down resistor enabled.	
		10	Pull-up resistor enabled.	0
		11	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.22 I/O configuration for pin PIO0_21

Table 77. I/O configuration for pin PIO0_21/CT16B1_MAT0/MOSI1 (PIO0_21, address 0x4004 4054) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO0_21.	
		0x1	CT16B1_MAT0.	
		0x2	MOSI1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 77. I/O configuration for pin PIO0_21/CT16B1_MAT0/MOSI1 (PIO0_21, address 0x4004 4054) bit description

Bit	Symbol	Value	Description	Reset value
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.23 I/O configuration for pin PIO0_22

Table 78. I/O configuration for pin PIO0_22/AD6/CT16B1_MAT1/MISO1 (PIO0_22, address 0x4004 4058) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO0_22.	
		0x1	AD6.	
		0x2	CT16B1_MAT1.	
		0x3	MISO1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
	O	0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 78. I/O configuration for pin PIO0_22/AD6/CT16B1_MAT1/MISO1 (PIO0_22, address 0x4004 4058) bit description

Bit	Symbol	Value	Description	Reset value
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	0
		1	Filter disabled.	
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.24 I/O configuration for pin PIO0_23

I/O configuration for pin PIO0_23/AD7 (PIO0_23, address 0x4004 405C) bit Table 79. description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO0_23.	
		0x1	AD7.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	0 0 0
7	ADMODE		Selects Analog/Digital mode.	1
		0	Analog input mode.	0 0 0 0
		1	Digital functional mode.	
8	FILTR		Selects 10 ns input glitch filter.	0
		0	Filter enabled.	
		1	Filter disabled.	
	All in	formation prov	ided in this document is subject to legal disclaimers. © NXP B.V. 2013. All	rights reserved.

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 79. I/O configuration for pin PIO0_23/AD7 (PIO0_23, address 0x4004 405C) bit description

Bit	Symbol	Value	Description	Reset value
9	-		Reserved.	0
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.25 I/O configuration for pin PIO1_0

Table 80. I/O configuration for pin PIO1_0/CT32B1_MAT0 (PIO1_0, address 0x4004 4060) bit description

Bit	Symbol	Value	Description	Reset
J.	Cyllidol	Fulue	book ipiloli	value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_0.	
		0x1	CT32B1_MAT1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

85 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.26 I/O configuration for pin PIO1_1

Table 81. I/O configuration for pin PIO1_1/CT32B1_MAT1 (PIO1_1, address 0x4004 4064) bit description

description				
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_1.	
		0x1	CT32B1_MAT1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2 0
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS 0 1		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	0 0 0 0x1 0
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.27 I/O configuration for pin PIO1_2

Table 82. I/O configuration for pin PIO1_2/CT32B1_MAT2 (PIO1_2, address 0x4004 4068) bit description

Bit	Symbol	Value	Description	Reset value
2:0 FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0	
	0x0	PIO1_2.		
		0x1	CT32B1_MAT2.	
4:3	:3 MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 82. I/O configuration for pin PIO1_2/CT32B1_MAT2 (PIO1_2, address 0x4004 4068) bit description

Bit	Symbol	Value	Description	Reset value
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6 IN	INV		Invert input	0
		Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.28 I/O configuration for pin PIO1_3

Table 83. I/O configuration for pin PIO1_3/CT32B1_MAT3 (PIO1_3, address 0x4004 406C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_3.	
	0x1	CT32B1_MAT3.		
4:3 MODE	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	0
		1	Enable.	
6	INV		Invert input	0
	0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).		
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 83. I/O configuration for pin PIO1_3/CT32B1_MAT3 (PIO1_3, address 0x4004 406C) bit description

Bit	Symbol	Value	Description	Reset value
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.29 I/O configuration for pin PIO1_4

Table 84. I/O configuration for pin PIO1_4/CT32B1_CAP0 (PIO1_4, address 0x4004 4070) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_4.	
		0x1	CT32B1_CAP0.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	0 0x2 0 0x1 0
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	0
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

88 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.30 I/O configuration for pin PIO1_5

Table 85. I/O configuration for pin PIO1_5/CT32B1_CAP1 (PIO1_5, address 0x4004 4074) bit description

Bit	Symbol	Value	Description	Reset value
2:0	2:0 FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_5.	
		0x1	CT32B1_CAP1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	value 0 0x2 0
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.31 I/O configuration for pin PIO1_7

Table 86. I/O configuration for pin PIO1_7 (PIO1_7, address 0x4004 407C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
	0x0	PIO1_7.		
4:3 MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2	
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 86. I/O configuration for pin PIO1_7 (PIO1_7, address 0x4004 407C) bit description

Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.32 I/O configuration for pin PIO1_8

Table 87. I/O configuration for pin PIO1_8 (PIO1_8, address 0x4004 4080) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x1 to 0x7 are reserved.	0
		0x0	PIO1_8.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	0
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.33 I/O configuration for pin PIO1_10

Table 88. I/O configuration for pin PIO1_10 (PIO1_10, address 0x4004 4088) bit description

Bit	Symbol	Value	Description	Reservalue
2:0	FUNC		Selects pin function. Values 0x1 to 0x7 are reserved.	0
		0x0	PIO1_10.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	0x2 0
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0 0 0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.34 I/O configuration for pin PIO1_11

Table 89. I/O configuration for pin PIO1_11 (PIO1_11, address 0x4004 408C) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x1 to 0x7 are reserved.	000
		0x0	PIO1_11.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2 Pull-up resistor enabled.	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 89. I/O configuration for pin PIO1_11 (PIO1_11, address 0x4004 408C) bit description

Bit	Symbol	Value	Description	Reset value	
6	INV		Invert input	0	
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).		
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).		
9:7	-		Reserved.	0x1	
10	OD		Open-drain mode.	0	
		0	Disable.		
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.		
31:11	-		Reserved.	0	

7.4.35 I/O configuration for PIO1_13

Table 90. I/O configuration for PIO1_13/DTR/CT16B0_MAT0/TXD (PIO1_13, address 0x4004 4094) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO1_13	
		0x1	DTR	
		0x2	CT16B0_MAT0	0x2 0
		0x3	TXD	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
	0x2 Pull-up resistor enabled.0x3 Repeater mode.			
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.36 I/O configuration for PIO1_14

Table 91. I/O configuration for PIO1_14/DSR/CT16B0_MAT1/RXD (PIO1_14, address 0x4004 4098) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO1_14.	
		0x1	DSR	
		0x2	CT16B0_MAT1	
		0x3	RXD	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
			0x0	Inactive (no pull-down/pull-up resistor enabled).
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.37 I/O configuration for pin PIO1_15

Table 92. I/O configuration for pin PIO1_15/DCD/ CT16B0_MAT2/SCK1 (PIO1_15, address 0x4004 409C) bit description

		,	•	
Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x4 to 0x7 are reserved.	0
		0x0	PIO1_15.	
		0x1	DCD.	
		0x2	CT16B0_MAT2.	
		0x3	SCK1.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 92. I/O configuration for pin PIO1_15/DCD/ CT16B0_MAT2/SCK1 (PIO1_15, address 0x4004 409C) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	0
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.38 I/O configuration for pin PIO1_16

Table 93. I/O configuration for pin PIO1_16/RI/CT16B0_CAP0 (PIO1_16, address 0x4004 40A0) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0	
			0x0	PIO1_16.	
		0x1	RI.		
		0x2	CT16B0_CAP0.		
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2	
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		
5	HYS		Hysteresis.	0	
		0	Disable.		
		1	Enable.	- 	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 93. I/O configuration for pin PIO1_16/RI/CT16B0_CAP0 (PIO1_16, address 0x4004 40A0) bit description

	,		•	
Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.39 I/O configuration for PIO1_17

Table 94. I/O configuration for PIO1_17/CT16B0_CAP1/RXD (PIO1_17, address 0x4004 40A4) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_17.	
		0x1	CT16B0_CAP1	
		0x2	RXD	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.40 I/O configuration for PIO1_18

Table 95. I/O configuration for PIO1_18/CT16B1_CAP1/TXD (PIO1_18, address 0x4004 40A8) bit description

Bit	Symbol	Value	Description	Reset value
2:0	2:0 FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_18	
		0x1	CT16B1_CAP1	
		0x2	TXD	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	0
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.41 I/O configuration for pin PIO1_19

Table 96. I/O configuration for pin PIO1_19/DTR/SSEL1 (PIO1_19, address 0x4004 40AC) bit description

Bit	Symbol	Value	Description	Reset value	
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0	
		0x0	PIO1_19.		
		0x1	DTR.		
			0x2	SSEL1.	
4:3	MODE	MODE m	mode (on-chip pull-up/pull-down resistor control).	0x2	
		0x0	Inactive (no pull-down/pull-up resistor enabled).		
		0x1	Pull-down resistor enabled.		
		0x2	Pull-up resistor enabled.		
		0x3	Repeater mode.		

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 96. I/O configuration for pin PIO1_19/DTR/SSEL1 (PIO1_19, address 0x4004 40AC) bit description

Bit	Symbol	Value	Description	Reset value
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	001
31:11	-		Reserved.	0

7.4.42 I/O configuration for pin PIO1_20

I/O configuration for pin PIO1_20/DSR/SCK1 (PIO1_20, address 0x4004 40B0) bit Table 97. description

Bit	Symbol	Value	Description	Reset value
2:0	2:0 FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_20.	value
		0x1	DSR.	
		0x2	SCK1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	0
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	0
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
			1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).
9:7	-		Reserved.	001

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 97. I/O configuration for pin PIO1_20/DSR/SCK1 (PIO1_20, address 0x4004 40B0) bit description

Bit	Symbol	Value	Description	Reset value
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.43 I/O configuration for pin PIO1_21

Table 98. I/O configuration for pin PIO1_21/DCD/MISO1 (PIO1_21, address 0x4004 40B4) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_21.	
		0x1	DCD.	
		0x2	MISO1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	0
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

98 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.44 I/O configuration for pin PIO1_22

Table 99. I/O configuration for pin PIO1_22/RI/MOSI1 (PIO1_22, address 0x4004 40B8) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_22.	
		0x1	RI.	
		0x2	MOSI1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	001
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.45 I/O configuration for pin PIO1_23

Table 100. I/O configuration for pin PIO1_23/CT16B1_MAT1/SSEL1 (PIO1_23, address 0x4004 40BC) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_23.	
		0x1	CT16B1_MAT1.	
		0x2	SSEL1.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 100. I/O configuration for pin PIO1_23/CT16B1_MAT1/SSEL1 (PIO1_23, address 0x4004 40BC) bit description

Bit	Symbol	Value	Description	Reset value
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	value
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	0 0x1
31:11	-		Reserved.	0

7.4.46 I/O configuration for pin PIO1_24

Table 101. I/O configuration for pin PIO1_24/ CT32B0_MAT0 (PIO1_24, address 0x4004 40C0) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_24.	
		0x1	CT32B0_MAT0.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	

100 of 416

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 101. I/O configuration for pin PIO1_24/ CT32B0_MAT0 (PIO1_24, address 0x4004 40C0) bit description

	D11 401	301.Ipt.1011		
Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.47 I/O configuration for pin PIO1_25

Table 102. I/O configuration for pin PIO1_25/CT32B0_MAT1 (PIO1_25, address 0x4004 40C4) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x2 to 0x7 are reserved.	0
		0x0	PIO1_25.	value
		0x1	CT32B0_MAT1.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	0x2 0 0 0
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.48 I/O configuration for pin PIO1_26

Table 103. I/O configuration for pin PIO1_26/CT32B0_MAT2/ RXD (PIO1_26, address 0x4004 40C8) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_26.	
		0x1	CT32B0_MAT2	
		0x2	RXD.	
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0). $ \\$	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	0x2 0
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.49 I/O configuration for pin PIO1_27

Table 104. I/O configuration for pin PIO1_27/CT32B0_MAT3/ TXD (PIO1_27, address 0x4004 40CC) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC	FUNC Selects pin function. Values 0x3 to 0x7 are res	Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_27.	
		0x1	CT32B0_MAT3.	
		0x2	TXD.	

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 104. I/O configuration for pin PIO1_27/CT32B0_MAT3/ TXD (PIO1_27, address 0x4004 40CC) bit description

Bit	Symbol	Value	Description				
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2			
		0x0	Inactive (no pull-down/pull-up resistor enabled).				
		0x1	Pull-down resistor enabled.				
		0x2	Pull-up resistor enabled.				
		0x3	Repeater mode.				
5 HYS			Hysteresis.	0			
		0	Disable.				
		1	Enable.				
6	INV		Invert input	0			
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).				
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).				
9:7	-		Reserved.	0x1			
10	OD		Open-drain mode.	0			
		0	Disable.				
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.				
31:11	-		Reserved.	0			

7.4.50 I/O configuration for pin PIO1_28

Table 105. I/O configuration for pin PIO1_28/CT32B0_CAP0/ SCLK (PIO1_28, address 0x4004 40D0) bit description

Bit	Symbol	Value	Description					
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.					
		0x0	PIO1_28.					
		0x1	CT32B0_CAP0.					
		0x2	SCLK.					
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2				
		0x0	Inactive (no pull-down/pull-up resistor enabled).					
		0x1	Pull-down resistor enabled.					
		0x2	Pull-up resistor enabled.					
		0x3	Repeater mode.					
5	HYS		Hysteresis.	0				
	0		Disable.					
		1	Enable.					

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

Table 105. I/O configuration for pin PIO1_28/CT32B0_CAP0/ SCLK (PIO1_28, address 0x4004 40D0) bit description

Bit	Symbol	Value	Description	Reset value
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

7.4.51 I/O configuration for pin PIO1_29

Table 106. I/O configuration for pin PIO1_29/SCK0/ CT32B0_CAP1 (PIO1_29, address 0x4004 40D4) bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. Values 0x3 to 0x7 are reserved.	0
		0x0	PIO1_29.	
		0x1	SCK0.	
		0x2	CT32B0_CAP1.	
4:3	MODE Selects function mode (on-chip pull-up/pull-down resistor control).		Selects function mode (on-chip pull-up/pull-down resistor control).	0x2
		0x0	Inactive (no pull-down/pull-up resistor enabled).	
		0x1	Pull-down resistor enabled.	
		0x2	Pull-up resistor enabled.	
		0x3	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Invert input	0
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).	
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).	
9:7	-		Reserved.	0x1
10	OD		Open-drain mode.	0
		0	Disable.	
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.	
31:11	-		Reserved.	0

Chapter 7: LPC1315/16/17/45/46/47 I/O configuration

7.4.52 I/O configuration for pin PIO1_31

Table 107. I/O configuration for pin PIO1_31 (PIO1_31, address 0x4004 40DC) bit description

Bit	Symbol	Value	Description						
2:0 FUNC			Selects pin function. Values 0x1 to 0x7 are reserved.	0					
		0x0	PIO1_31.						
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).						
		0x0	0x0 Inactive (no pull-down/pull-up resistor enabled).						
		0x1	0x1 Pull-down resistor enabled.						
		0x2	Pull-up resistor enabled.						
		0x3	Repeater mode.						
5	HYS	Hysteresis.		0					
		0 Disable.							
		1	Enable.						
6	INV		Invert input	0					
		0	Input not inverted (HIGH on pin reads as 1, LOW on pin reads as 0).						
		1	Input inverted (HIGH on pin reads as 0, LOW on pin reads as 1).						
9:7	-		Reserved.	0x1					
10	OD		Open-drain mode.	0					
		0	Disable.						
		1	Open-drain mode enabled. This is not a true open-drain mode. Input cannot be pulled up above VDD.						
31:11	_		Reserved.	0					

UM10524

Chapter 8: LPC1315/16/17/45/46/47 Pin configuration

Rev. 4 — 12 March 2013

User manual

8.1 Pin configuration

8.1.1 Pin description

<u>Table 108</u> and <u>Table 109</u> show all pins and their assigned digital or analog functions ordered by GPIO port number. The default function after reset is listed first. All port pins have internal pull-up resistors enabled after reset with the exception of the true open-drain pins PIO0_4 and PIO0_5.

Every port pin has a corresponding IOCON register through which the digital or analog function, pull-up/pull-down configuration, repeater, and open-drain modes can be programmed.

To select a port pin for one of the peripheral functions in, program the FUNC bits in the port pin's IOCON register with this function. The user must ensure that the assignment of a function to a port pin is unambiguous for functions that are multiplexed to more than one port pin.

The debug functions for JTAG and SWD are selected by default in their corresponding IOCON registers. All other functions must be programmed in the IOCON block before they can be used.

Table 108. Pin description (LPC1315/16/17 - no USB)

	• -						
Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Type	Description
RESET/PIO0_0	4	3	2	[2]	I; PU	l	RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode.
					-	I/O	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2	_	4	3	[3]	I; PU	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.
					-	0	CLKOUT — Clockout pin.
					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
PIO0_2/SSEL0/	13	10	8	[3]	I; PU	I/O	PIO0_2 — General purpose digital input/output pin.
CT16B0_CAP0						I/O	SSEL0 — Slave select for SSP0.
						I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO0_3	19	14	9	[3]	I; PU	I/O	PIO0_3 — General purpose digital input/output pin.

Chapter 8: LPC1315/16/17/45/46/47 Pin configuration

Table 108. Pin description (LPC1315/16/17 - no USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO0_4/SCL	20	15	10	<u>[4]</u>	IA	I/O	PIOO_4 — General purpose digital input/output pin (open-drain).
					-	I/O	SCL — I ² C-bus clock input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_5/SDA	21	16	11	<u>[4]</u>	IA	I/O	PIO0_5 — General purpose digital input/output pin (open-drain).
					-	I/O	SDA — I ² C-bus data input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_6/R/	29	22	15	[3]	I; PU	I/O	PIO0_6 — General purpose digital input/output pin.
SCK0					-	-	R — Reserved.
					-	I/O	SCK0 — Serial clock for SSP0.
PIO0_7/CTS	30	23	16	<u>[5]</u>	I; PU	I/O	PIO0_7 — General purpose digital input/output pin (high-current output driver).
					-	I	CTS — Clear To Send input for USART.
PIO0_8/MISO0/	36	27	17	[3]	I; PU	I/O	PIO0_8 — General purpose digital input/output pin.
CT16B0_MAT0					-	I/O	MISO0 — Master In Slave Out for SSP0.
					-	0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
PIO0_9/MOSI0/	37	28	18	[3]	I; PU	I/O	PIO0_9 — General purpose digital input/output pin.
CT16B0_MAT1/ SWO					-	I/O	MOSI0 — Master Out Slave In for SSP0.
3440					-	0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					-	0	SWO — Serial wire trace output.
SWCLK/PIO0_10/SCK0/ CT16B0_MAT2	38	29	19	[3]	I; PU	I	SWCLK — Serial wire clock and test clock TCK for JTAG interface.
					-	I/O	PIO0_10 — General purpose digital input/output pin.
					-	0	SCK0 — Serial clock for SSP0.
					-	0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
TDI/PIO0_11/AD0/	42	32	21	[6]	I; PU	I	TDI — Test Data In for JTAG interface.
CT32B0_MAT3					-	I/O	PIO0_11 — General purpose digital input/output pin.
					-	I	AD0 — A/D converter, input 0.
					-	0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
TMS/PIO0_12/AD1/	44	33	22	[6]	I; PU	I	TMS — Test Mode Select for JTAG interface.
CT32B1_CAP0					-	I/O	PIO_12 — General purpose digital input/output pin.
					-	I	AD1 — A/D converter, input 1.
					-	I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
TDO/PIO0_13/AD2/	45	34	23	[6]	I; PU	0	TDO — Test Data Out for JTAG interface.
CT32B1_MAT0					-	I/O	PIO0_13 — General purpose digital input/output pin.
					-	I	AD2 — A/D converter, input 2.
					-	0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.

Chapter 8: LPC1315/16/17/45/46/47 Pin configuration

Table 108. Pin description (LPC1315/16/17 - no USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Type	Description
TRST/PIO0_14/AD3/	46	35	24	[6]	I; PU	I	TRST — Test Reset for JTAG interface.
CT32B1_MAT1					-	I/O	PIO0_14 — General purpose digital input/output pin.
					-	I	AD3 — A/D converter, input 3.
					-	0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
SWDIO/PIO0_15/AD4/	52	39	25	[6]	I; PU	I/O	SWDIO — Serial wire debug input/output.
CT32B1_MAT2					-	I/O	PIO0_15 — General purpose digital input/output pin.
					-	I	AD4 — A/D converter, input 4.
					-	0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO0_16/AD5/	53	40	26	<u>[7]</u>	I; PU	I/O	PIO0_16 — General purpose digital input/output pin.
CT32B1_MAT3/WAKEUP					-	I	AD5 — A/D converter, input 5.
					-	0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
					-	I	WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exide Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part.
PIO0_17/RTS/	60	45	30	[3]	I; PU	I/O	PIO0_17 — General purpose digital input/output pin.
CT32B0_CAP0/SCLK					-	0	RTS — Request To Send output for USART.
					-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO0_18/RXD/	61	46	31	[3]	I; PU	I/O	PIO0_18 — General purpose digital input/output pin.
CT32B0_MAT0					-	I	RXD — Receiver input for USART. Used in UART ISP mode.
					-	0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO0_19/TXD/	62	47	32	[3]	I; PU	I/O	PIO0_19 — General purpose digital input/output pin.
CT32B0_MAT1					-	0	TXD — Transmitter output for USART. Used in UART IS mode.
					-	0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO0_20/CT16B1_CAP0	11	9	7	[3]	I; PU	I/O	PIO0_20 — General purpose digital input/output pin.
					-	I	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO0_21/CT16B1_MAT0/	22	17	12	[3]	I; PU	I/O	PIO0_21 — General purpose digital input/output pin.
MOSI1					-	0	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
					-	I/O	MOSI1 — Master Out Slave In for SSP1.
PIO0_22/AD6/	40	30	20	[6]	I; PU	I/O	PIO0_22 — General purpose digital input/output pin.
CT16B1_MAT1/MISO1					-	I	AD6 — A/D converter, input 6.
					-	0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					-	I/O	MISO1 — Master In Slave Out for SSP1.
PIO0_23/AD7	56	42	27	[6]	I; PU	I/O	PIO0_23 — General purpose digital input/output pin.
					-	ı	AD7 — A/D converter, input 7.

UM10524

Table 108. Pin description (LPC1315/16/17 - no USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description		
PIO1_0/CT32B1_MAT0	1	-	-	[3]	I; PU	I/O	PIO1_0 — General purpose digital input/output pin.		
					-	0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.		
PIO1_1/CT32B1_MAT1	17	-	-	[3]	I; PU	I/O	PIO1_1 — General purpose digital input/output pin.		
					-	0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.		
PIO1_2/CT32B1_MAT2	34	-	-	[3]	I; PU	I/O	PIO1_2 — General purpose digital input/output pin.		
					-	0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.		
PIO1_3/CT32B1_MAT3	50	-	-	[3]	I; PU	I/O	PIO1_3 — General purpose digital input/output pin.		
					-	0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.		
PIO1_4/CT32B1_CAP0	16	-	-	[3]	I; PU	I/O	PIO1_4 — General purpose digital input/output pin.		
					-	I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.		
PIO1_5/CT32B1_CAP1	32	-	-	[3]	I; PU	I/O	PIO1_5 — General purpose digital input/output pin.		
					-	ı	CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.		
PIO1_7	6	-	-	[3]	I; PU	I/O	PIO1_7 — General purpose digital input/output pin.		
PIO1_8	39	-	-	[3]	I; PU	I/O	PIO1_8 — General purpose digital input/output pin.		
PIO1_10	12	-	-	[3]	I; PU	I/O	PIO1_10 — General purpose digital input/output pin.		
PIO1_11	43	-	-	[3]	I; PU	I/O	PIO1_11 — General purpose digital input/output pin.		
PIO1_13/DTR/	47	36	-	[3]	I; PU	I/O	PIO1_13 — General purpose digital input/output pin.		
CT16B0_MAT0/TXD					-	0	DTR — Data Terminal Ready output for USART.		
					-	0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.		
					-	0	TXD — Transmitter output for USART.		
PIO1_14/DSR/	49	37	-	[3]	I; PU	I/O	PIO1_14 — General purpose digital input/output pin.		
CT16B0_MAT1/RXD					-	I	DSR — Data Set Ready input for USART.		
					-	0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.		
					-	I	RXD — Receiver input for USART.		
PIO1_15/DCD/	57	43	28	[3]	I; PU	I/O	PIO1_15 — General purpose digital input/output pin.		
CT16B0_MAT2/SCK1					-	I	DCD — Data Carrier Detect input for USART.		
					-	0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.		
					-	I/O	SCK1 — Serial clock for SSP1.		
PIO1_16/RI/CT16B0_CAP0	63	48	-	[3]	I; PU	I/O	PIO1_16 — General purpose digital input/output pin.		
					-	I	RI — Ring Indicator input for USART.		
					-	I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.		
PIO1_17/CT16B0_CAP1/	23	-	-	[3]	I; PU	I/O	PIO1_17 — General purpose digital input/output pin.		
RXD					-	I	CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.		
					-	I	RXD — Receiver input for USART.		
PIO1_18/CT16B1_CAP1/	28	-	-	[3]	I; PU	I/O	PIO1_18 — General purpose digital input/output pin.		
ΓXD					-	I	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.		
					-	0	TXD — Transmitter output for USART.		

Table 108. Pin description (LPC1315/16/17 - no USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO1_19/DTR/SSEL1	3	2	1	[3]	I; PU	I/O	PIO1_19 — General purpose digital input/output pin.
					-	0	DTR — Data Terminal Ready output for USART.
					-	I/O	SSEL1 — Slave select for SSP1.
PIO1_20/DSR/SCK1	18	13	-	[3]	I; PU	I/O	PIO1_20 — General purpose digital input/output pin.
					-	I	DSR — Data Set Ready input for USART.
					-	I/O	SCK1 — Serial clock for SSP1.
PIO1_21/DCD/MISO1	35	26	-	[3]	I; PU	I/O	PIO1_21 — General purpose digital input/output pin.
					-	I	DCD — Data Carrier Detect input for USART.
					-	I/O	MISO1 — Master In Slave Out for SSP1.
PIO1_22/RI/MOSI1	51	38	-	[3]	I; PU	I/O	PIO1_22 — General purpose digital input/output pin.
					-	I	RI — Ring Indicator input for USART.
					-	I/O	MOSI1 — Master Out Slave In for SSP1.
PIO1_23/CT16B1_MAT1/	24	18	13	[3]	I; PU	I/O	PIO1_23 — General purpose digital input/output pin.
SSEL1					-	0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					-	I/O	SSEL1 — Slave select for SSP1.
PIO1_24/CT32B0_MAT0	27	21	14	[3]	I; PU	I/O	PIO1_24 — General purpose digital input/output pin.
					-	0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO1_25/CT32B0_MAT1	2	1	-	[3]	I; PU	I/O	PIO1_25 — General purpose digital input/output pin.
					-	0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_26/CT32B0_MAT2/	14	11	-	[3]	I; PU	I/O	PIO1_26 — General purpose digital input/output pin.
RXD					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					-	I	RXD — Receiver input for USART.
PIO1_27/CT32B0_MAT3/	15	12	-	[3]	I; PU	I/O	PIO1_27 — General purpose digital input/output pin.
TXD					-	0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
					-	0	TXD — Transmitter output for USART.
PIO1_28/CT32B0_CAP0/	31	24	-	[3]	I; PU	I/O	PIO1_28 — General purpose digital input/output pin.
SCLK					-	1	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO1_29/SCK0/	41	31	-	[3]	I; PU	I/O	PIO1_29 — General purpose digital input/output pin.
CT32B0_CAP1					-	I/O	SCK0 — Serial clock for SSP0.
					-	I	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO1_31	-	25	-	[3]	I; PU	I/O	PIO1_31 — General purpose digital input/output pin.
n.c.	25	19	-		-	-	Not connected.
n.c.	26	20	-		-	-	Not connected.
XTALIN	8	6	4	[8]	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	9	7	5	[8]	-	-	Output from the oscillator amplifier.

Table 108. Pin description (LPC1315/16/17 - no USB)

Symbol	LQFP64	LQFP48	HVQFN33	Reset state[1]	Туре	Description
V_{DDA}	59	-	-	-	-	analog 3.3 V pad supply voltage: This should be nominally the same voltage as V_{DD} but should be isolated to minimize noise and error. This voltage is used to power the ADC. This pin should be tied to 3.3 V if the ADC is not used.
VREFN	48	-	-	-	-	ADC negative reference voltage: This should be nominally the same voltage as $V_{\rm SS}$ but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC.
VREFP	64	-	-	-	-	ADC positive reference voltage: This should be nominally the same voltage as V_{DDA} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used.
V _{SSA}	55	-	-	-	-	analog ground: 0 V reference. This should nominally be the same voltage as V_{SS} , but should be isolated to minimize noise and error.
$V_{ extsf{DD}}$	10; 33; 58	8; 44	6; 29	-	-	Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage.
V_{SS}	7; 54	5; 41	33	-	-	Ground.

- [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.
- [2] See Figure 10 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.
- [3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 9).
- [4] I²C-bus pins compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus.
- [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 9); includes high-current output driver.
- [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see <u>Figure 9</u>); includes programmable digital input glitch filter.
- [7] WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 9); includes digital input glitch filter.
- [8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
RESET/PIO0_0	4	3	2	[2]	I; PU	I	RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode.
					-	I/O	PIO0_0 — General purpose digital input/output pin.
PIO0_1/CLKOUT/ CT32B0_MAT2/ USB_FTOGGLE	5	4	3	[3]	I; PU	I/O	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler or the USB device enumeration.
					-	0	CLKOUT — Clockout pin.
					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					-	0	USB_FTOGGLE — USB 1 ms Start-of-Frame signal.
PIO0_2/SSEL0/	13	10	8	[3]	I; PU	I/O	PIO0_2 — General purpose digital input/output pin.
CT16B0_CAP0						I/O	SSEL0 — Slave select for SSP0.
						I	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO0_3/USB_VBUS	19	14	9	[3]	I; PU	I/O	PIO0_3 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. A HIGH level during reset starts the USB device enumeration.
					-	I	USB_VBUS — Monitors the presence of USB bus power.
PIO0_4/SCL	20	15	10	10 [4]	IA	I/O	PIO0_4 — General purpose digital input/output pin (open-drain).
					-	I/O	SCL — I ² C-bus clock input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_5/SDA	21	16	11	[4]	IA	I/O	PIO0_5 — General purpose digital input/output pin (open-drain).
					-	I/O	SDA — I ² C-bus data input/output (open-drain). High-current sink only if I ² C Fast-mode Plus is selected in the I/O configuration register.
PIO0_6/USB_CONNECT/	29	22	15	[3]	I; PU	I/O	PIO0_6 — General purpose digital input/output pin.
SCK0					-	0	USB_CONNECT — Signal used to switch an external 1.5 kΩ resistor under software control. Used with the SoftConnect USB feature.
					-	I/O	SCK0 — Serial clock for SSP0.
PIO0_7/CTS	30	23	16	<u>[5]</u>	I; PU	I/O	PIO0_7 — General purpose digital input/output pin (high-current output driver).
					-	I	CTS — Clear To Send input for USART.
PIO0_8/MISO0/	36	27	17	[3]	I; PU	I/O	PIO0_8 — General purpose digital input/output pin.
CT16B0_MAT0					-	I/O	MISO0 — Master In Slave Out for SSP0.
					-	0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO0_9/MOSI0/	37	28	18	[3]	I; PU	I/O	PIO0_9 — General purpose digital input/output pin.
CT16B0_MAT1/ SWO					-	I/O	MOSI0 — Master Out Slave In for SSP0.
OWO					-	0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					-	0	SWO — Serial wire trace output.
SWCLK/PIO0_10/SCK0/ CT16B0_MAT2	38	29	19	[3]	I; PU	I	SWCLK — Serial wire clock and test clock TCK for JTAG interface.
					-	I/O	PIO0_10 — General purpose digital input/output pin.
					-	0	SCK0 — Serial clock for SSP0.
					-	0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
TDI/PIO0_11/AD0/	42	32	21	[6]	I; PU	I	TDI — Test Data In for JTAG interface.
CT32B0_MAT3					-	I/O	PIO0_11 — General purpose digital input/output pin.
					-	I	AD0 — A/D converter, input 0.
					-	0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
TMS/PIO0_12/AD1/	44	33	22	[6]	I; PU	I	TMS — Test Mode Select for JTAG interface.
CT32B1_CAP0					-	I/O	PIO_12 — General purpose digital input/output pin.
					-	I	AD1 — A/D converter, input 1.
					-	I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
TDO/PIO0_13/AD2/	45	34 23 [6]		[6]	I; PU	0	TDO — Test Data Out for JTAG interface.
CT32B1_MAT0				- I/O PIO0_13 — General purpose digital input/outpu		PIO0_13 — General purpose digital input/output pin.	
					-	I	AD2 — A/D converter, input 2.
					-	0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
TRST/PIO0_14/AD3/	46	35	24	[6]	I; PU	I	TRST — Test Reset for JTAG interface.
CT32B1_MAT1					-	I/O	PIO0_14 — General purpose digital input/output pin.
					-	I	AD3 — A/D converter, input 3.
					-	0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
SWDIO/PIO0_15/AD4/	52	39	25	[6]	I; PU	I/O	SWDIO — Serial wire debug input/output.
CT32B1_MAT2					-	I/O	PIO0_15 — General purpose digital input/output pin.
					-	I	AD4 — A/D converter, input 4.
					-	0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO0_16/AD5/	53	40	26	[7]	I; PU	I/O	PIO0_16 — General purpose digital input/output pin.
CT32B1_MAT3/WAKEUP					-	I	AD5 — A/D converter, input 5.
					-	0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
					-	I	WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO0_17/RTS/	60	45	30	[3]	I; PU	I/O	PIO0_17 — General purpose digital input/output pin.
CT32B0_CAP0/SCLK					-	0	RTS — Request To Send output for USART.
					-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO0_18/RXD/	61	46	31	[3]	I; PU	I/O	PIO0_18 — General purpose digital input/output pin.
CT32B0_MAT0					-	I	RXD — Receiver input for USART. Used in UART ISP mode.
					-	0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO0_19/TXD/	62	47	32	[3]	I; PU	I/O	PIO0_19 — General purpose digital input/output pin.
CT32B0_MAT1					-	0	TXD — Transmitter output for USART. Used in UART ISP mode.
					-	0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO0_20/CT16B1_CAP0	11	9	7	[3]	I; PU	I/O	PIO0_20 — General purpose digital input/output pin.
					-	I	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO0_21/CT16B1_MAT0/	CT16B1_MAT0/ 22 17		12	[3]	I; PU	I/O	PIO0_21 — General purpose digital input/output pin.
MOSI1					-	0	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
					-	I/O	MOSI1 — Master Out Slave In for SSP1.
PIO0_22/AD6/	40	30	20	[6]	I; PU	I/O	PIO0_22 — General purpose digital input/output pin.
CT16B1_MAT1/MISO1					-	I	AD6 — A/D converter, input 6.
					-	0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					-	I/O	MISO1 — Master In Slave Out for SSP1.
PIO0_23/AD7	56	42	27	[6]	I; PU	I/O	PIO0_23 — General purpose digital input/output pin.
					-	I	AD7 — A/D converter, input 7.
PIO1_0/CT32B1_MAT0	1	-	-	[3]	I; PU	I/O	PIO1_0 — General purpose digital input/output pin.
					-	0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
PIO1_1/CT32B1_MAT1	17	-	-	[3]	I; PU	I/O	PIO1_1 — General purpose digital input/output pin.
					-	0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
PIO1_2/CT32B1_MAT2	34	-	-	[3]	I; PU	I/O	PIO1_2 — General purpose digital input/output pin.
					-	0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
PIO1_3/CT32B1_MAT3	50	-	-	[3]	I; PU	I/O	PIO1_3 — General purpose digital input/output pin.
					-	0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
PIO1_4/CT32B1_CAP0	16	-	-	[3]	I; PU	I/O	PIO1_4 — General purpose digital input/output pin.
					-	I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
PIO1_5/CT32B1_CAP1	32	-	-	[3]	I; PU	I/O	PIO1_5 — General purpose digital input/output pin.
					-	I	CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.
PIO1_7	6	-	-	[3]	I; PU	I/O	PIO1_7 — General purpose digital input/output pin.
PIO1_8	39	-	-	[3]	I; PU	I/O	PIO1_8 — General purpose digital input/output pin.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO1_10	12	-	-	[3]	I; PU	I/O	PIO1_10 — General purpose digital input/output pin.
PIO1_11	43	-	-	[3]	I; PU	I/O	PIO1_11 — General purpose digital input/output pin.
PIO1_13/DTR/	47	36	-	[3]	I; PU	I/O	PIO1_13 — General purpose digital input/output pin.
CT16B0_MAT0/TXD					-	0	DTR — Data Terminal Ready output for USART.
					-	0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
					-	0	TXD — Transmitter output for USART.
PIO1_14/DSR/	49	37	-	[3]	I; PU	I/O	PIO1_14 — General purpose digital input/output pin.
CT16B0_MAT1/RXD					-	I	DSR — Data Set Ready input for USART.
					-	0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					-	I	RXD — Receiver input for USART.
PIO1_15/DCD/	57	43	28	[3]	I; PU	I/O	PIO1_15 — General purpose digital input/output pin.
CT16B0_MAT2/SCK1					-	I	DCD — Data Carrier Detect input for USART.
					-	0	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
					-	I/O	SCK1 — Serial clock for SSP1.
PIO1_16/RI/CT16B0_CAP0	63	48	-	[3]	I; PU	I/O	PIO1_16 — General purpose digital input/output pin.
					-	ı	RI — Ring Indicator input for USART.
					-	ı	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO1_17/CT16B0_CAP1/	23	-	-	[3]	I; PU	I/O	PIO1_17 — General purpose digital input/output pin.
RXD					-	I	CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.
					-	I	RXD — Receiver input for USART.
PIO1_18/CT16B1_CAP1/	28	-	-	[3]	I; PU	I/O	PIO1_18 — General purpose digital input/output pin.
TXD					-	I	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
					-	0	TXD — Transmitter output for USART.
PIO1_19/DTR/SSEL1	3	2	1	[3]	I; PU	I/O	PIO1_19 — General purpose digital input/output pin.
					-	0	DTR — Data Terminal Ready output for USART.
					-	I/O	SSEL1 — Slave select for SSP1.
PIO1_20/DSR/SCK1	18	13	-	[3]	I; PU	I/O	PIO1_20 — General purpose digital input/output pin.
					-	I	DSR — Data Set Ready input for USART.
					-	I/O	SCK1 — Serial clock for SSP1.
PIO1_21/DCD/MISO1	35	26	-	[3]	I; PU	I/O	PIO1_21 — General purpose digital input/output pin.
					-	I	DCD — Data Carrier Detect input for USART.
					-	I/O	MISO1 — Master In Slave Out for SSP1.
PIO1_22/RI/MOSI1	51	38	-	[3]	I; PU	I/O	PIO1_22 — General purpose digital input/output pin.
					-	I	RI — Ring Indicator input for USART.
					-	I/O	MOSI1 — Master Out Slave In for SSP1.
PIO1_23/CT16B1_MAT1/	24	18	-	[3]	I; PU	I/O	PIO1_23 — General purpose digital input/output pin.
SSEL1					-	0	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					-	I/O	SSEL1 — Slave select for SSP1.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol	LQFP64	LQFP48	HVQFN33		Reset state[1]	Туре	Description
PIO1_24/CT32B0_MAT0	_ 27	 21		[3]	⊬ I; PU	I/O	PIO1_24 — General purpose digital input/output pin.
,						0	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
PIO1_25/CT32B0_MAT1	2	1	_	[3]	I; PU	I/O	PIO1_25 — General purpose digital input/output pin.
					_	0	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
PIO1_26/CT32B0_MAT2/	14	11	-	[3]	I; PU	I/O	PIO1_26 — General purpose digital input/output pin.
RXD					-	0	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					-	I	RXD — Receiver input for USART.
PIO1_27/CT32B0_MAT3/	15	12	-	[3]	I; PU	I/O	PIO1_27 — General purpose digital input/output pin.
TXD					-	0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
					-	0	TXD — Transmitter output for USART.
PIO1_28/CT32B0_CAP0/	31	24	-	[3]	I; PU	I/O	PIO1_28 — General purpose digital input/output pin.
SCLK					-	I	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
					-	I/O	SCLK — Serial clock input/output for USART in synchronous mode.
PIO1_29/SCK0/	41	31	_ [3]		I; PU	I/O	PIO1_29 — General purpose digital input/output pin.
CT32B0_CAP1					-	I/O	SCK0 — Serial clock for SSP0.
					-	I	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO1_31	-	25	-	[3]	I; PU	I/O	PIO1_31 — General purpose digital input/output pin.
USB_DM	25	19	13	[8]	F	-	USB_DM — USB bidirectional D- line. (LPC1345/46/47 only.)
USB_DP	26	20	14	[8]	F	-	USB_DP — USB bidirectional D+ line. (LPC1345/46/47 only.)
XTALIN	8	6	4	[9]	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	9	7	5	[9]	-	-	Output from the oscillator amplifier.
V _{DDA}	59	-	-		-	-	analog 3.3 V pad supply voltage: This should be nominally the same voltage as V _{DD} but should be isolated to minimize noise and error. This voltage is used to power the ADC. This pin should be tied to 3.3 V if the ADC are not used.
VREFN	48	-	-		-	-	ADC negative reference voltage: This should be nominally the same voltage as V _{SS} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC.

Table 109. Pin description (LPC1345/46/47 - with USB)

Symbol				Ξ		Description
	LQFP64	LQFP48	HVQFN33	Reset state[1]	Type	
VREFP	64	-	-	-	-	ADC positive reference voltage: This should be nominally the same voltage as V_{DDA} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used.
V _{SSA}	55	-	-	-	-	analog ground: 0 V reference. This should nominally be the same voltage as $V_{\rm SS}$, but should be isolated to minimize noise and error.
V_{DD}	10; 33; 58	8; 44	6; 29	-	-	Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage.
V _{SS}	7; 54	5; 41	33	-	-	Ground.

- [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.
- See Figure 10 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down
- [3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 9).
- [4] I²C-bus pins compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus.
- 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 9); includes high-current output driver.
- 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 9); includes programmable digital input glitch filter.
- WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 9); includes digital input glitch filter.
- Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.
- When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

UM10524

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Rev. 4 — 12 March 2013

User manual

9.1 How to read this chapter

All GPIO registers refer to 32 pins on each port. Depending on the package type, not all pins are available, and the corresponding bits in the GPIO registers are reserved (see Table 110).

Table 110. GPIO pins available

Package	GPIO Port 0	GPIO Port 1
LQFP64	PIO0_0 to PIO0_23	PIO1_0 to PIO1_5; PIO1_7 to PIO1_8; PIO1_10 to PIO1_29
LQFP48	PIO0_0 to PIO0_23	PIO1_13 to PIO1_16; PIO1_19 to PIO1_23 to PIO1_29; PIO1_31
HVQFN (no USB)	PIO0_0 to PIO0_23	PIO1_15; PIO1_19; PIO1_23 to PIO1_24
HVQFN (USB)	PIO0_0 to PIO0_23	PIO1_15; PIO1_19

9.2 Basic configuration

Various register blocks must be enabled to use the GPIO port and pin interrupt features:

- For the pin interrupts, select up to 8 external interrupt pins from all GPIO port pins in the SYSCON block (<u>Table 35</u>) and enable the clock to the pin interrupt register block in the SYSAHBCLKCTRL register (<u>Table 19</u>, bit 19). The pin interrupt wake-up feature is enabled in the STARTERPO register (<u>Table 38</u>).
- For the group interrupt feature, enable the clock to the GROUP0 and GROUP1 register interfaces in the SYSAHBCLKCTRL register ((<u>Table 19</u>, bit 19). The group interrupt wake-up feature is enabled in the STARTERP1 register (<u>Table 39</u>).
- For the GPIO port registers, enable the clock to the GPIO port register in the SYSAHBCLKCTRL register (<u>Table 19</u>, bit 6).

9.3 Features

9.3.1 GPIO pin interrupt features

- Up to 8 pins can be selected from all GPIO pins as edge- or level-sensitive interrupt requests. Each request creates a separate interrupt in the NVIC.
- Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
- Level-sensitive interrupt pins can be HIGH- or LOW-active.

9.3.2 **GPIO** group interrupt features

- The inputs from any number of GPIO pins can be enabled to contribute to a combined group interrupt.
- The polarity of each input enabled for the group interrupt can be configured HIGH or LOW.

UM10524

Chapter 9: LPC1315/16/17/45/46/47 GPIO

- Enabled interrupts can be logically combined through an OR or AND operation.
- Two group interrupts are supported to reflect two distinct interrupt patterns.
- The GPIO group interrupts can wake up the part from sleep, deep-sleep or power-down modes.

9.3.3 GPIO port features

- GPIO pins can be configured as input or output by software.
- · All GPIO pins default to inputs with interrupt disabled at reset.
- Pin registers allow pins to be sensed and set individually.

9.4 Introduction

The GPIO pins can be used in several ways to set pins as inputs or outputs and use the inputs as combinations of level and edge sensitive interrupts.

9.4.1 GPIO pin interrupts

From all available GPIO pins, up to eight pins can be selected in the system control block to serve as external interrupt pins (see <u>Table 35</u>). The external interrupt pins are connected to eight individual interrupts in the NVIC and are created based on rising or falling edges or on the input level on the pin.

9.4.2 GPIO group interrupt

For each port/pin connected to one of the two the GPIO Grouped Interrupt blocks (GROUP0 and GROUP1), the GPIO grouped interrupt registers determine which pins are enabled to generate interrupts and what the active polarities of each of those inputs are.

The GPIO grouped interrupt registers also select whether the interrupt output will be level or edge triggered and whether it will be based on the OR or the AND of all of the enabled inputs.

When the designated pattern is detected on the selected input pins, the GPIO grouped interrupt block will generate an interrupt. If the part is in a power-savings mode it will first asynchronously wake the part up prior to asserting the interrupt request. The interrupt request line can be cleared by writing a one to the interrupt status bit in the control register.

9.4.3 GPIO port

The GPIO port registers can be used to configure each GPIO pin as input or output and read the state of each pin if the pin is configured as input or set the state of each pin if the pin is configured as output.

9.5 Register description

The GPIO consists of the following blocks:

Chapter 9: LPC1315/16/17/45/46/47 GPIO

- The GPIO pin interrupts block at address 0x4004 C000. Registers in this block enable
 the up to 8 pin interrupts selected in the syscon block PINTSEL registers (see
 <u>Table 35</u>) and configure the level and edge sensitivity for each selected pin interrupt.
 The GPIO interrupt registers are listed in <u>Table 111</u> and <u>Section 9.5.1</u>
- The GPIO GROUP0 interrupt block at address 0x4005 C000. Registers in this block allow to configure any pin on port 0 and 1 to contribute to a combined interrupt. The GPIO GROUP0 registers are listed in Table 112 and Section 9.5.2.
- The GPIO GROUP1 interrupt block at address 0x4006 0000. Registers in this block allow to configure any pin on port 0 and 1 to contribute to a combined interrupt. The GPIO GROUP1 registers are listed in Table 113 and Section 9.5.2.
- The GPIO port block at address 0x5000 0000. Registers in this block allow to read and write to port pins and configure port pins as inputs or outputs. The GPIO port registers are listed in Table 114 and Section 9.5.3.

Note: In all GPIO registers, bits that are not shown are **reserved**.

Table 111. Register overview: GPIO pin interrupts (base address: 0x4004 C000)

Name ISEL ISEL IENR IENR ISEL IENR ISEL ISEL ISEL ISEN<						
IENR R/W 0x004 Pin interrupt level (rising edge) interrupt 0 Table 116 enable register SIENR WO 0x008 Pin interrupt level (rising edge) interrupt set register CIENR WO 0x00C Pin interrupt level (rising edge interrupt) NA Table 118 clear register IENF R/W 0x010 Pin interrupt active level (falling edge) 0 Table 119 interrupt enable register SIENF WO 0x014 Pin interrupt active level (falling edge) NA Table 120 interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	Name	Access		Description		Reference
enable register SIENR WO 0x008 Pin interrupt level (rising edge) interrupt set NA Table 117 register CIENR WO 0x00C Pin interrupt level (rising edge interrupt) NA Table 118 clear register IENF R/W 0x010 Pin interrupt active level (falling edge) 0 Table 119 interrupt enable register SIENF WO 0x014 Pin interrupt active level (falling edge) NA Table 120 interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	ISEL	R/W	0x000	Pin Interrupt Mode register	0	<u>Table 115</u>
register CIENR WO 0x00C Pin interrupt level (rising edge interrupt) NA Table 118 clear register IENF R/W 0x010 Pin interrupt active level (falling edge) 0 Table 119 interrupt enable register SIENF WO 0x014 Pin interrupt active level (falling edge) NA Table 120 interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	IENR	R/W	0x004		0	Table 116
Clear register IENF R/W 0x010 Pin interrupt active level (falling edge) 0 Table 119 interrupt enable register SIENF WO 0x014 Pin interrupt active level (falling edge) NA Table 120 interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	SIENR	WO	0x008		NA	Table 117
interrupt enable register SIENF WO 0x014 Pin interrupt active level (falling edge) interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	CIENR	WO	0x00C		NA	Table 118
interrupt set register CIENF WO 0x018 Pin interrupt active level (falling edge) NA Table 121 interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	IENF	R/W	0x010		0	Table 119
interrupt clear register RISE R/W 0x01C Pin interrupt rising edge register 0 Table 122 FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	SIENF	WO	0x014		NA	<u>Table 120</u>
FALL R/W 0x020 Pin interrupt falling edge register 0 Table 123	CIENF	WO	0x018		NA	<u>Table 121</u>
	RISE	R/W	0x01C	Pin interrupt rising edge register	0	Table 122
IST R/W 0x024 Pin interrupt status register 0 <u>Table 124</u>	FALL	R/W	0x020	Pin interrupt falling edge register	0	Table 123
	IST	R/W	0x024	Pin interrupt status register	0	Table 124

Table 112. Register overview: GPIO GROUP0 interrupt (base address 0x4005 C000)

Name	Access	Address offset	Description	Reset value	Reference
CTRL	R/W	0x000	GPIO grouped interrupt control register	0	Table 125
PORT_POL0	R/W	0x020	GPIO grouped interrupt port 0 polarity register	0xFFFF FFFF	<u>Table 126</u>
PORT_POL1	R/W	0x024	GPIO grouped interrupt port 1 polarity register	0xFFFF FFFF	<u>Table 127</u>
PORT_ENA0	R/W	0x040	GPIO grouped interrupt port 0 enable register	0	Table 128
PORT_ENA1	R/W	0x044	GPIO grouped interrupt port 1 enable register	0	<u>Table 129</u>

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 113. Register overview: GPIO GROUP1 interrupt (base address 0x4006 0000)

Name	Access	Address offset	Description	Reset value	Reference
CTRL	R/W	0x000	GPIO grouped interrupt control register	0	Table 125
PORT_POL0	R/W	0x020	GPIO grouped interrupt port 0 polarity register	0xFFFF FFFF	Table 126
PORT_POL1	R/W	0x024	GPIO grouped interrupt port 1 polarity register	0xFFFF FFFF	Table 127
PORT_ENA0	R/W	0x040	GPIO grouped interrupt port 0 enable register	0	Table 128
PORT_ENA1	R/W	0x044	GPIO grouped interrupt port 1 enable register	0	Table 129

GPIO port addresses can be read and written as bytes, halfwords, or words.

Table 114. Register overview: GPIO port (base address 0x5000 0000)

Name	Access	Address offset	Description	Reset value	Width	Reference
B0 to B23	R/W	0x0000 to 0x0018	Byte pin registers port 0; pins PIO0_0 to PIO0_24	ext[1]	byte (8 bit)	Table 130
B32 to B63	R/W	0x0020 to 0x002F	Byte pin registers port 1	ext[1]	byte (8 bit)	<u>Table 131</u>
W0 to W23	R/W	0x1000 to 0x1060	Word pin registers port 0	ext[1]	word (32 bit)	<u>Table 132</u>
W32 to W63	R/W	0x1080 to 0x10FC	Word pin registers port 1	ext[1]	word (32 bit)	<u>Table 133</u>
DIR0	R/W	0x2000	Direction registers port 0	0	word (32 bit)	<u>Table 134</u>
DIR1	R/W	0x2004	Direction registers port 1	0	word (32 bit)	<u>Table 135</u>
MASK0	R/W	0x2080	Mask register port 0	0	word (32 bit)	Table 136
MASK1	R/W	0x2084	Mask register port 1	0	word (32 bit)	<u>Table 137</u>
PIN0	R/W	0x2100	Port pin register port 0	ext[1]	word (32 bit)	<u>Table 138</u>
PIN1	R/W	0x2104	Port pin register port 1	ext[1]	word (32 bit)	Table 139
MPIN0	R/W	0x2180	Masked port register port 0	ext[1]	word (32 bit)	<u>Table 140</u>
MPIN1	R/W	0x2184	Masked port register port 1	ext[1]	word (32 bit)	Table 141
SET0	R/W	0x2200	Write: Set register for port 0 Read: output bits for port 0	0	word (32 bit)	Table 142
SET1	R/W	0x2204	Write: Set register for port 1 Read: output bits for port 1	0	word (32 bit)	Table 143
CLR0	WO	0x2280	Clear port 0	NA	word (32 bit)	Table 144
CLR1	WO	0x2284	Clear port 1	NA	word (32 bit)	Table 145
NOT0	WO	0x2300	Toggle port 0	NA	word (32 bit)	Table 146
NOT1	WO	0x2304	Toggle port 1	NA	word (32 bit)	Table 147

^[1] ext indicates that the data read after reset depends on the state of the pin, which in turn may depend on an external source.

9.5.1 GPIO pin interrupts register description

9.5.1.1 Pin interrupt mode register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the ISEL register determines whether the interrupt is edge or level sensitive.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 115. Pin interrupt mode register (ISEL, address 0x4004 C000) bit description

Bit	Symbol	Description	Reset value	Access
7:0	PMODE	Selects the interrupt mode for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Edge sensitive 1 = Level sensitive	0	R/W
31:8	-	Reserved.	-	-

9.5.1.2 Pin interrupt level (rising edge) interrupt enable register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the IENR register enables the interrupt depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is enabled.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is enabled. The IENF register configures the active level (HIGH or LOW) for this interrupt.

Table 116. Pin interrupt level (rising edge) interrupt enable register (IENR, address 0x4004 C004) bit description

		, and accompany		
Bit	Symbol	Description	Reset value	Access
7:0	ENRL	Enables the rising edge or level interrupt for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Disable rising edge or level interrupt. 1 = Enable rising edge or level interrupt.	0	R/W
31:8	-	Reserved.	-	-

9.5.1.3 Pin interrupt level (rising edge) interrupt set register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the SIENR register sets the corresponding bit in the IENR register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is set.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is set.

Table 117. Pin interrupt level (rising edge) interrupt set register (SIENR, address 0x4004 C008) bit description

Bit	Symbol	Description	Reset value	Access
7:0	SETENRL	Ones written to this address set bits in the IENR, thus enabling interrupts. Bit n sets bit n in the IENR register. 0 = No operation. 1 = Enable rising edge or level interrupt.	NA	WO
31:8	-	Reserved.	-	-

Chapter 9: LPC1315/16/17/45/46/47 GPIO

9.5.1.4 Pin interrupt level (rising edge interrupt) clear register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the CIENR register clears the corresponding bit in the IENR register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is cleared.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is cleared.

Table 118. Pin interrupt level (rising edge interrupt) clear register (CIENR, address 0x4004 C00C) bit description

Bit	Symbol	Description	Reset value	Access
7:0	CENRL	Ones written to this address clear bits in the IENR, thus disabling the interrupts. Bit n clears bit n in the IENR register. 0 = No operation. 1 = Disable rising edge or level interrupt.	NA	WO
31:8	-	Reserved.	-	-

9.5.1.5 Pin interrupt active level (falling edge) interrupt enable register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the IENF register enables the falling edge interrupt or the configures the level sensitivity depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is enabled.
- If the pin interrupt mode is level sensitive (PMODE = 1), the active level of the level interrupt (HIGH or LOW) is configured.

Table 119. Pin interrupt active level (falling edge) interrupt enable register (IENF, address 0x4004 C010) bit description

Bit	Symbol	Description	Reset value	Access
7:0	ENAF	Enables the falling edge or configures the active level interrupt for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Disable falling edge interrupt or set active interrupt level LOW. 1 = Enable falling edge interrupt enabled or set active interrupt level HIGH.	0	R/W
31:8	-	Reserved.	-	-

9.5.1.6 Pin interrupt active level (falling edge) interrupt set register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the SIENF register sets the corresponding bit in the IENF register depending on the pin interrupt mode configured in the ISEL register:

• If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is set.

UM10524

123 of 416

Chapter 9: LPC1315/16/17/45/46/47 GPIO

 If the pin interrupt mode is level sensitive (PMODE = 1), the HIGH-active interrupt is selected.

Table 120. Pin interrupt active level (falling edge interrupt) set register (SIENF, address 0x4004 C014) bit description

		7		
Bit	Symbol	Description	Reset value	Access
7:0	SETENAF	Ones written to this address set bits in the IENF, thus enabling interrupts. Bit n sets bit n in the IENF register. 0 = No operation. 1 = Select HIGH-active interrupt or enable falling edge interrupt.	NA	WO
31:8	-	Reserved.	-	-

9.5.1.7 Pin interrupt active level (falling edge interrupt) clear register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>), one bit in the CIENF register sets the corresponding bit in the IENF register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is cleared.
- If the pin interrupt mode is level sensitive (PMODE = 1), the LOW-active interrupt is selected.

Table 121. Pin interrupt active level (falling edge) interrupt clear register (CIENF, address 0x4004 C018) bit description

Bit	Symbol	Description	Reset value	Access
7:0	CENAF	Ones written to this address clears bits in the IENF, thus disabling interrupts. Bit n clears bit n in the IENF register. 0 = No operation. 1 = LOW-active interrupt selected or falling edge interrupt disabled.	NA	WO
31:8	-	Reserved.	-	-

9.5.1.8 Pin interrupt rising edge register

This register contains ones for pin interrupts selected in the PINTSELn registers (see <u>Table 35</u>) on which a rising edge has been detected. Writing ones to this register clears rising edge detection. Ones in this register assert an interrupt request for pins that are enabled for rising-edge interrupts. All edges are detected for all pins selected by the PINTSELn registers, regardless of whether they are interrupt-enabled.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 122. Pin interrupt rising edge register (RISE, address 0x4004 C01C) bit description

Bit	Symbol	Description	Reset value	Access
7:0	RDET	Rising edge detect. Bit n detects the rising edge of the pin selected in PINTSELn. Read 0: No rising edge has been detected on this pin since Reset or the last time a one was written to this bit. Write 0: no operation. Read 1: a rising edge has been detected since Reset or the last time a one was written to this bit. Write 1: clear rising edge detection for this pin.	0	R/W
31:8	-	Reserved.	-	-

9.5.1.9 Pin interrupt falling edge register

This register contains ones for pin interrupts selected in the PINTSELn registers (see Table 35) on which a falling edge has been detected. Writing ones to this register clears falling edge detection. Ones in this register assert an interrupt request for pins that are enabled for falling-edge interrupts. All edges are detected for all pins selected by the PINTSELn registers, regardless of whether they are interrupt-enabled.

Table 123. Pin interrupt falling edge register (FALL, address 0x4004 C020) bit description

				•
Bit	Symbol	Description	Reset value	Access
7:0	FDET	Falling edge detect. Bit n detects the falling edge of the pin selected in PINTSELn. Read 0: No falling edge has been detected on this pin since Reset or the last time a one was written to this bit. Write 0: no operation. Read 1: a falling edge has been detected since Reset or the last time a one was written to this bit. Write 1: clear falling edge detection for this pin.	0	R/W
31:8	-	Reserved.	-	-

9.5.1.10 Pin interrupt status register

Reading this register returns ones for pin interrupts that are currently requesting an interrupt. For pins identified as edge-sensitive in the Interrupt Select register, writing ones to this register clears both rising- and falling-edge detection for the pin. For level-sensitive pins, writing ones inverts the corresponding bit in the Active level register, thus switching the active level on the pin.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 124. Pin interrupt status register (IST address 0x4004 C024) bit description

			-	
Bit	Symbol	Description	Reset value	Access
7:0	PSTAT	Pin interrupt status. Bit n returns the status, clears the edge interrupt, or inverts the active level of the pin selected in PINTSELn. Read 0: interrupt is not being requested for this interrupt pin. Write 0: no operation. Read 1: interrupt is being requested for this interrupt pin. Write 1 (edge-sensitive): clear rising- and falling-edge detection for this pin. Write 1 (level-sensitive): switch the active level for this pin (in the IENF register).	0	R/W
31:8	-	Reserved.	-	-

9.5.2 GPIO GROUP0/GROUP1 interrupt register description

9.5.2.1 Grouped interrupt control register

Table 125. GPIO grouped interrupt control register (CTRL, addresses 0x4005 C000 (GROUP0 INT) and 0x4006 0000 (GROUP1 INT)) bit description

Bit	Symbol	Value	Description	Reset value
0	INT		Group interrupt status. This bit is cleared by writing a one to it. Writing zero has no effect.	0
		0	No interrupt request is pending.	
		1	Interrupt request is active.	
1	COMB		Combine enabled inputs for group interrupt	0
		0	OR functionality: A grouped interrupt is generated when any one of the enabled inputs is active (based on its programmed polarity).	
		1	AND functionality: An interrupt is generated when all enabled bits are active (based on their programmed polarity).	
2	TRIG		Group interrupt trigger	0
		0	Edge-triggered	
		1	Level-triggered	
31:3	-	-	Reserved	0

9.5.2.2 GPIO grouped interrupt port polarity registers

The grouped interrupt port polarity registers determine how the polarity of each enabled pin contributes to the grouped interrupt. Each port is associated with its own port polarity register, and the values of both registers together determine the grouped interrupt.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 126. GPIO grouped interrupt port 0 polarity registers (PORT_POL0, addresses 0x4005 C020 (GROUP0 INT) and 0x4006 0020 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	POL0	Configure pin polarity of port 0 pins for group interrupt. Bit n corresponds to pin P0_n of port 0. $0 = \text{the pin is active LOW}$. If the level on this pin is LOW, the pin contributes to the group interrupt. $1 = \text{the pin is active HIGH}$. If the level on this pin is HIGH, the pin contributes to the group interrupt.	1	-

Table 127. GPIO grouped interrupt port 1 polarity registers (PORT_POL1, addresses 0x4005 C024 (GROUP0 INT) and 0x4006 0024 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	POL1	Configure pin polarity of port 1 pins for group interrupt. Bit n corresponds to pin P1_n of port 1. 0 = the pin is active LOW. If the level on this pin is LOW, the pin contributes to the group interrupt. 1 = the pin is active HIGH. If the level on this pin is HIGH, the pin contributes to the group interrupt.	1	-

9.5.2.3 GPIO grouped interrupt port enable registers

The grouped interrupt port enable registers enable the pins which contribute to the grouped interrupt. Each port is associated with its own port enable register, and the values of both registers together determine which pins contribute to the grouped interrupt.

Table 128. GPIO grouped interrupt port 0 enable registers (PORT_ENA0, addresses 0x4005 C040 (GROUP0 INT) and 0x4006 0040 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	ENA0	Enable port 0 pin for group interrupt. Bit n corresponds to pin P0_n of port 0. 0 = the port 0 pin is disabled and does not contribute to the grouped interrupt. 1 = the port 0 pin is enabled and contributes to the grouped interrupt.	0	-

Table 129. GPIO grouped interrupt port 1 enable registers (PORT ENA1, addresses 0x4005 C044 (GROUP0 INT) and 0x4006 0044 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	ENA1	Enable port 1 pin for group interrupt. Bit n corresponds to pin P1_n of port 0. 0 = the port 1 pin is disabled and does not contribute to the grouped interrupt. 1 = the port 1 pin is enabled and contributes to the grouped interrupt.	0	-

Chapter 9: LPC1315/16/17/45/46/47 GPIO

9.5.3 GPIO port register description

9.5.3.1 GPIO port byte pin registers

Each GPIO pin has a byte register in this address range. Software typically reads and writes bytes to access individual pins, but can read or write halfwords to sense or set the state of two pins, and read or write words to sense or set the state of four pins.

Table 130. GPIO port 0 byte pin registers (B0 to B23, addresses 0x5000 0000 to 0x5000 0018) bit description

Bit	Symbol	Description	Reset value	Access
0	PBYTE	Read: state of the pin P0_n, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as 0. Write: loads the pin's output bit.	ext	R/W
7:1		Reserved (0 on read, ignored on write)	0	-

Table 131. GPIO port 1 byte pin registers (B32 to B63, addresses 0x5000 0020 to 0x5000 002F) bit description

Bit	Symbol	Description	Reset value	Access
0	PBYTE	Read: state of the pin P1_n, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as 0. Write: loads the pin's output bit.	ext	R/W
7:1		Reserved (0 on read, ignored on write)	0	-

9.5.3.2 GPIO port word pin registers

Each GPIO pin has a word register in this address range. Any byte, halfword, or word read in this range will be all zeros if the pin is low or all ones if the pin is high, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as zeros. Any write will clear the pin's output bit if the value written is all zeros, else it will set the pin's output bit.

Table 132. GPIO port 0 word pin registers (W0 to W23, addresses 0x5000 1000 to 0x5000 1060) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PWORD	Read 0: pin is LOW. Write 0: clear output bit. Read 0xFFFF FFFF: pin is HIGH. Write any value 0x0000 0001 to 0xFFFF FFFF: set output bit. Remark: Only 0 or 0xFFFF FFFF can be read. Writing any value other than 0 will set the output bit.	ext	R/W

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 133. GPIO port 1 word pin registers (W32 to W63, addresses 0x5000 1080 to 0x5000 10FC) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PWORD	Read 0: pin is LOW. Write 0: clear output bit. Read 0xFFFF FFFF: pin is HIGH. Write any value 0x0000 0001 to 0xFFFF FFFF: set output bit.	ext	R/W
		Remark: Only 0 or 0xFFFF FFFF can be read. Writing any value other than 0 will set the output bit.		

9.5.3.3 GPIO port direction registers

Each GPIO port has one direction register for configuring the port pins as inputs or outputs.

Table 134. GPIO direction port 0 register (DIR0, address 0x5000 2000) bit description

Bit	Symbol	Description	Reset value	Access
31:0	DIRP0	Selects pin direction for pin P0_n (bit 0 = P0_0, bit 1 = P0_1,, bit 31 = P0_31). 0 = input. 1 = output.	0	R/W

Table 135. GPIO direction port 1 register (DIR1, address 0x5000 2004) bit description

Bit	Symbol	Description	Reset value	Access
31:0	DIRP1	Selects pin direction for pin P1_n (bit 0 = P1_0, bit 1 = P1_1,, bit 31 = P1_31). 0 = input. 1 = output.	0	R/W

9.5.3.4 GPIO port mask registers

These registers affect writing and reading the MPORT registers. Zeroes in these registers enable reading and writing; ones disable writing and result in zeros in corresponding positions when reading.

Table 136. GPIO mask port 0 register (MASK0, address 0x5000 2080) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MASKP0	Controls which bits corresponding to P0_n are active in the P0MPORT register (bit 0 = P0_0, bit 1 = P0_1,, bit 31 = P0_31). 0 = Read MPORT: pin state; write MPORT: load output bit. 1 = Read MPORT: 0; write MPORT: output bit not affected.	0	R/W

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 137. GPIO mask port 1 register (MASK1, address 0x5000 2084) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MASKP1	Controls which bits corresponding to P1_n are active in the P1MPORT register (bit 0 = P1_0, bit 1 = P1_1,, bit 31 = P1_31). 0 = Read MPORT: pin state; write MPORT: load output bit. 1 = Read MPORT: 0; write MPORT: output bit not affected.	0	R/W

9.5.3.5 GPIO port pin registers

Reading these registers returns the current state of the pins read, regardless of direction, masking, or alternate functions, except that pins configured as analog I/O always read as 0s. Writing these registers loads the output bits of the pins written to, regardless of the Mask register.

Table 138. GPIO port 0 pin register (PIN0, address 0x5000 2100) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PORT0	Reads pin states or loads output bits (bit 0 = P0_0, bit 1 = P0_1,, bit 31 = P0_31). 0 = Read: pin is low; write: clear output bit. 1 = Read: pin is high; write: set output bit.	ext	R/W

Table 139. GPIO port 1 pin register (PIN1, address 0x5000 2104) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PORT1	Reads pin states or loads output bits (bit 0 = P1_0, bit 1 = P1_1,, bit 31 = P1_31). 0 = Read: pin is low; write: clear output bit. 1 = Read: pin is high; write: set output bit.	ext	R/W

9.5.3.6 GPIO masked port pin registers

These registers are similar to the PORT registers, except that the value read is masked by ANDing with the inverted contents of the corresponding MASK register, and writing to one of these registers only affects output register bits that are enabled by zeros in the corresponding MASK register

Table 140. GPIO masked port 0 pin register (MPIN0, address 0x5000 2180) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MPORTP0	Masked port register (bit 0 = P0_0, bit 1 = P0_1,, bit 31 = P0_31). 0 = Read: pin is LOW and/or the corresponding bit in the MASK register is 1; write: clear output bit if the corresponding bit in the MASK register is 0. 1 = Read: pin is HIGH and the corresponding bit in the MASK register is 0; write: set output bit if the corresponding bit in the MASK register is 0.	ext	R/W

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 141. GPIO masked port 1 pin register (MPIN1, address 0x5000 2184) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MPORTP1	Masked port register (bit 0 = P1_0, bit 1 = P1_1,, bit 31 = P1_31). 0 = Read: pin is LOW and/or the corresponding bit in the MASK register is 1; write: clear output bit if the corresponding bit in the MASK register is 0. 1 = Read: pin is HIGH and the corresponding bit in the MASK register is 0; write: set output bit if the corresponding bit in the MASK register is 0.	ext	R/W

9.5.3.7 GPIO port set registers

Output bits can be set by writing ones to these registers, regardless of MASK registers. Reading from these register returns the port's output bits, regardless of pin directions.

Table 142. GPIO set port 0 register (SET0, address 0x5000 2200) bit description

Bit	Symbol	Description	Reset value	Access
31:0	SETP0	Read or set output bits. 0 = Read: output bit: write: no operation. 1 = Read: output bit; write: set output bit.	0	R/W

Table 143. GPIO set port 1 register (SET1, address 0x5000 2204) bit description

Bit	Symbol	Description	Reset value	Access
31:0	SETP1	Read or set output bits. 0 = Read: output bit: write: no operation. 1 = Read: output bit; write: set output bit.	0	R/W

9.5.3.8 GPIO port clear registers

Output bits can be cleared by writing ones to these write-only registers, regardless of MASK registers.

Table 144. GPIO clear port 0 register (CLR0, address 0x5000 2280) bit description

Bit	Symbol	Description	Reset value	Access
31:0	CLRP0	Clear output bits: 0 = No operation. 1 = Clear output bit.	NA	WO

Table 145. GPIO clear port 1 register (CLR1, address 0x5000 2284) bit description

Bit	Symbol	Description	Reset value	Access
31:0	CLRP1	Clear output bits: 0 = No operation. 1 = Clear output bit.	NA	WO

9.5.3.9 GPIO port toggle registers

Output bits can be toggled/inverted/complemented by writing ones to these write-only registers, regardless of MASK registers.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

Table 146. GPIO toggle port 0 register (NOT0, address 0x5000 2300) bit description

Bit	Symbol	Description	Reset value	Access
31:0	NOTP0	Toggle output bits: 0 = no operation. 1 = Toggle output bit.	NA	WO

Table 147. GPIO toggle port 1 register (NOT1, address 0x5000 2304) bit description

Bit	Symbol	Description	Reset value	Access
31:0	NOTP1	Toggle output bits: 0 = no operation. 1 = Toggle output bit.	NA	WO

9.6 Functional description

9.6.1 Reading pin state

Software can read the state of all GPIO pins except those selected for analog input or output in the "I/O Configuration" logic. A pin does not have to be selected for GPIO in "I/O Configuration" in order to read its state. There are four ways to read pin state:

- The state of a single pin can be read with 7 high-order zeros from a Byte Pin register.
- The state of a single pin can be read in all bits of a byte, halfword, or word from a Word Pin register.
- The state of multiple pins in a port can be read as a byte, halfword, or word from a PORT register.
- The state of a selected subset of the pins in a port can be read from a Masked Port (MPORT) register. Pins having a 1 in the port's Mask register will read as 0 from its MPORT register.

9.6.2 GPIO output

Each GPIO pin has an output bit in the GPIO block. These output bits are the targets of write operations "to the pins". Two conditions must be met in order for a pin's output bit to be driven onto the pin:

- 1. The pin must be selected for GPIO operation in the "I/O Configuration" block, and
- 2. the pin must be selected for output by a 1 in its port's DIR register.

If either or both of these conditions is (are) not met, "writing to the pin" has no effect.

There are seven ways to change GPIO output bits:

- Writing to a Byte Pin register loads the output bit from the least significant bit.
- Writing to a Word Pin register loads the output bit with the OR of all of the bits written. (This feature follows the definition of "truth" of a multi-bit value in programming languages.)
- Writing to a port's PORT register loads the output bits of all the pins written to.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

- Writing to a port's MPORT register loads the output bits of pins identified by zeros in corresponding positions of the port's MASK register.
- Writing ones to a port's SET register sets output bits.
- Writing ones to a port's CLR register clears output bits.
- Writing ones to a port's NOT register toggles/complements/inverts output bits.

The state of a port's output bits can be read from its SET register. Reading any of the registers described in <u>9.6.1</u> returns the state of pins, regardless of their direction or alternate functions.

9.6.3 Masked I/O

A port's MASK register defines which of its pins should be accessible in its MPORT register. Zeroes in MASK enable the corresponding pins to be read from and written to MPORT. Ones in MASK force a pin to read as 0 and its output bit to be unaffected by writes to MPORT. When a port's MASK register contains all zeros, its PORT and MPORT registers operate identically for reading and writing.

Applications in which interrupts can result in Masked GPIO operation, or in task switching among tasks that do Masked GPIO operation, must treat code that uses the Mask register as a protected/restricted region. This can be done by interrupt disabling or by using a semaphore.

The simpler way to protect a block of code that uses a MASK register is to disable interrupts before setting the MASK register, and re-enable them after the last operation that uses the MPORT or MASK register.

More efficiently, software can dedicate a semaphore to the MASK registers, and set/capture the semaphore controlling exclusive use of the MASK registers before setting the MASK registers, and release the semaphore after the last operation that uses the MPORT or MASK registers.

9.6.4 GPIO Interrupts

Two separate GPIO interrupt facilities are provided. With pin interrupts, up to eight GPIO pins can each have separately-vectored, edge- or level-sensitive interrupts.

With group interrupts, any subset of the pins in each port can be selected to contribute to a common interrupt. Any of the pin and port interrupts can be enabled to wake the part from Deep-sleep mode or Power-down mode.

9.6.4.1 Pin interrupts

In this interrupt facility, up to 8 pins are identified as interrupt sources by the Pin Interrupt Select registers (PINTSEL0-7). All registers in the pin interrupt block contain 8 bits, corresponding to the pins called out by the PINTSEL0-7 registers. The ISEL register defines whether each interrupt pin is edge- or level-sensitive. The RISE and FALL registers detect edges on each interrupt pin, and can be written to clear (and set) edge detection. The IST register indicates whether each interrupt pin is currently requesting an interrupt, and this register can also be written to clear interrupts.

Chapter 9: LPC1315/16/17/45/46/47 GPIO

The other pin interrupt registers play different roles for edge-sensitive and level-sensitive pins, as described in Table 148.

Table 148. Pin interrupt registers for edge- and level-sensitive pins

Name	Edge-sensitive function	Level-sensitive function
IENR	Enables rising-edge interrupts.	Enables level interrupts.
SIENR	Write to enable rising-edge interrupts.	Write to enable level interrupts.
CIENR	Write to disable rising-edge interrupts.	Write to disable level interrupts.
IENF	Enables falling-edge interrupts.	Selects active level.
SIENF	Write to enable falling-edge interrupts.	Write to select high-active.
CIENF	Write to disable falling-edge interrupts.	Write to select low-active.

9.6.4.2 Group interrupts

In this interrupt facility, an interrupt can be requested for each port, based on any selected subset of pins within each port. The pins that contribute to each port interrupt are selected by 1s in the port's Enable register, and an interrupt polarity can be selected for each pin in the port's Polarity register. The level on each pin is exclusive-ORed with its polarity bit and the result is ANDed with its enable bit, and these results are then inclusive-ORed among all the pins in the port, to create the port's raw interrupt request.

The raw interrupt request from each of the two group interrupts is sent to the NVIC, which can be programmed to treat it as level- or edge-sensitive (see Section 6.4), or it can be edge-detected by the wake-up interrupt logic (see Table 39).

9.6.5 Recommended practices

The following lists some recommended uses for using the GPIO port registers:

- For initial setup after Reset or re-initialization, write the PORT register(s).
- To change the state of one pin, write a Byte Pin or Word Pin register.
- To change the state of multiple pins at a time, write the SET and/or CLR registers.
- To change the state of multiple pins in a tightly controlled environment like a software state machine, consider using the NOT register. This can require less write operations than SET and CLR.
- To read the state of one pin, read a Byte Pin or Word Pin register.
- To make a decision based on multiple pins, read and mask a PORT register.

UM10524

Chapter 10: LPC1345/46/47 USB2.0 device controller

Rev. 4 — 12 March 2013

User manual

10.1 How to read this chapter

The USB block is available on the LPC1345/46/47 parts.

10.2 Basic configuration

- Pins: Configure the USB pins in the IOCON register block.
- In the SYSAHBCLKCTRL register, enable the clock to the USB controller register interface by setting bit 14 and to the USB RAM by setting bit 27 (see <u>Table 19</u>).
- Power: Enable the power to the USB PHY and to the USB PLL, if used, in the PDRUNCFG register (<u>Table 42</u>).
- Configure the USB main clock (see <u>Table 25</u>).
- Configure the USB wake-up signal (see Section 10.7.6) if needed.

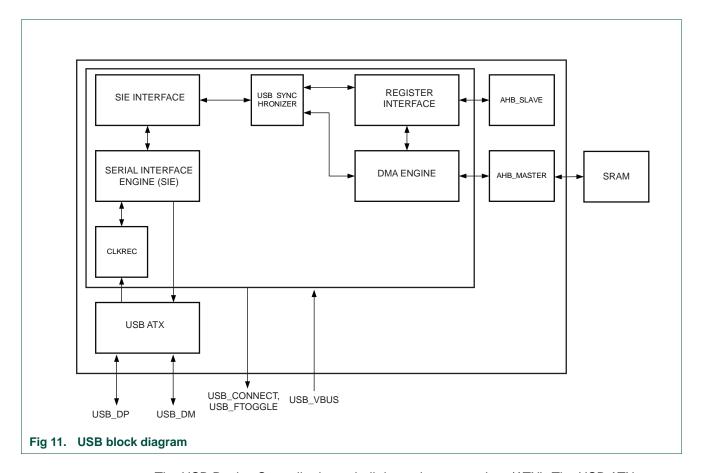
10.3 Features

- USB2.0 full-speed device controller.
- Supports 10 physical (5 logical) endpoints including one control endpoint.
- Single and double-buffering supported.
- Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.
- Supports wake-up from Deep-sleep mode on USB activity and remote wake-up.
- Supports SoftConnect.

10.4 General description

The Universal Serial Bus (USB) is a four-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The host schedules transactions in 1 ms frames. Each frame contains a Start-Of-Frame (SOF) marker and transactions that transfer data to or from device endpoints. Each device can have a maximum of 16 logical or 32 physical endpoints. The LPC1315/16/17/45/46/47 device controller supports up to 10 physical endpoints. There are four types of transfers defined for the endpoints. Control transfers are used to configure the device.

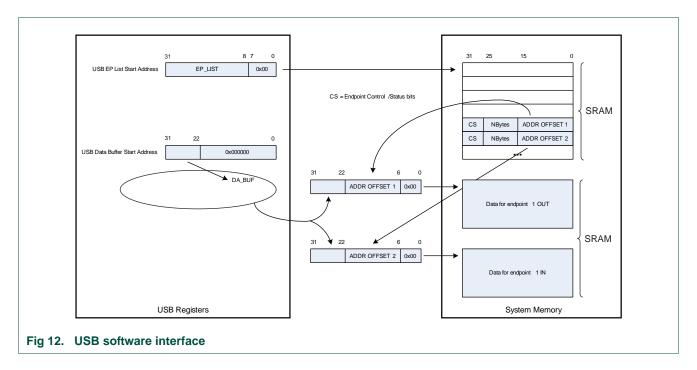

Interrupt transfers are used for periodic data transfer. Bulk transfers are used when the latency of transfer is not critical. Isochronous transfers have guaranteed delivery time but no error correction.

For more information on the Universal Serial Bus, see the USB Implementers Forum website.

Chapter 10: LPC1345/46/47 USB2.0 device controller

The USB device controller on the LPC1315/16/17/45/46/47 enables full-speed (12 Mb/s) data exchange with a USB host controller.

Figure 11 shows the block diagram of the USB device controller.



The USB Device Controller has a built-in analog transceiver (ATX). The USB ATX sends/receives the bi-directional USB_DP and USB_DM signals of the USB bus.

The SIE implements the full USB protocol layer. It is completely hardwired for speed and needs no software intervention. It handles transfer of data between the endpoint buffers in USB RAM and the USB bus. The functions of this block include: synchronization pattern recognition, parallel/serial conversion, bit stuffing/de-stuffing, CRC checking/generation, PID verification/generation, address recognition, and handshake evaluation/generation.

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.4.1 USB software interface

10.4.2 Fixed endpoint configuration

<u>Table 149</u> shows the supported endpoint configurations. The packet size is configurable up to the maximum value shown in <u>Table 149</u> for each type of end point.

Table 149. Fixed endpoint configuration

		J			
Logical endpoint	Physical endpoint	Endpoint type	Direction	Max packet size (byte)	Double buffer
0	0	Control	Out	64	No
0	1	Control	In	64	No
1	2	Interrupt/Bulk/Isochronous	Out	64/64/1023	Yes
1	3	Interrupt/Bulk/Isochronous	In	64/64/1023	Yes
2	4	Interrupt/Bulk/Isochronous	Out	64/64/1023	Yes
2	5	Interrupt/Bulk/Isochronous	In	64/64/1023	Yes
3	6	Interrupt/Bulk/Isochronous	Out	64/64/1023	Yes
3	7	Interrupt/Bulk/Isochronous	In	64/64/1023	Yes
4	8	Interrupt/Bulk/Isochronous	Out	64/64/1023	Yes
4	9	Interrupt/Bulk/Isochronous	In	64/64/1023	Yes

10.4.3 SoftConnect

The connection to the USB is accomplished by bringing USB_DP (for a full-speed device) HIGH through a 1.5 kOhm pull-up resistor. The SoftConnect feature can be used to allow software to finish its initialization sequence before deciding to establish connection to the USB. Re-initialization of the USB bus connection can also be performed without having to unplug the cable.

Chapter 10: LPC1345/46/47 USB2.0 device controller

To use the SoftConnect feature, the CONNECT signal should control an external switch that connects the 1.5 kOhm resistor between USB_DP and V_{DD} (+3.3 V). Software can then control the CONNECT signal by writing to the DCON bit in the DEVCMDSTAT register.

10.4.4 Interrupts

The USB controller has two interrupt lines USB_Int_Req_IRQ and USB_Int_Req_FIQ. Software can program the corresponding bit in the USB interrupt routing register to route the interrupt condition to one of these entries in the NVIC table <u>Table 53</u>. An interrupt is generated by the hardware if both the interrupt status bit and the corresponding interrupt enable bit are set. The interrupt status bit is set by hardware if the interrupt condition occurs (irrespective of the interrupt enable bit setting).

10.4.5 Suspend and resume

The USB protocol insists on power management by the USB device. This becomes even more important if the device draws power from the bus (bus-powered device). The following constraints should be met by the bus-powered device.

- A device in the non-configured state should draw a maximum of 100mA from the USB bus.
- A configured device can draw only up to what is specified in the Max Power field of the configuration descriptor. The maximum value is 500 mA.
- A suspended device should draw a maximum of 500 μA.

A device will go into the L2 suspend state if there is no activity on the USB bus for more than 3 ms. A suspended device wakes up, if there is transmission from the host (host-initiated wake up). The USB controller on the LPC1315/16/17/45/46/47 also supports software initiated remote wake-up. To initiate remote wake-up, software on the device must enable all clocks and clear the suspend bit. This will cause the hardware to generate a remote wake-up signal upstream.

The USB controller supports Link Power Management. Link Power Management defines an additional link power management state L1 that supplements the existing L2 state by utilizing most of the existing suspend/resume infrastructure but provides much faster transitional latencies between L1 and L0 (On).

The assertion of USB suspend signal indicates that there was no activity on the USB bus for the last 3 ms. At this time an interrupt is sent to the processor on which the software can start preparing the device for suspend.

If there is no activity for the next 2 ms, the USB need_clock signal will go low. This indicates that the USB main clock can be switched off.

When activity is detected on the USB bus, the USB suspend signal is deactivated and USB need_clock signal is activated. This process is fully combinatorial and hence no USB main clock is required to activate the USB need_clock signal.

10.4.6 Frame toggle output

The USB_FTOGGLE output pin reflects the 1 kHz clock derived from the incoming Start of Frame tokens sent by the USB host.

UM10524

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.4.7 Clocking

The LPC1315/16/17/45/46/47 USB device controller has the following clock connections:

- USB main clock: The USB main clock is the 48 MHz +/- 500 ppm clock from the
 dedicated USB PLL or the main clock (see <u>Table 25</u>). If the main clock is used, the
 system PLL output must be 48 MHz and derived from the system oscillator. The USB
 main clock is used to recover the 12 MHz clock from the USB bus.
- AHB clock: This is the AHB system bus clock. The minimum frequency of the AHB clock is 16 MHz when the USB device controller is receiving or transmitting USB packets.

10.5 Pin description

The device controller can access one USB port.

Table 150. USB device pin description

Name	Direction	Description
V_{BUS}	I	$V_{\mbox{\footnotesize BUS}}$ status input. When this function is not enabled via its corresponding IOCON register, it is driven HIGH internally.
USB_CONNECT	0	SoftConnect control signal.
USB_FTOGGLE	0	USB 1 ms SoF signal.
USB_DP	I/O	Positive differential data.
USB_DM	I/O	Negative differential data.

10.6 Register description

Table 151. Register overview: USB (base address: 0x4008 0000)

Name	Access	Address offset	Description	Reset value	Reference
DEVCMDSTAT	R/W	0x000	USB Device Command/Status register	0x0000080 0	<u>Table 152</u>
INFO	R/W	0x004	USB Info register	0	Table 153
EPLISTSTART	R/W	0x008	USB EP Command/Status List start address	0	<u>Table 154</u>
DATABUFSTART	R/W	0x00C	USB Data buffer start address	0	Table 155
LPM	R/W	0x010	Link Power Management register	0	<u>Table 156</u>
EPSKIP	R/W	0x014	USB Endpoint skip	0	Table 157
EPINUSE	R/W	0x018	USB Endpoint Buffer in use	0	Table 158
EPBUFCFG	R/W	0x01C	USB Endpoint Buffer Configuration register	0	<u>Table 159</u>
INTSTAT	R/W	0x020	USB interrupt status register	0	Table 160
INTEN	R/W	0x024	USB interrupt enable register	0	Table 161

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 151. Register overview: USB (base address: 0x4008 0000)

Name	Access	Address offset	Description	Reset value	Reference
INTSETSTAT	R/W	0x028	USB set interrupt status register	0	Table 162
INTROUTING	R/W	0x02C	USB interrupt routing register	0	Table 163
EPTOGGLE	R	0x034	USB Endpoint toggle register	0	Table 164

10.6.1 USB Device Command/Status register (DEVCMDSTAT)

Table 152. USB Device Command/Status register (DEVCMDSTAT, address 0x4008 0000) bit description

Bit	Symbol	Value	Description	Reset value	Access
6:0	DEV_ADDR		USB device address. After bus reset, the address is reset to 0x00. If the enable bit is set, the device will respond on packets for function address DEV_ADDR. When receiving a SetAddress Control Request from the USB host, software must program the new address before completing the status phase of the SetAddress Control Request.	0	RW
7	DEV_EN		USB device enable. If this bit is set, the HW will start responding on packets for function address DEV_ADDR.	0	RW
8	SETUP		SETUP token received. If a SETUP token is received and acknowledged by the device, this bit is set. As long as this bit is set all received IN and OUT tokens will be NAKed by HW. SW must clear this bit by writing a one. If this bit is zero, HW will handle the tokens to the CTRL EP0 as indicated by the CTRL EP0 IN and OUT data information programmed by SW.	0	RWC
9	PLL_ON		USB Clock/PLL control.	0	RW
		0	USB_NeedClk functional		
		1	USB_NeedClk always 1. Clock will not be stopped in case of suspend.		
10	-		Reserved.	0	RO
11	LPM_SUP	LPM_SUP LPM Su	LPM Support.	1	RW
		0	LPM not supported.		
		1	LPM supported.		
12	INTONNAK_AO		Interrupt on NAK for interrupt and bulk OUT EP	0	RW
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts.		
13	INTONNAK_AI		Interrupt on NAK for interrupt and bulk IN EP	0	RW
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts.		
14	INTONNAK_CO		Interrupt on NAK for control OUT EP	0	RW
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts.		
15	INTONNAK_CI		Interrupt on NAK for control IN EP	0	RW
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts.		

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 152. USB Device Command/Status register (DEVCMDSTAT, address 0x4008 0000) bit description

Bit	Symbol	Value	Description	Reset value	Access
16	DCON		Device status - connect. The connect bit must be set by SW to indicate that the device must signal a connect. The pull-up resistor on USB_DP will be enabled when this bit is set and the VbusDebounced bit is one.	0	RW
17	DSUS		Device status - suspend. The suspend bit indicates the current suspend state. It is set to 1 when the device hasn't seen any activity on its upstream port for more than 3 milliseconds. It is reset to 0 on any activity. When the device is suspended (Suspend bit DSUS = 1) and the software writes a 0 to it, the device will generate a remote wake-up. This will only happen when the device is connected (Connect bit = 1). When the device is not connected or not suspended, a writing a 0 has no effect. Writing a 1 never has an effect.	0	RW
18	-		Reserved.	0	RO
19	LPM_SUS		Device status - LPM Suspend. This bit represents the current LPM suspend state. It is set to 1 by HW when the device has acknowledged the LPM request from the USB host and the Token Retry Time of 10us has elapsed. When the device is in the LPM suspended state (LPM suspend bit = 1) and the software writes a zero to this bit, the device will generate a remote walk-up. Software can only write a zero to this bit when the LPM_REWP bit is set to 1. HW resets this bit when it receives a host initiated resume. HW only updates the LPM_SUS bit when the LPM_SUPP bit is equal to one.	0	RW
20	LPM_REWP		LPM Remote Wake-up Enabled by USB host. HW sets this bit to one when the bRemoteWake bit in the LPM extended token is set to 1. HW will reset this bit to 0 when it receives the host initiated LPM resume, when a remote wake-up is sent by the device or when a USB bus reset is received. Software can use this bit to check if the remote wake-up feature is enabled by the host for the LPM transaction.	0	RO
23:21	-		Reserved.	0	RO
24	DCON_C		Device status - connect change. The Connect Change bit is set when the device's pull-up resistor is disconnected because VBus disappeared. The bit is reset by writing a one to it.	0	RWC
25	DSUS_C		Device status - suspend change. The suspend change bit is set to 1 when the suspend bit toggles. The suspend bit can toggle because: - The device goes in the suspended state - The device is disconnected - The device receives resume signaling on its upstream port. The bit is reset by writing a one to it.	0	RWC
26	DRES_C		Device status - reset change. This bit is set when the device received a bus reset. On a bus reset the device will automatically go to the default state (unconfigured and responding to address 0). The bit is reset by writing a one to it.	0	RWC

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 152. USB Device Command/Status register (DEVCMDSTAT, address 0x4008 0000) bit description

Bit	Symbol	Value	Description	Reset value	Access
27	-		Reserved.	0	RO
28	VBUSDEBOUNCED		This bit indicates if Vbus is detected or not. The bit raises immediately when Vbus becomes high. It drops to zero if Vbus is low for at least 3 ms. If this bit is high and the DCon bit is set, the HW will enable the pull-up resistor to signal a connect.	0	RO
31:29	-		Reserved.	0	RO

10.6.2 USB Info register (INFO)

Table 153. USB Info register (INFO, address 0x4008 0004) bit description

Bit	Symbol	Value	Description	Reset value	Access
10:0	FRAME_NR		Frame number. This contains the frame number of the last successfully received SOF. In case no SOF was received by the device at the beginning of a frame, the frame number returned is that of the last successfully received SOF. In case the SOF frame number contained a CRC error, the frame number returned will be the corrupted frame number as received by the device.	0	RO
14:11	ERR_CODE		The error code which last occurred:	0	RW
		0x0	No error		
		0x1	PID encoding error		
		0x2	PID unknown		
		0x3	Packet unexpected		
		0x4	Token CRC error		
		0x5	Data CRC error		
		0x6	Time out		
		0x7	Babble		
		0x8	Truncated EOP		
		0x9	Sent/Received NAK		
		0xA	Sent Stall		
		0xB	Overrun		
		0xC	Sent empty packet		
		0xD	Bitstuff error		
		0xE	Sync error		
		0xF	Wrong data toggle		
15	-		Reserved.	0	RO
31:16	-	-	Reserved	-	RO

10.6.3 USB EP Command/Status List start address (EPLISTSTART)

This 32-bit register indicates the start address of the USB EP Command/Status List. Only a subset of these bits is programmable by software. The 8 least-significant bits are hardcoded to zero because the list must start on a 256 byte boundary. The bits 31 to 8 can be programmed by software.

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 154. USB EP Command/Status List start address (EPLISTSTART, address 0x4008 0008) bit description

Bit	Symbol	Description	Reset value	Access
7:0	-	Reserved	0	RO
31:8	EP_LIST	Start address of the USB EP Command/Status List.	0	R/W

10.6.4 USB Data buffer start address (DATABUFSTART)

This register indicates the page of the AHB address where the endpoint data can be located.

Table 155. USB Data buffer start address (DATABUFSTART, address 0x4008 000C) bit description

Bit	Symbol	Description	Reset value	Access
21:0	-	Reserved	0	R
31:22	DA_BUF	Start address of the buffer pointer page where all endpoint data buffers are located.	0	R/W

10.6.5 Link Power Management register (LPM)

Table 156. Link Power Management register (LPM, address 0x4008 0010) bit description

Bit Symbol Description Reset value Access value 3:0 HIRD_HW Host Initiated Resume Duration - HW. This is the HIRD value from the last received LPM token 0 RO 7:4 HIRD_SW Host Initiated Resume Duration - SW. This is the time duration required by the USB device system to come out of LPM initiated suspend after receiving the host initiated LPM resume. 0 R/W 8 DATA_PENDING As long as this bit is set to one and LPM supported bit is set to one, HW will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, HW will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is supported, it must set this bit to 1. 31:9 - Reserved 0 RO				-	-
the HIRD value from the last received LPM token 7:4 HIRD_SW Host Initiated Resume Duration - SW. This is the time duration required by the USB device system to come out of LPM initiated suspend after receiving the host initiated LPM resume. 8 DATA_PENDING As long as this bit is set to one and LPM supported bit is set to one, HW will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, HW will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is supported, it must set this bit to 1.	Bit	Symbol	Description		Access
the time duration required by the USB device system to come out of LPM initiated suspend after receiving the host initiated LPM resume. 8 DATA_PENDING As long as this bit is set to one and LPM osupported bit is set to one, HW will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, HW will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is supported, it must set this bit to 1.	3:0	HIRD_HW	the HIRD value from the last received LPM	0	RO
supported bit is set to one, HW will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, HW will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is supported, it must set this bit to 1.	7:4	HIRD_SW	the time duration required by the USB device system to come out of LPM initiated suspend	0	R/W
31:9 - Reserved 0 RO	8	DATA_PENDING	supported bit is set to one, HW will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, HW will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is	0	R/W
	31:9	-	Reserved	0	RO

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.6.6 USB Endpoint skip (EPSKIP)

Table 157. USB Endpoint skip (EPSKIP, address 0x4008 0014) bit description

Bit	Symbol	Description	Reset value	Access
29:0	SKIP	Endpoint skip: Writing 1 to one of these bits, will indicate to HW that it must deactivate the buffer assigned to this endpoint and return control back to software. When HW has deactivated the endpoint, it will clear this bit, but it will not modify the EPINUSE bit. An interrupt will be generated when the Active bit goes from 1 to 0. Note: In case of double-buffering, HW will only clear the Active bit of the buffer indicated by the EPINUSE bit.	0	R/W
31:30	-	Reserved	0	R

10.6.7 USB Endpoint Buffer in use (EPINUSE)

Table 158. USB Endpoint Buffer in use (EPINUSE, address 0x4008 0018) bit description

Bit	Symbol	Description	Reset value	Access
1:0	-	Reserved. Fixed to zero because the control endpoint zero is fixed to single-buffering for each physical endpoint.	0	R
9:2	BUF	Buffer in use: This register has one bit per physical endpoint. 0: HW is accessing buffer 0. 1: HW is accessing buffer 1.	0	R/W
31:10	-	Reserved	0	R

10.6.8 USB Endpoint Buffer Configuration (EPBUFCFG)

Table 159. USB Endpoint Buffer Configuration (EPBUFCFG, address 0x4008 001C) bit description

Bit	Symbol	Description	Reset value	Access
1:0	-	Reserved. Fixed to zero because the control endpoint zero is fixed to single-buffering for each physical endpoint.	0	R
9:2	BUF_SB	Buffer usage: This register has one bit per physical endpoint. 0: Single-buffer. 1: Double-buffer. If the bit is set to single-buffer (0), it will not toggle the corresponding EPINUSE bit when it clears the active bit. If the bit is set to double-buffer (1), HW will toggle the EPINUSE bit when it clears the Active bit for the buffer.	0	R/W
31:10	-	Reserved	0	R

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.6.9 USB interrupt status register (INTSTAT)

Table 160. USB interrupt status register (INTSTAT, address 0x4008 0020) bit description

Bit	Symbol	Description	Reset value	Access
0	EP0OUT	Interrupt status register bit for the Control EP0 OUT direction. This bit will be set if NBytes transitions to zero or the skip bit is set by software or a SETUP packet is successfully received for the control EP0. If the IntOnNAK_CO is set, this bit will also be set when a NAK is transmitted for the Control EP0 OUT direction. Software can clear this bit by writing a one to it.	0	R/WC
1	EPOIN	Interrupt status register bit for the Control EP0 IN direction. This bit will be set if NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_CI is set, this bit will also be set when a NAK is transmitted for the Control EP0 IN direction. Software can clear this bit by writing a one to it.	0	R/WC
2	EP1OUT	Interrupt status register bit for the EP1 OUT direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP1 OUT direction. Software can clear this bit by writing a one to it.	0	R/WC
3	EP1IN	Interrupt status register bit for the EP1 IN direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP1 IN direction. Software can clear this bit by writing a one to it.	0	R/WC
4	EP2OUT	Interrupt status register bit for the EP2 OUT direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP2 OUT direction. Software can clear this bit by writing a one to it.	0	R/WC
5	EP2IN	Interrupt status register bit for the EP2 IN direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP2 IN direction. Software can clear this bit by writing a one to it.	0	R/WC
6	EP3OUT	Interrupt status register bit for the EP3 OUT direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP3 OUT direction. Software can clear this bit by writing a one to it.	0	R/WC

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 160. USB interrupt status register (INTSTAT, address 0x4008 0020) bit description

Bit	Symbol	Description	Reset value	Access
7	EP3IN	Interrupt status register bit for the EP3 IN direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP3 IN direction. Software can clear this bit by writing a one to it.	0	R/WC
8	EP4OUT	Interrupt status register bit for the EP4 OUT direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP4 OUT direction. Software can clear this bit by writing a one to it.	0	R/WC
9	EP4IN	Interrupt status register bit for the EP4 IN direction. This bit will be set if the corresponding Active bit is cleared by HW. This is done in case the programmed NBytes transitions to zero or the skip bit is set by software. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP4 IN direction. Software can clear this bit by writing a one to it.	0	R/WC
29:10	-	Reserved	0	RO
30	FRAME_INT	Frame interrupt. This bit is set to one every millisecond when the VbusDebounced bit and the DCON bit are set. This bit can be used by software when handling isochronous endpoints. Software can clear this bit by writing a one to it.	0	R/WC
31	DEV_INT	Device status interrupt. This bit is set by HW when one of the bits in the Device Status Change register are set. Software can clear this bit by writing a one to it.	0	R/WC

10.6.10 USB interrupt enable register (INTEN)

Table 161. USB interrupt enable register (INTEN, address 0x4008 0024) bit description

Bit	Symbol	Description	Reset value	Access
9:0	EP_INT_EN	If this bit is set and the corresponding USB interrupt status bit is set, a HW interrupt is generated on the interrupt line indicated by the corresponding USB interrupt routing bit.	0	R/W
29:10	-	Reserved	0	RO
30	FRAME_INT_EN	If this bit is set and the corresponding USB interrupt status bit is set, a HW interrupt is generated on the interrupt line indicated by the corresponding USB interrupt routing bit.	0	R/W
31	DEV_INT_EN	If this bit is set and the corresponding USB interrupt status bit is set, a HW interrupt is generated on the interrupt line indicated by the corresponding USB interrupt routing bit.	0	R/W

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.6.11 USB set interrupt status register (INTSETSTAT)

Table 162. USB set interrupt status register (INTSETSTAT, address 0x4008 0028) bit description

Bit	Symbol	Description	Reset value	Access
9:0	EP_SET_INT	If software writes a one to one of these bits, the corresponding USB interrupt status bit is set. When this register is read, the same value as the USB interrupt status register is returned.		R/W
29:10	-	Reserved	0	RO
30	FRAME_SET_INT	If software writes a one to one of these bits, the corresponding USB interrupt status bit is set. When this register is read, the same value as the USB interrupt status register is returned.	0	R/W
31	DEV_SET_INT If software writes a one to one of these bits, the corresponding USB interrupt status bit is set. When this register is read, the same value as the USB interrupt status register is returned.		0	R/W

10.6.12 USB interrupt routing register (INTROUTING)

Table 163. USB interrupt routing register (INTROUTING, address 0x4008 002C) bit description

	accompain			
Bit	Symbol	Description	Reset value	Access
9:0	ROUTE_INT	This bit can control on which hardware interrupt line the interrupt will be generated: 0: IRQ interrupt line is selected for this interrupt bit 1: FIQ interrupt line is selected for this interrupt bit	0	R/W
29:10	-	Reserved	0	RO
30	ROUTE_INT	This bit can control on which hardware interrupt line the interrupt will be generated: 0: IRQ interrupt line is selected for this interrupt bit 1: FIQ interrupt line is selected for this interrupt bit	0	R/W
31	ROUTE_INT	This bit can control on which hardware interrupt line the interrupt will be generated: 0: IRQ interrupt line is selected for this interrupt bit 1: FIQ interrupt line is selected for this interrupt bit	0	R/W

10.6.13 USB Endpoint toggle (EPTOGGLE)

Table 164. USB Endpoint toggle (EPTOGGLE, address 0x4008 0034) bit description

Bit	Symbol	Description	Reset value	Access
9:0	TOGGLE	Endpoint data toggle: This field indicates the current value of the data toggle for the corresponding endpoint.	0	R
31:10	-	Reserved	0	R

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.7 Functional description

10.7.1 Endpoint command/status list

<u>Figure 13</u> gives an overview on how the Endpoint List is organized in memory. The USB EP Command/Status List start register points to the start of the list that contains all the endpoint information in memory. The order of the endpoints is fixed as shown in the picture.

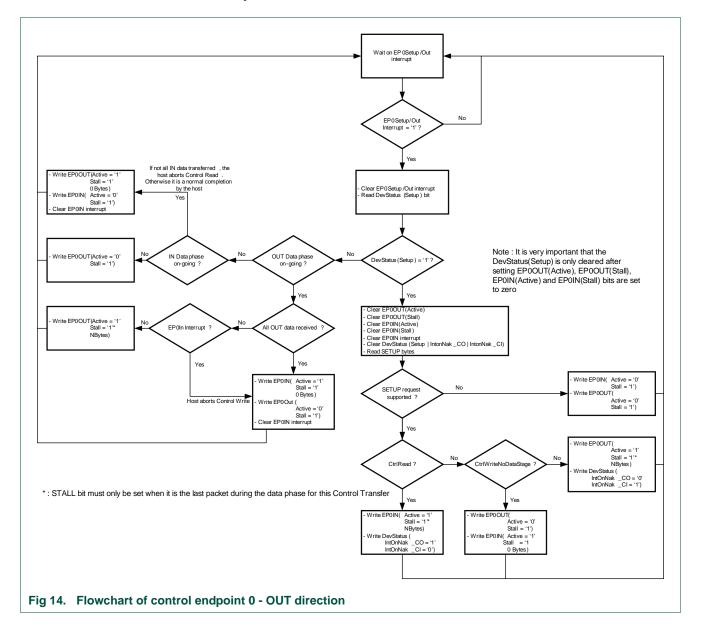
31	30	29	28	27	26	25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Α	R	s	TR	TV	R	EP0 OUT Buffer NBytes	EP0 OUT Buffer Address Offset
R	R	R	R	R	R	Reserved	SETUP bytes Buffer Address Offset
Α	R	S	TR	TV	R	EP0 IN Buffer NBytes	EP0 IN Buffer Address Offset
R	R	R	R	R	R	Reserved	Reserved
Α	D	s	TR	RF TV	Т	EP1 OUT Buffer 0 NBytes	EP1 OUT Buffer 0 Address Offset
Α	D	s	TR	RF TV	Т	EP1 OUT Buffer 1 NBytes	EP1 OUT Buffer 1 Address Offset
Α	D	s	TR	RF TV	Т	EP1 IN Buffer 0 NBytes	EP1 IN Buffer 0 Address Offset
Α	D	s	TR	RF TV	Т	EP1 IN Buffer 1 NBytes	EP1 IN Buffer 1 Address Offset
Α	D	s	TR	RF TV	Т	EP2 OUT Buffer 0 NBytes	EP2 OUT Buffer 0 Address Offset
Α	D	s	TR	RF TV	Т	EP2 OUT Buffer 1 NBytes	EP2 OUT Buffer 1 Address Offset
Α	D	S	TR	RF TV	Т	EP2 IN Buffer 0 NBytes	EP2 IN Buffer 0 Address Offset
Α	D	s	TR	RF TV	Т	EP2 IN Buffer 1 NBytes	EP2 IN Buffer 1 Address Offset
Α	D	S	TR	RF TV	Т	EP4 OUT Buffer 0 NBytes	EP4 OUT Buffer 0 Address Offset
Α	D	S	TR	RF TV	Т	EP4 OUT Buffer 1 NBytes	EP4 OUT Buffer 1 Address Offset
Α	D	S	TR	RF TV	Т	EP4 IN Buffer 0 NBytes	EP4 IN Buffer 0 Address Offset
Α	D	s	TR	RF TV	Т	EP4 IN Buffer 1 NBytes	EP4 IN Buffer 1 Address Offset

Chapter 10: LPC1345/46/47 USB2.0 device controller

Table 165. Endpoint commands

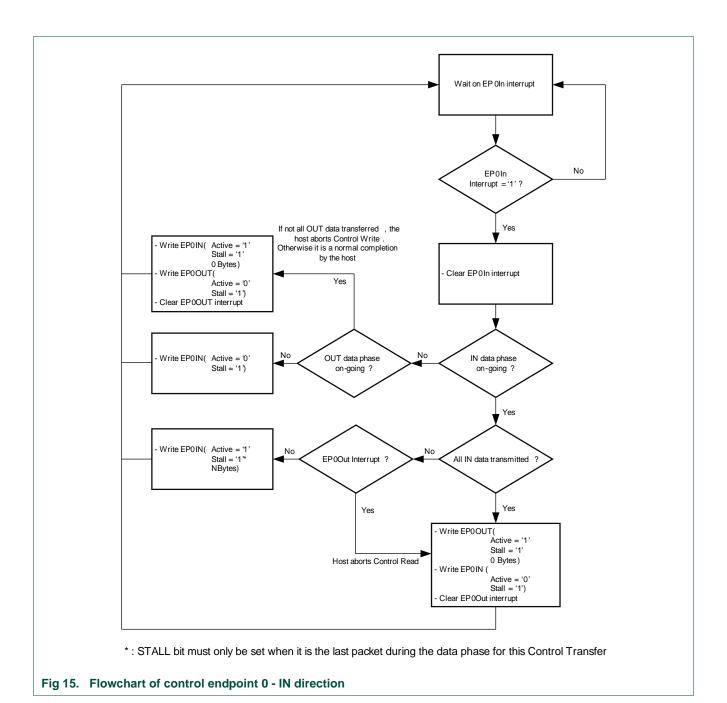
	Endpoint commands						
Symbol	Access	Description					
Α	RW	Active					
		The buffer is enabled. HW can use the buffer to store received OUT data or to transmit data on the IN endpoint.					
		Software can only set this bit to '1'. As long as this bit is set to one, software is not allowed to update any of the values in this 32-bit word. In case software wants to deactivate the buffer, it must write a one to the corresponding "skip" bit in the USB Endpoint skip register. Hardware can only write this bit to zero. It will do this when it receives a short packet or when the NBytes field transitions to zero or when software has written a one to the "skip" bit.					
D	RW	Disabled					
		0: The selected endpoint is enabled.					
		1: The selected endpoint is disabled.					
		If a USB token is received for an endpoint that has the disabled bit set, hardware will ignore the token and not return any data or handshake. When a bus reset is received, software must set the disable bit of all endpoints to 1.					
		Software can only modify this bit when the active bit is zero.					
S	RW	Stall					
		0: The selected endpoint is not stalled					
		1: The selected endpoint is stalled					
		The Active bit has always higher priority than the Stall bit. This means that a Stall handshake is only sent when the active bit is zero and the stall bit is one.					
		Software can only modify this bit when the active bit is zero.					
TR	RW	Toggle Reset					
		When software sets this bit to one, the HW will set the toggle value equal to the value indicated in the "toggle value" (TV) bit.					
		For the control endpoint zero, this is not needed to be used because the hardware resets the endpoint toggle to one for both directions when a setup token is received.					
		For the other endpoints, the toggle can only be reset to zero when the endpoint is reset.					
RF/TV	RW	Rate Feedback mode / Toggle value					
		For bulk endpoints and isochronous endpoints this bit is reserved and must be set to zero.					
		For the control endpoint zero this bit is used as the toggle value. When the toggle reset bit is set, the data toggle is updated with the value programmed in this bit.					
		When the endpoint is used as an interrupt endpoint, it can be set to the following values.					
		0: Interrupt endpoint in 'toggle mode'					
		1: Interrupt endpoint in 'rate feedback mode'. This means that the data toggle is fixed to zero for all data packets.					
		When the interrupt endpoint is in 'rate feedback mode', the TR bit must always be set to zero.					

Chapter 10: LPC1345/46/47 USB2.0 device controller


Table 165. Endpoint commands

Symbol	Access	Description
Т	RW	Endpoint Type
		0: Generic endpoint. The endpoint is configured as a bulk or interrupt endpoint
		1: Isochronous endpoint
NBytes	RW	For OUT endpoints this is the number of bytes that can be received in this buffer.
		For IN endpoints this is the number of bytes that must be transmitted.
		HW decrements this value with the packet size every time when a packet is successfully transferred.
		Note: If a short packet is received on an OUT endpoint, the active bit will be cleared and the NBytes value indicates the remaining buffer space that is not used. Software calculates the received number of bytes by subtracting the remaining NBytes from the programmed value.
Address	RW	Bits 21 to 6 of the buffer start address.
Offset		If the endpoint type is set to '0' (generic endpoint) this address is incremented every time a packet has been successfully received/transmitted.
		If the endpoint type is set to '1' (isochronous endpoint), the address is not incremented.

Remark: When receiving a SETUP token for endpoint zero, the HW will only read the SETUP bytes Buffer Address offset to know where it has to store the received SETUP bytes. The hardware will ignore all other fields. In case the SETUP stage contains more than 8 bytes, it will only write the first 8 bytes to memory. A USB compliant host must never send more than 8 bytes during the SETUP stage.


Chapter 10: LPC1345/46/47 USB2.0 device controller

10.7.2 Control endpoint 0

151 of 416

Chapter 10: LPC1345/46/47 USB2.0 device controller

10.7.3 Generic endpoint: single-buffering

To enable single-buffering, software must set the corresponding "USB EP Buffer Config" bit to zero. In the "USB EP Buffer in use" register, software can indicate which buffer is used in this case.

When software wants to transfer data, it programs the different bits in the Endpoint command/status entry and sets the active bits. The hardware will transmit/receive multiple packets for this endpoint until the NBytes value is equal to zero. When NBytes goes to zero, hardware clears the active bit and sets the corresponding interrupt status bit.

Chapter 10: LPC1345/46/47 USB2.0 device controller

Software must wait until hardware has cleared the Active bit to change some of the command/status bits. This prevents hardware from overwriting a new value programmed by software with some old values that were still cached.

If software wants to disable the active bit before the hardware has finished handling the complete buffer, it can do this by setting the corresponding endpoint skip bit in USB endpoint skip register.

10.7.4 Generic endpoint: double-buffering

To enable double-buffering, software must set the corresponding "USB EP Buffer Config" bit to one. The "USB EP Buffer in use" register indicates which buffer will be used by HW when the next token is received.

When HW clears the active bit of the current buffer in use, it will switch the buffer in use. Software can also force HW to use a certain buffer by writing to the "USB EP Buffer in use" bit.

10.7.5 Special cases

10.7.5.1 Use of the Active bit

The use of the Active bit is a bit different between OUT and IN endpoints.

When data must be received for the OUT endpoint, the software will set the Active bit to one and program the NBytes field to the maximum number of bytes it can receive.

When data must be transmitted for an IN endpoint, the software sets the Active bit to one and programs the NBytes field to the number of bytes that must be transmitted.

10.7.5.2 Generation of a STALL handshake

Special care must be taken when programming the endpoint to send a STALL handshake. A STALL handshake is only sent in the following situations:

- The endpoint is enabled (Disabled bit = 0)
- The active bit of the endpoint is set to 0. (No packet needs to be received/transmitted for that endpoint).
- The stall bit of the endpoint is set to one.

10.7.5.3 Clear Feature (endpoint halt)

When a non-control endpoint has returned a STALL handshake, the host will send a Clear Feature (Endpoint Halt) for that endpoint. When the device receives this request, the endpoint must be unstalled and the toggle bit for that endpoint must be reset back to zero. In order to do that the software must program the following items for the endpoint that is indicated.

If the endpoint is used in single-buffer mode, program the following:

- Set STALL bit (S) to 0.
- Set toggle reset bit (TR) to 1 and set toggle value bit (TV) to 0.

If the endpoint is used in double-buffer mode, program the following:

Chapter 10: LPC1345/46/47 USB2.0 device controller

- Set the STALL bit of both buffer 0 and buffer 1 to 0.
- Read the buffer in use bit for this endpoint.
- Set the toggle reset bit (TR) to 1 and set the toggle value bit (TV) to 0 for the buffer indicated by the buffer in use bit.

10.7.5.4 Set configuration

When a SetConfiguration request is received with a configuration value different from zero, the device software must enable all endpoints that will be used in this configuration and reset all the toggle values. To do so, it must generate the procedure explained in Section 10.7.5.3 for every endpoint that will be used in this configuration.

For all endpoints that are not used in this configuration, it must set the Disabled bit (D) to one.

10.7.6 **USB** wake-up

10.7.6.1 Waking up from Deep-sleep and Power-down modes on USB activity

To allow the LPC1315/16/17/45/46/47 to wake up from Deep-sleep or Power-down mode on USB activity, complete the following steps:

- 1. Set bit AP_CLK in the USBCLKCTRL register (<u>Table 36</u>) to 0 (default) to enable automatic control of the USB need_clock signal.
- 2. Wait until USB activity is suspended by polling the DSUS bit in the DSVCMD_STAT register (DSUS = 1).
- 3. The USB need_clock signal will be deasserted after another 2 ms. Poll the USBCLKST register until the USB need_clock status bit is 0 (<u>Table 37</u>).
- 4. Once the USBCLKST register returns 0, enable the USB activity wake-up interrupt in the NVIC (# 30) and clear it.
- 5. Set bit 1 in the USBCLKCTRL register to 1 to trigger the USB activity wake-up interrupt on the rising edge of the USB need clock signal.
- 6. Enable the wake-up from Deep-sleep or Power-down modes on this interrupt by enabling the USB need_clock signal in the STARTERP1 register (<u>Table 39</u>, bit 19).
- 7. Enter Deep-sleep or Power-down modes by writing to the PCON register.
- 8. Execute a WFI instruction.

The LPC1315/16/17/45/46/47 will automatically wake up and resume execution on USB activity.

10.7.6.2 Remote wake-up

To issue a remote wake-up when the USB activity is suspended, complete the following steps:

- Set bit AP_CLK in the USBCLKCTRL register to 0 (<u>Table 36</u>, default) to enable automatic control of the USB need_clock signal.
- When it is time to issue a remote wake-up, turn on the USB clock and enable the USB clock source.
- Force the USB clock on by writing a 1 to bit AP_CLK (<u>Table 36</u>, bit 0) in the USBCLKCTRL register.

UM10524

Chapter 10: LPC1345/46/47 USB2.0 device controller

- 4. Write a 0 to the DSUS bit in the DSVCMD_STAT register.
- 5. Wait until the USB leaves the suspend state by polling the DSUS bit in the DSVCMD_STAT register (DSUS =0).
- 6. Clear the AP_CLK bit (<u>Table 36</u>, bit 0) in the USBCLKCTRL to enable automatic USB clock control.

UM10524

Chapter 11: LPC1345/46/47 USB on-chip drivers

Rev. 4 — 12 March 2013

User manual

11.1 How to read this chapter

The USB on-chip drivers are available on parts LPC1345/46/47.

11.2 Introduction

The boot ROM contains a USB driver to simplify the USB application development. The USB driver implements the Communication Device Class (CDC), the Human Interface Device (HID), and the Mass Storage Device (MSC) device class. The USB on-chip drivers support composite device.

11.3 USB driver functions

The USB device driver ROM API consists of the following modules:

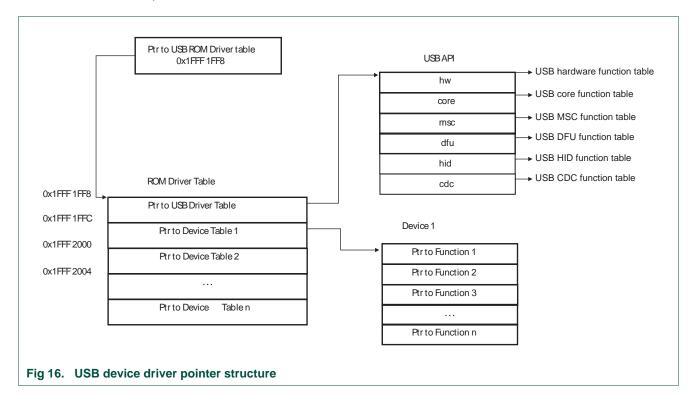
- Communication Device Class (CDC) function driver. This module contains an internal
 implementation of the USB CDC Class. User applications can use this class driver
 instead of implementing the CDC-ACM class manually via the low-level USBD_HW
 and USBD_Core APIs. This module is designed to simplify the user code by exposing
 only the required interface needed to interface with Devices using the USB CDC-ACM
 Class.
 - Communication Device Class function driver initialization parameter data structure (Table 193 "USBD_CDC_INIT_PARAM class structure").
 - CDC class API functions structure. This module exposes functions which interact directly with USB device controller hardware (<u>Table 192 "USBD_CDC_API class</u> <u>structure"</u>).
- USB core layer
 - struct (Table 189 "_WB_T class structure")
 - union (Table 166 "__WORD_BYTE class structure")
 - struct (Table 167 "_BM_T class structure")
 - struct (Table 180 "_REQUEST_TYPE class structure")
 - struct (Table 187 "_USB_SETUP_PACKET class structure")
 - struct (Table 183 "_USB_DEVICE_QUALIFIER_DESCRIPTOR class structure")
 - struct USB device descriptor
 - struct (Table 183 "_USB_DEVICE_QUALIFIER_DESCRIPTOR class structure")
 - struct USB configuration descriptor
 - struct (Table 185 "_USB_INTERFACE_DESCRIPTOR class structure")
 - struct USB endpoint descriptor
 - struct (Table 188 "_USB_STRING_DESCRIPTOR class structure")
 - struct (Table 181 "_USB_COMMON_DESCRIPTOR class structure")
 - struct (Table 186 "_USB_OTHER_SPEED_CONFIGURATION class structure")

Chapter 11: LPC1345/46/47 USB on-chip drivers

- USB descriptors data structure (<u>Table 182 "_USB_CORE_DESCS_T class structure</u>")
- USB device stack initialization parameter data structure (<u>Table 191</u> "USBD API INIT PARAM class structure").
- USB device stack core API functions structure (<u>Table 194 "USBD_CORE_API</u> class structure").
- Device Firmware Upgrade (DFU) class function driver
 - DFU descriptors data structure (<u>Table 196 "USBD_DFU_INIT_PARAM class</u> structure").
 - DFU class API functions structure. This module exposes functions which interact directly with the USB device controller hardware (<u>Table 195 "USBD_DFU_API</u> <u>class structure</u>").
- HID class function driver
 - struct (Table 175 "_HID_DESCRIPTOR class structure").
 - struct (Table 177 "_HID_REPORT_T class structure").
 - USB descriptors data structure (<u>Table 198 "USBD_HID_INIT_PARAM class structure</u>").
 - HID class API functions structure. This structure contains pointers to all the functions exposed by the HID function driver module (<u>Table 199 "USBD_HW_API</u> <u>class structure"</u>).
- USB device controller driver
 - Hardware API functions structure. This module exposes functions which interact directly with the USB device controller hardware (<u>Table 199 "USBD_HW_API class</u> structure").
- Mass Storage Class (MSC) function driver
 - Mass Storage Class function driver initialization parameter data structure (<u>Table 201</u>).
 - MSC class API functions structure. This module exposes functions which interact directly with the USB device controller hardware (Table 200).

11.4 Calling the USB device driver

A fixed location in ROM contains a pointer to the ROM driver table i.e. 0x1FFF 1FF8. The ROM driver table contains a pointer to the USB driver table. Pointers to the various USB driver functions are stored in this table. USB driver functions can be called by using a C structure. Figure 16 illustrates the pointer mechanism used to access the on-chip USB driver.


```
typedef struct USBD_API
{
const USBD_HW_API_T* hw;
const USBD_CORE_API_T* core;
const USBD_MSC_API_T* msc;
```

UM10524

157 of 416

Chapter 11: LPC1345/46/47 USB on-chip drivers

```
const USBD_DFU_API_T* dfu;
const USBD_HID_API_T* hid;
const USBD_CDC_API_T* cdc;
const uint32_t* reserved6;
const uint32_t version;
} USBD_API_T;
```


11.5 USB API

11.5.1 __WORD_BYTE

Table 166. __WORD_BYTE class structure

Member	Description
W	uint16_tuint16_tWORD_BYTE::W
	data member to do 16 bit access
WB	WB_TWB_TWORD_BYTE::WB
	data member to do 8 bit access

11.5.2 _BM_T

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 167. _BM_T class structure

Member	Description
Recipient	uint8_tuint8_t _BM_T::Recipient Recipient type.
Туре	uint8_tuint8_t _BM_T::Type Request type.
Dir	uint8_tuint8_t _BM_T::Dir Direction type.

11.5.3 _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR

Table 168. _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR class structure

Member	Description
bFunctionLength	uint8_tuint8_t _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR::bFunctionLength
bDescriptorType	uint8_tuint8_t _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR::bDescriptorType
bDescriptorSubtype	uint8_tuint8_t _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR::bDescriptorSubtype
bmCapabilities	uint8_tuint8_t _CDC_ABSTRACT_CONTROL_MANAGEMENT_DESCRIPTOR::bmCapabilities

11.5.4 _CDC_CALL_MANAGEMENT_DESCRIPTOR

Table 169. _CDC_CALL_MANAGEMENT_DESCRIPTOR class structure

Member	Description
bFunctionLength	uint8_tuint8_t _CDC_CALL_MANAGEMENT_DESCRIPTOR::bFunctionLength
bDescriptorType	uint8_tuint8_t _CDC_CALL_MANAGEMENT_DESCRIPTOR::bDescriptorType
bDescriptorSubtype	uint8_tuint8_t _CDC_CALL_MANAGEMENT_DESCRIPTOR::bDescriptorSubtype
bmCapabilities	uint8_tuint8_t _CDC_CALL_MANAGEMENT_DESCRIPTOR::bmCapabilities
bDataInterface	uint8_tuint8_t _CDC_CALL_MANAGEMENT_DESCRIPTOR::bDataInterface

11.5.5 _CDC_HEADER_DESCRIPTOR

Table 170. _CDC_HEADER_DESCRIPTOR class structure

Member	Description
bFunctionLength	uint8_tuint8_t _CDC_HEADER_DESCRIPTOR::bFunctionLength
bDescriptorType	uint8_tuint8_t _CDC_HEADER_DESCRIPTOR::bDescriptorType
bDescriptorSubtype	uint8_tuint8_t _CDC_HEADER_DESCRIPTOR::bDescriptorSubtype
bcdCDC	uint16_tuint16_t _CDC_HEADER_DESCRIPTOR::bcdCDC

11.5.6 _CDC_LINE_CODING

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 171. _CDC_LINE_CODING class structure

Member	Description
dwDTERate	uint32_tuint32_t _CDC_LINE_CODING::dwDTERate
bCharFormat	uint8_tuint8_t _CDC_LINE_CODING::bCharFormat
bParityType	uint8_tuint8_t _CDC_LINE_CODING::bParityType
bDataBits	uint8_tuint8_t _CDC_LINE_CODING::bDataBits

11.5.7 _CDC_UNION_1SLAVE_DESCRIPTOR

Table 172. _CDC_UNION_1SLAVE_DESCRIPTOR class structure

Member	Description
sUnion	CDC_UNION_DESCRIPTORCDC_UNION_DESCRIPTOR _CDC_UNION_1SLAVE_DESCRIPTOR::sUnion
bSlaveInterfaces	uint8_tuint8_t _CDC_UNION_1SLAVE_DESCRIPTOR::bSlaveInterfaces[1][1]

11.5.8 _CDC_UNION_DESCRIPTOR

Table 173. _CDC_UNION_DESCRIPTOR class structure

Member	Description
bFunctionLength	uint8_tuint8_t _CDC_UNION_DESCRIPTOR::bFunctionLength
bDescriptorType	uint8_tuint8_t _CDC_UNION_DESCRIPTOR::bDescriptorType
bDescriptorSubtype	uint8_tuint8_t _CDC_UNION_DESCRIPTOR::bDescriptorSubtype
bMasterInterface	uint8_tuint8_t _CDC_UNION_DESCRIPTOR::bMasterInterface

11.5.9 _DFU_STATUS

Table 174. _DFU_STATUS class structure

Member	Description
bStatus	uint8_tuint8_t _DFU_STATUS::bStatus
bwPollTimeout	uint8_tuint8_t _DFU_STATUS::bwPollTimeout[3][3]
bState	uint8_tuint8_t _DFU_STATUS::bState
iString	uint8_tuint8_t _DFU_STATUS::iString

11.5.10 _HID_DESCRIPTOR

HID class-specific HID Descriptor.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 175. _HID_DESCRIPTOR class structure

Description
uint8_tuint8_t _HID_DESCRIPTOR::bLength
Size of the descriptor, in bytes.
uint8_tuint8_t _HID_DESCRIPTOR::bDescriptorType
Type of HID descriptor.
uint16_tuint16_t _HID_DESCRIPTOR::bcdHID
BCD encoded version that the HID descriptor and device complies to.
uint8_tuint8_t _HID_DESCRIPTOR::bCountryCode
Country code of the localized device, or zero if universal.
uint8_tuint8_t _HID_DESCRIPTOR::bNumDescriptors
Total number of HID report descriptors for the interface.
PRE_PACK struct POST_PACK _HID_DESCRIPTOR::_HID_DESCRIPTOR_LISTPRE_PACK struct
POST_PACK _HID_DESCRIPTOR::_HID_DESCRIPTOR_LIST
_HID_DESCRIPTOR::DescriptorList[1][1]
Array of one or more descriptors

11.5.11 _HID_DESCRIPTOR::_HID_DESCRIPTOR_LIST

Table 176. _HID_DESCRIPTOR::_HID_DESCRIPTOR_LIST class structure

Member	Description
bDescriptorType	uint8_tuint8_t _HID_DESCRIPTOR::_HID_DESCRIPTOR_LIST::bDescriptorType Type of HID report.
wDescriptorLength	uint16_tuint16_t _HID_DESCRIPTOR::_HID_DESCRIPTOR_LIST::wDescriptorLength Length of the associated HID report descriptor, in bytes.

11.5.12 _HID_REPORT_T

HID report descriptor data structure.

Table 177. _HID_REPORT_T class structure

Member	Description
len	uint16_tuint16_t _HID_REPORT_T::len
	Size of the report descriptor in bytes.
idle_time	uint8_tuint8_t _HID_REPORT_T::idle_time
	This value is used by stack to respond to Set_Idle & GET_Idle requests for the specified report ID. The value of this field specified the rate at which duplicate reports are generated for the specified Report ID. For example, a device with two input reports could specify an idle rate of 20 milliseconds for report ID 1 and 500 milliseconds for report ID 2.
pad	uint8_tuint8_t _HID_REPORT_T::pad
	Padding space.
desc	uint8_t *uint8_t* _HID_REPORT_T::desc
	Report descriptor.

Chapter 11: LPC1345/46/47 USB on-chip drivers

11.5.13 _MSC_CBW

Table 178. _MSC_CBW class structure

Member	Description
dSignature	uint32_tuint32_t _MSC_CBW::dSignature
dTag	uint32_tuint32_t _MSC_CBW::dTag
dDataLength	uint32_tuint32_t _MSC_CBW::dDataLength
bmFlags	uint8_tuint8_t _MSC_CBW::bmFlags
bLUN	uint8_tuint8_t _MSC_CBW::bLUN
bCBLength	uint8_tuint8_t _MSC_CBW::bCBLength
СВ	uint8_tuint8_t _MSC_CBW::CB[16][16]

11.5.14 _MSC_CSW

Table 179. _MSC_CSW class structure

Member	Description
dSignature	uint32_tuint32_t _MSC_CSW::dSignature
dTag	uint32_tuint32_t _MSC_CSW::dTag
dDataResidue	uint32_tuint32_t _MSC_CSW::dDataResidue
bStatus	uint8_tuint8_t _MSC_CSW::bStatus

11.5.15 _REQUEST_TYPE

Table 180. _REQUEST_TYPE class structure

Member	Description
В	uint8_tuint8_t _REQUEST_TYPE::B
	byte wide access member
BM	BM_TBM_T _REQUEST_TYPE::BM
	bitfield structure access member

11.5.16 _USB_COMMON_DESCRIPTOR

Table 181. _USB_COMMON_DESCRIPTOR class structure

Member	Description
bLength	<pre>uint8_tuint8_t _USB_COMMON_DESCRIPTOR::bLength Size of this descriptor in bytes</pre>
bDescriptorType	uint8_tuint8_t _USB_COMMON_DESCRIPTOR::bDescriptorType Descriptor Type

UM10524

Chapter 11: LPC1345/46/47 USB on-chip drivers

11.5.17 _USB_CORE_DESCS_T

USB descriptors data structure.

Table 182. _USB_CORE_DESCS_T class structure

Member	Description
device_desc	uint8_t *uint8_t* _USB_CORE_DESCS_T::device_desc
	Pointer to USB device descriptor
string_desc	uint8_t *uint8_t* _USB_CORE_DESCS_T::string_desc
	Pointer to array of USB string descriptors
full_speed_desc	uint8_t *uint8_t* _USB_CORE_DESCS_T::full_speed_desc
	Pointer to USB device configuration descriptor when device is operating in full speed mode.
high_speed_desc	uint8_t *uint8_t* _USB_CORE_DESCS_T::high_speed_desc
	Pointer to USB device configuration descriptor when device is operating in high speed mode. For full-speed only implementation this pointer should be same as full_speed_desc.
device_qualifier	uint8_t *uint8_t* _USB_CORE_DESCS_T::device_qualifier
	Pointer to USB device qualifier descriptor. For full-speed only implementation this pointer should be set to null (0).

11.5.18 _USB_DEVICE_QUALIFIER_DESCRIPTOR

Table 183. _USB_DEVICE_QUALIFIER_DESCRIPTOR class structure

Member	Description
bLength	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bLength
	Size of descriptor
bDescriptorType	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bDescriptorType
	Device Qualifier Type
bcdUSB	uint16_tuint16_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bcdUSB
	USB specification version number (e.g., 0200H for V2.00)
bDeviceClass	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bDeviceClass
	Class Code
bDeviceSubClass	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bDeviceSubClass
	SubClass Code
bDeviceProtocol	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bDeviceProtocol
	Protocol Code
bMaxPacketSize0	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bMaxPacketSize0
	Maximum packet size for other speed
bNumConfigurations	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bNumConfigurations
	Number of Other-speed Configurations
bReserved	uint8_tuint8_t _USB_DEVICE_QUALIFIER_DESCRIPTOR::bReserved
	Reserved for future use, must be zero

11.5.19 _USB_DFU_FUNC_DESCRIPTOR

UM10524

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 184. _USB_DFU_FUNC_DESCRIPTOR class structure

Member	Description
bLength	uint8_tuint8_t _USB_DFU_FUNC_DESCRIPTOR::bLength
bDescriptorType	uint8_tuint8_t _USB_DFU_FUNC_DESCRIPTOR::bDescriptorType
bmAttributes	uint8_tuint8_t _USB_DFU_FUNC_DESCRIPTOR::bmAttributes
wDetachTimeOut	uint16_tuint16_t _USB_DFU_FUNC_DESCRIPTOR::wDetachTimeOut
wTransferSize	uint16_tuint16_t _USB_DFU_FUNC_DESCRIPTOR::wTransferSize
bcdDFUVersion	uint16_tuint16_t _USB_DFU_FUNC_DESCRIPTOR::bcdDFUVersion

11.5.20 _USB_INTERFACE_DESCRIPTOR

Table 185. USB INTERFACE DESCRIPTOR class structure

Member	Description
bLength	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bLength
	Size of this descriptor in bytes
bDescriptorType	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bDescriptorType
	INTERFACE Descriptor Type
bInterfaceNumber	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bInterfaceNumber
	Number of this interface. Zero-based value identifying the index in the array of concurrent interfaces supported by this configuration.
bAlternateSetting	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bAlternateSetting
	Value used to select this alternate setting for the interface identified in the prior field
bNumEndpoints	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bNumEndpoints
	Number of endpoints used by this interface (excluding endpoint zero). If this value is zero, this interface only uses the Default Control Pipe.
bInterfaceClass	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bInterfaceClass
	Class code (assigned by the USB-IF).
bInterfaceSubClass	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bInterfaceSubClass
	Subclass code (assigned by the USB-IF).
bInterfaceProtocol	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::bInterfaceProtocol
	Protocol code (assigned by the USB).
iInterface	uint8_tuint8_t _USB_INTERFACE_DESCRIPTOR::iInterface
	Index of string descriptor describing this interface

11.5.21 _USB_OTHER_SPEED_CONFIGURATION

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 186. _USB_OTHER_SPEED_CONFIGURATION class structure

Member	Description
bLength	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bLength
	Size of descriptor
bDescriptorType	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bDescriptorType
	Other_speed_Configuration Type
wTotalLength	uint16_tuint16_t _USB_OTHER_SPEED_CONFIGURATION::wTotalLength
	Total length of data returned
bNumInterfaces	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bNumInterfaces
	Number of interfaces supported by this speed configuration
bConfigurationValue	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bConfigurationValue
	Value to use to select configuration
IConfiguration	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::IConfiguration
	Index of string descriptor
bmAttributes	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bmAttributes
	Same as Configuration descriptor
bMaxPower	uint8_tuint8_t _USB_OTHER_SPEED_CONFIGURATION::bMaxPower
	Same as Configuration descriptor

11.5.22 _USB_SETUP_PACKET

Table 187. _USB_SETUP_PACKET class structure

Description
REQUEST_TYPEREQUEST_TYPE _USB_SETUP_PACKET::bmRequestType
This bit-mapped field identifies the characteristics of the specific requestBM_T.
uint8_tuint8_t _USB_SETUP_PACKET::bRequest
This field specifies the particular request. The Type bits in the bmRequestType field modify the meaning of this field.
USBD_REQUEST.
WORD_BYTEWORD_BYTE _USB_SETUP_PACKET::wValue
Used to pass a parameter to the device, specific to the request.
WORD_BYTEWORD_BYTE _USB_SETUP_PACKET::wIndex
Used to pass a parameter to the device, specific to the request. The wIndex field is often used in requests to specify an endpoint or an interface.
uint16_tuint16_t _USB_SETUP_PACKET::wLength
This field specifies the length of the data transferred during the second phase of the control transfer.

11.5.23 _USB_STRING_DESCRIPTOR

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 188. _USB_STRING_DESCRIPTOR class structure

Member	Description
bLength	uint8_tuint8_t _USB_STRING_DESCRIPTOR::bLength
	Size of this descriptor in bytes
bDescriptorType	uint8_tuint8_t _USB_STRING_DESCRIPTOR::bDescriptorType
	STRING Descriptor Type
bString	uint16_tuint16_t _USB_STRING_DESCRIPTOR::bString
	UNICODE encoded string

11.5.24 WB T

Table 189. _WB_T class structure

Member	Description
L	uint8_tuint8_t _WB_T::L
	lower byte
Н	uint8_tuint8_t _WB_T::H
	upper byte

11.5.25 USBD_API

Main USBD API functions structure. This structure contains pointer to various USB Device stack's sub-module function tables. This structure is used as main entry point to access various methods (grouped in sub-modules) exposed by ROM based USB device stack.

Table 190. USBD_API class structure

Member	Description
hw	const USBD_HW_API_T *const USBD_HW_API_T* USBD_API::hw
	Pointer to function table which exposes functions which interact directly with USB device stack's core layer.
core	const USBD_CORE_API_T *const USBD_CORE_API_T* USBD_API::core
	Pointer to function table which exposes functions which interact directly with USB device controller hardware.
msc	const USBD_MSC_API_T *const USBD_MSC_API_T* USBD_API::msc
	Pointer to function table which exposes functions provided by MSC function driver module.
dfu	const USBD_DFU_API_T *const USBD_DFU_API_T* USBD_API::dfu
	Pointer to function table which exposes functions provided by DFU function driver module.
hid	const USBD_HID_API_T *const USBD_HID_API_T* USBD_API::hid
	Pointer to function table which exposes functions provided by HID function driver module.

166 of 416

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 190. USBD_API class structure

Member	Description
cdc	const USBD_CDC_API_T *const USBD_CDC_API_T* USBD_API::cdc Pointer to function table which exposes functions provided by CDC-ACM function driver module.
reserved6	const uint32_t *const uint32_t* USBD_API::reserved6 Reserved for future function driver module.
version	const uint32_tconst uint32_t USBD_API::version Version identifier of USB ROM stack. The version is defined as 0x0CHDMhCC where each nibble represents version number of the corresponding component. CC - 7:0 - 8bit core version number h - 11:8 - 4bit hardware interface version number M - 15:12 - 4bit MSC class module version number D - 19:16 - 4bit DFU class module version number H - 23:20 - 4bit HID class module version number C - 27:24 - 4bit CDC class module version number H - 31:28 - 4bit reserved

11.5.26 USBD_API_INIT_PARAM

USB device stack initialization parameter data structure.

Table 191. USBD_API_INIT_PARAM class structure

Member	Description
usb_reg_base	uint32_tuint32_t USBD_API_INIT_PARAM::usb_reg_base
	USB device controller's base register address.
mem_base	uint32_tuint32_t USBD_API_INIT_PARAM::mem_base
	Base memory location from where the stack can allocate data and buffers.
	Remark: The memory address set in this field should be accessible by USB DMA controller. Also this value should be aligned on 2048 byte boundary.
mem_size	uint32_tuint32_t USBD_API_INIT_PARAM::mem_size
	The size of memory buffer which stack can use.
	Remark: The mem_size should be greater than the size returned by USBD_HW_API::GetMemSize() routine.
max_num_ep	uint8_tuint8_t USBD_API_INIT_PARAM::max_num_ep
	max number of endpoints supported by the USB device controller instance (specified by
pad0	uint8_tuint8_t USBD_API_INIT_PARAM::pad0[3][3]
USB_Reset_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Reset_Event
	Event for USB interface reset. This event fires when the USB host requests that the device reset its interface. This event fires after the control endpoint has been automatically configured by the library.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will prevent the device from enumerating correctly or operate properly.
USB_Suspend_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Suspend_Event
	Event for USB suspend. This event fires when the USB host suspends the device by halting its transmission of Start Of Frame pulses to the device. This is generally hooked in order to move the device over to a low power state until the host wakes up the device.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will cause other system issues.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 191, USBD API INIT PARAM class structure

Member	Description
USB_Resume_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Resume_Event
	Event for USB wake up or resume. This event fires when a the USB device interface is suspended and the host wakes up the device by supplying Start Of Frame pulses. This is generally hooked to pull the user application out of a low power state and back into normal operating mode.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will cause other system issues.
reserved_sbz	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::reserved_sbz
	Reserved parameter should be set to zero.
USB_SOF_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_SOF_Event
	Event for USB Start Of Frame detection, when enabled. This event fires at the start of each USB frame, once per millisecond in full-speed mode or once per 125 microseconds in high-speed mode, and is synchronized to the USB bus.
	This event is time-critical; it is run once per millisecond (full-speed mode) and thus long handlers will significantly degrade device performance. This event should only be enabled when needed to reduce device wake-ups.
	This event is not normally active - it must be manually enabled and disabled via the USB interrupt register.
	Remark: This event is not normally active - it must be manually enabled and disabled via the USB interrupt register.
USB_WakeUpCfg	USB_PARAM_CB_TUSB_PARAM_CB_T USBD_API_INIT_PARAM::USB_WakeUpCfg
	Event for remote wake-up configuration, when enabled. This event fires when the USB host request the device to configure itself for remote wake-up capability. The USB host sends this request to device which report remote wake-up capable in their device descriptors, before going to low-power state. The application layer should implement this callback if they have any special on board circuit to triger remote wake up event. Also application can use this callback to differentiate the following SUSPEND event is caused by cable plug-out or host SUSPEND request. The device can wake-up host only after receiving this callback and remote wake-up feature is enabled by host. To signal remote wake-up the device has to generate resume signaling on bus by calling usapi.hw->WakeUp() routine.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. param1 = When 0 - Clear the wake-up configuration, 1 - Enable the wake-up configuration.
	Returns:
	The call back should return ErrorCode_t type to indicate success or error condition.
USB_Power_Event	USB_PARAM_CB_TUSB_PARAM_CB_T
	Reserved parameter should be set to zero.
USB_Error_Event	USB_PARAM_CB_TUSB_PARAM_CB_T USBD_API_INIT_PARAM:USB_Error_Event
	Event for error condition. This event fires when USB device controller detect an error condition in the system.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	param1 = USB device interrupt status register. Returns:

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 191. USBD_API_INIT_PARAM class structure

Member	Description
USB_Configure_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Configure_Event
	Event for USB configuration number changed. This event fires when a the USB host changes the selected configuration number. On receiving configuration change request from host, the stack enables/configures the endpoints needed by the new configuration before calling this callback function.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will prevent the device from enumerating correctly or operate properly.
USB_Interface_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Interface_Event
	Event for USB interface setting changed. This event fires when a the USB host changes the interface setting to one of alternate interface settings. On receiving interface change request from host, the stack enables/configures the endpoints needed by the new alternate interface setting before calling this callback function.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will prevent the device from enumerating correctly or operate properly.
USB_Feature_Event	USB_CB_TUSB_CB_T USBD_API_INIT_PARAM::USB_Feature_Event
	Event for USB feature changed. This event fires when a the USB host send set/clear feature request. The stack handles this request for USB_FEATURE_REMOTE_WAKEUP, USB_FEATURE_TEST_MODE and USB_FEATURE_ENDPOINT_STALL features only. On receiving feature request from host, the stack handle the request appropriately and then calls this callback function.
	Remark: This event is called from USB_ISR context and hence is time-critical. Having delays in this callback will prevent the device from enumerating correctly or operate properly.
virt_to_phys	uint32_t(*uint32_t(* USBD_API_INIT_PARAM::virt_to_phys)(void *vaddr))(void *vaddr)
	Reserved parameter for future use. should be set to zero.
cache_flush	<pre>void(*void(* USBD_API_INIT_PARAM::cache_flush)(uint32_t *start_adr, uint32_t</pre>
	Reserved parameter for future use. should be set to zero.

11.5.27 USBD_CDC_API

CDC class API functions structure. This module exposes functions which interact directly with USB device controller hardware.

Table 192. USBD_CDC_API class structure

Member	Description
GetMemSize	uint32_t(*uint32_t USBD_CDC_API::GetMemSize)(USBD_CDC_INIT_PARAM_T *param)
	Function to determine the memory required by the CDC function driver module.
	This function is called by application layer before calling pUsbApi->CDC->Init(), to allocate memory used by CDC function driver module. The application should allocate the memory which is accessible by USB controller/DMA controller.
	Remark: Some memory areas are not accessible by all bus masters.
	Parameters:
	 param = Structure containing CDC function driver module initialization parameters.
	Returns:
	Returns the required memory size in bytes.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 192. USBD_CDC_API class structure

Member	Description
init	<pre>ErrorCode_t(*ErrorCode_t USBD_CDC_API::init)(USBD_HANDLE_T hUsb, USBD_CDC_INIT_PARAM_T *param, USBD_HANDLE_T *phCDC)</pre>
	Function to initialize CDC function driver module.
	This function is called by application layer to initialize CDC function driver module.
	hUsbHandle to the USB device stack. paramStructure containing CDC function driver module initialization parameters.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. param = Structure containing CDC function driver module initialization parameters.
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success
	ERR_USBD_BAD_MEM_BUF = Memory buffer passed is not 4-byte aligned or smaller than required.
	ERR_API_INVALID_PARAM2 = Either CDC_Write() or CDC_Read() or CDC_Verify() callbacks are not defined.
	ERR_USBD_BAD_INTF_DESC = Wrong interface descriptor is passed.
	ERR_USBD_BAD_EP_DESC = Wrong endpoint descriptor is passed.
SendNotification	<pre>ErrorCode_t(*ErrorCode_t USBD_CDC_API::SendNotification)(USBD_HANDLE_T hCdc, uint8_t bNotification, uint16_t data)</pre>
	Function to send CDC class notifications to host.
	This function is called by application layer to send CDC class notifications to host.
	Remark: The current version of the driver only supports following notifications allowed by ACM subclass: CDC_NOTIFICATION_NETWORK_CONNECTION, CDC_RESPONSE_AVAILABLE, CDC_NOTIFICATION_SERIAL_STATE. For all other notifications application should construct the notification buffer appropriately and call hw->USB_WriteEP() for interrupt endpoint associated with the interface.
	Parameters:
	1. hCdc = Handle to CDC function driver.
	 bNotification = Notification type allowed by ACM subclass. Should be CDC_NOTIFICATION_NETWORK_CONNECTION, CDC_RESPONSE_AVAILABLE or CDC_NOTIFICATION_SERIAL_STATE. For all other types ERR_API_INVALID_PARAM2 is returned. See <tbd></tbd>
	 data = Data associated with notification. For CDC_NOTIFICATION_NETWORK_CONNECTION a non-zero data value is interpreted as connected state. For CDC_RESPONSE_AVAILABLE this parameter is ignored. For CDC_NOTIFICATION_SERIAL_STATE the data should use bitmap values defined in <tbd></tbd>
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success
	ERR_API_INVALID_PARAM2 = If unsupported notification type is passed.

11.5.28 USBD_CDC_INIT_PARAM

Communication Device Class function driver initialization parameter data structure.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
mem_base	uint32_tuint32_t USBD_CDC_INIT_PARAM::mem_base
	Base memory location from where the stack can allocate data and buffers.
	Remark: The memory address set in this field should be accessible by USB DMA controller. Also this value should be aligned on 4 byte boundary.
mem_size	uint32_tuint32_t USBD_CDC_INIT_PARAM::mem_size
	The size of memory buffer which stack can use.
	Remark: The mem_size should be greater than the size returned by USBD_CDC_API::GetMemSize() routine.
cif_intf_desc	uint8_t *uint8_t* USBD_CDC_INIT_PARAM::cif_intf_desc
	Pointer to the control interface descriptor within the descriptor array (
dif_intf_desc	uint8_t *uint8_t* USBD_CDC_INIT_PARAM::dif_intf_desc
	Pointer to the data interface descriptor within the descriptor array (
CIC_GetRequest	ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::CIC_GetRequest)(USBD_HANDLE_T hHid, USB_SETUP_PACKET *pSetup, uint8_t **pBuffer, uint16_t *length))(USBD_HANDLE_T hHid, USB_SETUP_PACKET *pSetup, uint8_t **pBuffer, uint16_t *length) Communication Interface Class specific get request call back function

Communication Interface Class specific get request call-back function.

This function is provided by the application software. This function gets called when host sends CIC management element get requests.

Remark: Applications implementing Abstract Control Model subclass can set this param to NULL. As the default driver parses ACM requests and calls the individual ACM call-back routines defined in this structure. For all other subclasses this routine should be provided by the application. The setup packet data (pSetup) is passed to the call-back so that application can extract the CIC request type and other associated data. By default the stack will assign pBuffer pointer to EP0Buff allocated at init. The application code can directly write data into this buffer as long as data is less than 64 byte. If more data has to be sent then application code should update pBuffer pointer and length accordingly.

Parameters:

- 1. hCdc = Handle to CDC function driver.
- 2. pSetup = Pointer to setup packet received from host.
- pBuffer = Pointer to a pointer of data buffer containing request data. Pointer-to-pointer is used to implement zero-copy buffers. See USBD_ZeroCopy for more details on zero-copy concept.
- 4. length = Amount of data to be sent back to host.

Returns

The call back should returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member

Description

CIC_SetRequest

Communication Interface Class specific set request call-back function.

This function is provided by the application software. This function gets called when host sends a CIC management element requests.

Remark: Applications implementing Abstract Control Model subclass can set this param to NULL. As the default driver parses ACM requests and calls the individual ACM call-back routines defined in this structure. For all other subclasses this routine should be provided by the application. The setup packet data (pSetup) is passed to the call-back so that application can extract the CIC request type and other associated data. If a set request has data associated, then this call-back is called twice. (1) First when setup request is received, at this time application code could update pBuffer pointer to point to the intended destination. The length param is set to 0 so that application code knows this is first time. By default the stack will assign pBuffer pointer to EP0Buff allocated at init. Note, if data length is greater than 64 bytes and application code doesn't update pBuffer pointer the stack will send STALL condition to host. (2) Second when the data is received from the host. This time the length param is set with number of data bytes received.

Parameters:

- 1. hCdc = Handle to CDC function driver.
- 2. pSetup = Pointer to setup packet received from host.
- pBuffer = Pointer to a pointer of data buffer containing request data. Pointer-to-pointer is used to implement zero-copy buffers. See USBD_ZeroCopy for more details on zero-copy concept.
- 4. length = Amount of data copied to destination buffer.

Returns:

The call back should returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC OK = On success.
- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
CDC_BulkIN_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::CDC_BulkIN_Hdlr)(USBD_HANDLE_T hUsb, void *data, uint32_t event))(USBD_HANDLE_T hUsb, void *data, uint32_t event)</pre>
	Communication Device Class specific BULK IN endpoint handler.
	The application software should provide the BULK IN endpoint handler. Applications should transfer data depending on the communication protocol type set in descriptors.
	Remark:
	Parameters:
	1. hUsb = Handle to the USB device stack.
	data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details. Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition. Return values:
	1. LPC_OK = On success.
	 ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	3. ERR_USBD_xxx = For other error conditions.
CDC_BulkOUT_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::CDC_BulkOUT_Hdlr)(USBD_HANDLE_T hUsb, void *data, uint32_t event))(USBD_HANDLE_T hUsb, void *data, uint32_t event)</pre>
	Communication Device Class specific BULK OUT endpoint handler.
	The application software should provide the BULK OUT endpoint handler. Applications should transfer data depending on the communication protocol type set in descriptors.
	Remark:
	Parameters:
	1. hUsb = Handle to the USB device stack.
	data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	O EDD HODD E 4 PC

3. ERR_USBD_xxx = For other error conditions.

173 of 416

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
SendEncpsCmd	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::SendEncpsCmd)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific SEND_ENCAPSULATED_COMMAND request call-back function.
	This function is provided by the application software. This function gets called when host sends a SEND_ENCAPSULATED_COMMAND set request.
	Parameters:
	 hCdc = Handle to CDC function driver.
	2. buffer = Pointer to the command buffer.
	3. len = Length of the command buffer.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	ERR_USBD_xxx = For other error conditions.
GetEncpsResp	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::GetEncpsResp)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific GET_ENCAPSULATED_RESPONSE request call-back function.
	This function is provided by the application software. This function gets called when host sends a GET_ENCAPSULATED_RESPONSE request.
	Parameters:
	 hCdc = Handle to CDC function driver.
	 buffer = Pointer to a pointer of data buffer containing response data. Pointer-to-pointer is used to implement zero-copy buffers. See USBD_ZeroCopy for more details on zero-copy concept.
	3. len = Amount of data to be sent back to host.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD CDC INIT PARAM class structure

Member	Description
SetCommFeature	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::SetCommFeature)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific SET_COMM_FEATURE request call-back function.
	This function is provided by the application software. This function gets called when host sends a SET_COMM_FEATURE set request.
	Parameters:
	 hCdc = Handle to CDC function driver.
	2. feature = Communication feature type.
	3. buffer = Pointer to the settings buffer for the specified communication feature.
	4. len = Length of the request buffer.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line
	ERR_USBD_xxx = For other error conditions.
GetCommFeature	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::GetCommFeature)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific GET_COMM_FEATURE request call-back function.
	This function is provided by the application software. This function gets called when host sends a GET_ENCAPSULATED_RESPONSE request.
	Parameters:
	 hCdc = Handle to CDC function driver.
	2. feature = Communication feature type.
	 buffer = Pointer to a pointer of data buffer containing current settings for the communication feature. Pointer-to-pointer is used to implement zero-copy buffers.
	len = Amount of data to be sent back to host.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2 EDD LISBO LINIMANDI ED - Event is not handled honce need the event to next in line

- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
CIrCommFeature	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::ClrCommFeature)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific CLEAR_COMM_FEATURE request call-back function.
	This function is provided by the application software. This function gets called when host sends a CLEAR_COMM_FEATURE request. In the call-back the application should Clears the settings for a particular communication feature.
	Parameters:
	 hCdc = Handle to CDC function driver.
	feature = Communication feature type. See <tbd></tbd>
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	3. ERR_USBD_xxx = For other error conditions.

UM10524 **NXP Semiconductors**

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
SetCtrlLineState	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::SetCtrlLineState)(USBD_HANDLE_T</pre>
	Abstract control model(ACM) subclass specific SET_CONTROL_LINE_STATE request call-back function.
	This function is provided by the application software. This function gets called when host sends a SET_CONTROL_LINE_STATE request. RS-232 signal used to tell the DCE device the DTE device is now present
	Parameters:
	 hCdc = Handle to CDC function driver.
	state = The state value uses bitmap values defined in <tbd></tbd>
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	LPC_OK = On success. FRE USER UNIVABILIED. Execution not boundled because the execution line.
	 ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line. ERR_USBD_xxx = For other error conditions.
SendBreak	ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::SendBreak)(USBD_HANDLE_T hCDC,
	uint16_t mstime))(USBD_HANDLE_T hCDC, uint16_t mstime)
	Abstract control model(ACM) subclass specific SEND_BREAK request call-back function.
	This function is provided by the application software. This function gets called when host sends a SEND_BREAK request.
	Parameters:
	1. hCdc = Handle to CDC function driver.
	 mstime = Duration of Break signal in milliseconds. If mstime is FFFFh, then the application should send break until another SendBreak request is received with the wValue of 0000h.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member Description SetLineCode ErrorCode t(*ErrorCode t(* USBD CDC INIT PARAM::SetLineCode)(USBD HANDLE T hCDC, CDC LINE CODING *line coding))(USBD HANDLE T hCDC, CDC LINE CODING *line coding) Abstract control model(ACM) subclass specific SET_LINE_CODING request call-back function. This function is provided by the application software. This function gets called when host sends a SET_LINE_CODING request. The application should configure the device per DTE rate, stop-bits, parity, and number-of-character bits settings provided in command buffer. Parameters: 1. hCdc = Handle to CDC function driver. 2. line_coding = Pointer to the CDC_LINE_CODING command buffer. Returns: The call back should returns ErrorCode_t type to indicate success or error condition. Return values: 1. LPC_OK = On success. 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line. 3. ERR USBD xxx = For other error conditions. CDC_InterruptEP_Hdlr ErrorCode_t(*ErrorCode_t(* USBD CDC INIT PARAM::CDC InterruptEP Hdlr)(USBD HANDLE T hUsb, void *data, uint32 t event))(USBD HANDLE T hUsb, void *data, uint32 t event) Optional Communication Device Class specific INTERRUPT IN endpoint handler. The application software should provide the INT IN endpoint handler. Applications should transfer data depending on the communication protocol type set in descriptors. Parameters: 1. hUsb = Handle to the USB device stack. 2. data = Pointer to the data which will be passed when callback function is called by the stack. 3. event = Type of endpoint event. See USBD_EVENT_T for more details. Returns: The call back should returns ErrorCode_t type to indicate success or error condition. Return values: 1. LPC OK = On success. 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.

3. ERR_USBD_xxx = For other error conditions.

178 of 416

UM10524 NXP Semiconductors

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 193. USBD_CDC_INIT_PARAM class structure

Member	Description
CDC_Ep0_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_CDC_INIT_PARAM::CDC_Ep0_Hdlr)(USBD_HANDLE_T</pre>
	Optional user override-able function to replace the default CDC class handler.
	The application software could override the default EP0 class handler with their own by providing the handler function address as this data member of the parameter structure. Application which like the default handler should set this data member to zero before calling the USBD_CDC_API::Init().
	Parameters:
	1. hUsb = Handle to the USB device stack.
	data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	3. ERR_USBD_xxx = For other error conditions.

11.5.29 USBD_CORE_API

USBD stack Core API functions structure.

Member	Description
RegisterClassHandler	<pre>ErrorCode_t(*ErrorCode_t USBD_CORE_API::RegisterClassHandler)(USBD_HANDLE_T hUsb,</pre>
	Function to register class specific EP0 event handler with USB device stack.
	The application layer uses this function when it has to register the custom class's EP0 handler. The stack calls all the registered class handlers on any EP0 event before going through default handling of the event. This gives the class handlers to implement class specific request handlers and also to override the default stack handling for a particular event targeted to the interface. Check USB_EP_HANDLER_T for more details on how the callback function should be implemented. Also application layer could use this function to register EP0 handler which responds to vendor specific requests.
	hUsbHandle to the USB device stack. pfnClass specific EP0 handler function. dataPointer to the data which will be passed when callback function is called by the stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. pfn = Class specific EP0 handler function.
	3. data = Pointer to the data which will be passed when callback function is called by the stack.
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success
	ERR_USBD_TOO_MANY_CLASS_HDLR(0x0004000c) = The number of class handlers registered is greater than the number of handlers allowed by the stack.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 194. USBD_CORE_API class structure

Member

Description

RegisterEpHandler

Function to register interrupt/event handler for the requested endpoint with USB device stack.

The application layer uses this function to register the custom class's EP0 handler. The stack calls all the registered class handlers on any EP0 event before going through default handling of the event. This gives the class handlers to implement class specific request handlers and also to override the default stack handling for a particular event targeted to the interface. Check USB_EP_HANDLER_T for more details on how the callback function should be implemented.

hUsbHandle to the USB device stack. ep_indexClass specific EP0 handler function. pfnClass specific EP0 handler function. dataPointer to the data which will be passed when callback function is called by the stack.

Parameters:

- 1. hUsb = Handle to the USB device stack.
- 2. ep_index = Class specific EP0 handler function.
- 3. pfn = Class specific EP0 handler function.
- 4. data = Pointer to the data which will be passed when callback function is called by the stack.

Returns

Returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC OK = On success
- 2. ERR_USBD_TOO_MANY_CLASS_HDLR(0x0004000c) = Too many endpoint handlers.

SetupStage

void(*void USBD_CORE_API::SetupStage)(USBD_HANDLE_T hUsb)

Function to set EP0 state machine in setup state.

This function is called by USB stack and the application layer to set the EP0 state machine in setup state. This function will read the setup packet received from USB host into stack's buffer.

Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.

Parameters:

1. hUsb = Handle to the USB device stack.

Returns:

Nothing.

DataInStage

void(*void USBD_CORE_API::DataInStage)(USBD_HANDLE_T hUsb)

Function to set EP0 state machine in data in state.

This function is called by USB stack and the application layer to set the EP0 state machine in data_in state. This function will write the data present in EP0Data buffer to EP0 FIFO for transmission to host.

Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.

Parameters:

1. hUsb = Handle to the USB device stack.

Returns:

Nothing.

UM10524 NXP Semiconductors

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 194. USBD_CORE_API class structure

Member	Description
DataOutStage	<pre>void(*void USBD_CORE_API::DataOutStage)(USBD_HANDLE_T hUsb)</pre>
	Function to set EP0 state machine in data_out state.
	This function is called by USB stack and the application layer to set the EP0 state machine in data_out state. This function will read the control data (EP0 out packets) received from USB host into EP0Data buffer.
	Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	Returns:
	Nothing.
StatusInStage	<pre>void(*void USBD_CORE_API::StatusInStage)(USBD_HANDLE_T hUsb)</pre>
	Function to set EP0 state machine in status_in state.
	This function is called by USB stack and the application layer to set the EP0 state machine in status_in state. This function will send zero length IN packet on EP0 to host, indicating positive status.
	Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	Returns:
	Nothing.
StatusOutStage	<pre>void(*void USBD_CORE_API::StatusOutStage)(USBD_HANDLE_T hUsb)</pre>
	Function to set EP0 state machine in status_out state.
	This function is called by USB stack and the application layer to set the EP0 state machine in status_out state. This function will read the zero length OUT packet received from USB host on EP0.
	Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack. Parameters:
	hUsb = Handle to the USB device stack.
	Returns:
	Nothing.
	·

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 194. USBD_CORE_API class structure

Member	Description
StallEp0	<pre>void(*void USBD_CORE_API::StallEp0)(USBD_HANDLE_T hUsb)</pre>
	Function to set EP0 state machine in stall state.
	This function is called by USB stack and the application layer to generate STALL signalling on EP0 endpoint. This function will also reset the EP0Data buffer.
	Remark: This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	Returns:
	Nothing.

11.5.30 USBD_DFU_API

DFU class API functions structure. This module exposes functions which interact directly with USB device controller hardware.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 195. USBD_DFU_API class structure

Member	Description
GetMemSize	uint32_t(*uint32_t USBD_DFU_API::GetMemSize)(USBD_DFU_INIT_PARAM_T *param)
	Function to determine the memory required by the DFU function driver module.
	This function is called by application layer before calling pUsbApi->dfu->Init(), to allocate memory used by DFU function driver module. The application should allocate the memory which is accessible by USB controller/DMA controller.
	Remark: Some memory areas are not accessible by all bus masters.
	Parameters:
	 param = Structure containing DFU function driver module initialization parameters.
	Returns:
	Returns the required memory size in bytes.
init	<pre>ErrorCode_t(*ErrorCode_t USBD_DFU_API::init)(USBD_HANDLE_T hUsb, USBD_DFU_INIT_PARAM_T *param, uint32_t init_state)</pre>
	Function to initialize DFU function driver module.
	This function is called by application layer to initialize DFU function driver module.
	hUsbHandle to the USB device stack. paramStructure containing DFU function driver module initialization parameters.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. param = Structure containing DFU function driver module initialization parameters.
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success
	ERR_USBD_BAD_MEM_BUF = Memory buffer passed is not 4-byte aligned or smaller than required.
	ERR_API_INVALID_PARAM2 = Either DFU_Write() or DFU_Done() or DFU_Read() callbacks are not defined.
	4. ERR_USBD_BAD_DESC = USB_DFU_DESCRIPTOR_TYPE is not defined immediately after interface descriptor.wTransferSize in descriptor doesn't match the value passed in param->wTransferSize.DFU_Detach() is not defined while USB_DFU_WILL_DETACH is set in DFU descriptor.
	5. ERR_USBD_BAD_INTF_DESC = Wrong interface descriptor is passed.

11.5.31 USBD_DFU_INIT_PARAM

USB descriptors data structure.

UM10524 **NXP Semiconductors**

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 196, USBD_DFU_INIT_PARAM class structure

Table 196. USBL	D_DFU_INIT_PARAM class structure
Member	Description
mem_base	uint32_tuint32_t USBD_DFU_INIT_PARAM::mem_base
	Base memory location from where the stack can allocate data and buffers.
	Remark: The memory address set in this field should be accessible by USB DMA controller. Also this value should be aligned on 4 byte boundary.
mem_size	uint32_tuint32_t USBD_DFU_INIT_PARAM::mem_size
	The size of memory buffer which stack can use.
	Remark: The mem_size should be greater than the size returned by USBD_DFU_API::GetMemSize() routine.
wTransferSize	uint16_tuint16_t USBD_DFU_INIT_PARAM::wTransferSize
	DFU transfer block size in number of bytes. This value should match the value set in DFU descriptor provided as part of the descriptor array (
pad	uint16_tuint16_t USBD_DFU_INIT_PARAM::pad
intf_desc	uint8_t *uint8_t* USBD_DFU_INIT_PARAM::intf_desc
	Pointer to the DFU interface descriptor within the descriptor array (
DFU_Write	<pre>uint8_t(*uint8_t(* USBD_DFU_INIT_PARAM::DFU_Write)(uint32_t block_num, uint8_t **src, uint32_t length, uint8_t *bwPollTimeout))(uint32_t block_num, uint8_t **src, uint32_t length, uint8_t *bwPollTimeout)</pre>
	DFU Write callback function.
	This function is provided by the application software. This function gets called when host sends a write command. For application using zero-copy buffer scheme this function is called for the first time with
	block_numDestination start address. srcPointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept. bwPollTimeoutPointer to a 3 byte buffer which the callback implementer should fill with the amount of minimum time, in milliseconds, that the host should wait before sending a subsequent DFU_GETSTATUS request. lengthNumber of bytes to be written.
	Parameters:
	 block_num = Destination start address.
	src = Pointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept.
	bwPollTimeout = Pointer to a 3 byte buffer which the callback implementer should fill with the amount of minimum time, in milliseconds, that the host should wait before sending a subsequent

- DFU_GETSTATUS request.
- 4. length = Number of bytes to be written.

Returns DFU_STATUS_ values defined in mw_usbd_dfu.h.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 196. USBD_DFU_INIT_PARAM class structure

Description
<pre>uint32_t(*uint32_t(* USBD_DFU_INIT_PARAM::DFU_Read)(uint32_t block_num, uint8_t **dst,</pre>
DFU Read callback function.
This function is provided by the application software. This function gets called when host sends a read command.
block_numDestination start address. dstPointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept. lengthAmount of data copied to destination buffer.
Parameters:
 block_num = Destination start address.
 dst = Pointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept.
3. length = Amount of data copied to destination buffer.
Returns:
Returns DFU_STATUS_ values defined in mw_usbd_dfu.h.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 196. USBD_DFU_INIT_PARAM class structure

Member	Description
DFU_Done	<pre>void(*void(* USBD_DFU_INIT_PARAM::DFU_Done)(void))(void)</pre>
	DFU done callback function.
	This function is provided by the application software. This function gets called after download is finished.
	Nothing.
	Returns:
	Nothing.
DFU_Detach	<pre>void(*void(* USBD_DFU_INIT_PARAM::DFU_Detach)(USBD_HANDLE_T hUsb))(USBD_HANDLE_T hUsb)</pre>
	DFU detach callback function.
	This function is provided by the application software. This function gets called after USB_REQ_DFU_DETACH is received. Applications which set USB_DFU_WILL_DETACH bit in DFU descriptor should define this function. As part of this function application can call Connect() routine to disconnect and then connect back with host. For application which rely on WinUSB based host application should use this feature since USB reset can be invoked only by kernel drivers on Windows host. By implementing this feature host doesn't have to issue reset instead the device has to do it automatically by disconnect and connect procedure.
	hUsbHandle DFU control structure.
	Parameters:
	hUsb = Handle DFU control structure.
	Returns:
	Nothing.
DFU_Ep0_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_DFU_INIT_PARAM::DFU_Ep0_Hdlr)(USBD_HANDLE_T hUsb, void</pre>
	Optional user overridable function to replace the default DFU class handler.
	The application software could override the default EP0 class handler with their own by providing the handler function address as this data member of the parameter structure. Application which like the default handler should set this data member to zero before calling the USBD_DFU_API::Init().
	Remark:
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	ERR_USBD_xxx = For other error conditions.

11.5.32 USBD_HID_API

HID class API functions structure. This structure contains pointers to all the function exposed by HID function driver module.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 197. USBD_HID_API class structure

Member	Description
GetMemSize	uint32_t(*uint32_t USBD_HID_API::GetMemSize)(USBD_HID_INIT_PARAM_T *param)
	Function to determine the memory required by the HID function driver module.
	This function is called by application layer before calling pUsbApi->hid->Init(), to allocate memory used by HID function driver module. The application should allocate the memory which is accessible by USB controller/DMA controller.
	Remark: Some memory areas are not accessible by all bus masters.
	Parameters:
	 param = Structure containing HID function driver module initialization parameters.
	Returns:
	Returns the required memory size in bytes.
init	<pre>ErrorCode_t(*ErrorCode_t USBD_HID_API::init)(USBD_HANDLE_T hUsb, USBD_HID_INIT_PARAM_T *param)</pre>
	Function to initialize HID function driver module.
	This function is called by application layer to initialize HID function driver module. On successful initialization the function returns a handle to HID function driver module in passed param structure.
	hUsbHandle to the USB device stack. paramStructure containing HID function driver module initialization parameters.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. param = Structure containing HID function driver module initialization parameters.
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success
	ERR_USBD_BAD_MEM_BUF = Memory buffer passed is not 4-byte aligned or smaller than required.
	ERR_API_INVALID_PARAM2 = Either HID_GetReport() or HID_SetReport() callback are not defined.
	 ERR_USBD_BAD_DESC = HID_HID_DESCRIPTOR_TYPE is not defined immediately after interface descriptor.
	ERR_USBD_BAD_INTF_DESC = Wrong interface descriptor is passed.
	ERR_USBD_BAD_EP_DESC = Wrong endpoint descriptor is passed.

11.5.33 USBD_HID_INIT_PARAM

USB descriptors data structure.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member	Description
mem_base	uint32_tuint32_t USBD_HID_INIT_PARAM::mem_base
	Base memory location from where the stack can allocate data and buffers.
	Remark: The memory address set in this field should be accessible by USB DMA controller. Also this value should be aligned on 4 byte boundary.
mem_size	uint32_tuint32_t USBD_HID_INIT_PARAM::mem_size
	The size of memory buffer which stack can use.
	Remark: The mem_size should be greater than the size returned by USBD_HID_API::GetMemSize() routine.
max_reports	uint8_tuint8_t USBD_HID_INIT_PARAM::max_reports
	Number of HID reports supported by this instance of HID class driver.
pad	uint8_tuint8_t USBD_HID_INIT_PARAM::pad[3][3]
intf_desc	uint8_t *uint8_t* USBD_HID_INIT_PARAM::intf_desc
	Pointer to the HID interface descriptor within the descriptor array (
report_data	USB_HID_REPORT_T *USB_HID_REPORT_T* USBD_HID_INIT_PARAM::report_data
	Pointer to an array of HID report descriptor data structure (
	Remark: This array should be of global scope.
HID_GetReport	<pre>ErrorCode_t(*ErrorCode_t(* USBD_HID_INIT_PARAM::HID_GetReport)(USBD_HANDLE_T hHid,</pre>
	HID get report callback function.
	This function is provided by the application software. This function gets called when host sends a HID_REQUEST_GET_REPORT request. The setup packet data (
	Remark: HID reports are sent via interrupt IN endpoint also. This function is called only when report request is received on control endpoint. Application should implement HID_EpIn_Hdlr to send reports to host via interrupt IN endpoint.
	Parameters:
	hHid = Handle to HID function driver.
	pSetup = Pointer to setup packet received from host.
	 pBuffer = Pointer to a pointer of data buffer containing report data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept.
	4. length = Amount of data copied to destination buffer.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member

Description

HID_SetReport

HID set report callback function.

This function is provided by the application software. This function gets called when host sends a HID_REQUEST_SET_REPORT request. The setup packet data (

hHidHandle to HID function driver. pSetupPointer to setup packet received from host. pBufferPointer to a pointer of data buffer containing report data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept. lengthAmount of data copied to destination buffer.

Parameters:

- 1. hHid = Handle to HID function driver.
- 2. pSetup = Pointer to setup packet received from host.
- pBuffer = Pointer to a pointer of data buffer containing report data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept.
- 4. length = Amount of data copied to destination buffer.

Returns:

The call back should returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member

Description

HID_GetPhysDesc

Optional callback function to handle HID_GetPhysDesc request.

The application software could provide this callback HID_GetPhysDesc handler to handle get physical descriptor requests sent by the host. When host requests Physical Descriptor set 0, application should return a special descriptor identifying the number of descriptor sets and their sizes. A Get_Descriptor request with the Physical Index equal to 1 should return the first Physical Descriptor set. A device could possibly have alternate uses for its items. These can be enumerated by issuing subsequent Get_Descriptor requests while incrementing the Descriptor Index. A device should return the last descriptor set to requests with an index greater than the last number defined in the HID descriptor.

Remark: Applications which don't have physical descriptor should set this data member to zero before calling the USBD_HID_API::Init().

Parameters:

- 1. hHid = Handle to HID function driver.
- 2. pSetup = Pointer to setup packet received from host.
- 3. pBuf = Pointer to a pointer of data buffer containing physical descriptor data. If the physical descriptor is in USB accessible memory area application could just update the pointer or else it should copy the descriptor to the address pointed by this pointer.
- 4. length = Amount of data copied to destination buffer or descriptor length.

Returns:

The call back should returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR USBD xxx = For other error conditions.

HID_SetIdle

Optional callback function to handle HID_REQUEST_SET_IDLE request.

The application software could provide this callback to handle HID_REQUEST_SET_IDLE requests sent by the host. This callback is provided to applications to adjust timers associated with various reports, which are sent to host over interrupt endpoint. The setup packet data (

Remark: Applications which don't send reports on Interrupt endpoint or don't have idle time between reports should set this data member to zero before calling the USBD_HID_API::Init().

Parameters:

- 1. hHid = Handle to HID function driver.
- 2. pSetup = Pointer to setup packet recived from host.
- 3. idleTime = Idle time to be set for the specified report.

Returns:

The call back should returns ErrorCode t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member Description HID_SetProtocol ErrorCode t(*ErrorCode t(* USBD HID INIT PARAM::HID SetProtocol)(USBD HANDLE T hHid, USB SETUP PACKET *pSetup, uint8 t protocol))(USBD HANDLE T hHid, USB SETUP PACKET *pSetup, uint8 t protocol) Optional callback function to handle HID_REQUEST_SET_PROTOCOL request. The application software could provide this callback to handle HID REQUEST SET PROTOCOL requests sent by the host. This callback is provided to applications to adjust modes of their code between boot mode and report mode. Remark: Applications which don't support protocol modes should set this data member to zero before calling the USBD HID API::Init(). Parameters: 1. hHid = Handle to HID function driver. 2. pSetup = Pointer to setup packet recived from host. 3. protocol = Protocol mode. 0 = Boot Protocol 1 = Report Protocol Returns: The call back should return ErrorCode t type to indicate success or error condition. Return values: 1. LPC_OK = On success. 2. ERR USBD UNHANDLED = Event is not handled hence pass the event to next in line. 3. ERR_USBD_xxx = For other error conditions. HID_EpIn_Hdlr ErrorCode t(*ErrorCode t(* USBD HID INIT PARAM::HID EpIn Hdlr)(USBD HANDLE T hUsb, void *data, uint32_t event))(USBD_HANDLE_T hUsb, void *data, uint32_t event) Optional Interrupt IN endpoint event handler. The application software could provide Interrupt IN endpoint event handler. Application which send reports to host on interrupt endpoint should provide an endpoint event handler through this data member. This data member is ignored if the interface descriptor hUsbHandle to the USB device stack, dataHandle to HID function driver, eventType of endpoint event. See USBD EVENT T for more details. Parameters: 1. hUsb = Handle to the USB device stack. 2. data = Handle to HID function driver. 3. event = Type of endpoint event. See USBD_EVENT_T for more details. Returns: The call back should return ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. ERR_USBD_xxx = For other error conditions.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member Description HID_EpOut_Hdlr ErrorCode t(*ErrorCode t(* USBD HID INIT PARAM::HID EpOut Hdlr)(USBD HANDLE T hUsb, void *data, uint32 t event))(USBD HANDLE T hUsb, void *data, uint32 t event) Optional Interrupt OUT endpoint event handler. The application software could provide Interrupt OUT endpoint event handler. Application which receives reports from host on interrupt endpoint should provide an endpoint event handler through this data member. This data member is ignored if the interface descriptor hUsbHandle to the USB device stack. dataHandle to HID function driver. eventType of endpoint event. See USBD_EVENT_T for more details. Parameters: 1. hUsb = Handle to the USB device stack. 2. data = Handle to HID function driver. 3. event = Type of endpoint event. See USBD_EVENT_T for more details. Returns: The call back should return ErrorCode_t type to indicate success or error condition. Return values: 1. LPC OK = On success. 2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line. 3. ERR_USBD_xxx = For other error conditions. HID_GetReportDesc ErrorCode t(*ErrorCode t(* USBD HID INIT PARAM::HID GetReportDesc)(USBD HANDLE T hHid, USB SETUP PACKET *pSetup, uint8 t **pBuf, uint16 t *length))(USBD HANDLE T hHid, USB_SETUP_PACKET *pSetup, uint8_t **pBuf, uint16_t *length) Optional user overridable function to replace the default HID GetReportDesc handler. The application software could override the default HID_GetReportDesc handler with their own by providing the handler function address as this data member of the parameter structure. Application which like the default handler should set this data member to zero before calling the USBD_HID_API::Init() and also provide report data array Remark: Parameters: 1. hUsb = Handle to the USB device stack. 2. data = Pointer to the data which will be passed when callback function is called by the stack. 3. event = Type of endpoint event. See USBD_EVENT_T for more details.

Returns:

The call back should returns ErrorCode_t type to indicate success or error condition.

Return values:

- 1. LPC_OK = On success.
- ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
- 3. $ERR_USBD_xxx = For other error conditions$.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 198. USBD_HID_INIT_PARAM class structure

Member	Description
HID_Ep0_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_HID_INIT_PARAM::HID_Ep0_Hdlr)(USBD_HANDLE_T hUsb, void</pre>
	Optional user overridable function to replace the default HID class handler.
	The application software could override the default EP0 class handler with their own by providing the handler function address as this data member of the parameter structure. Application which like the default handler should set this data member to zero before calling the USBD_HID_API::Init().
	Remark:
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	2. ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line.
	ERR_USBD_xxx = For other error conditions.

11.5.34 USBD_HW_API

Hardware API functions structure. This module exposes functions which interact directly with USB device controller hardware.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 199. USBD_HW_API class structure

Member	Description
GetMemSize	uint32_t(*uint32_t USBD_HW_API::GetMemSize)(USBD_API_INIT_PARAM_T *param)
	Function to determine the memory required by the USB device stack's DCD and core layers.
	This function is called by application layer before calling pUsbApi->hw->
	Remark: Some memory areas are not accessible by all bus masters.
	Parameters:
	 param = Structure containing USB device stack initialization parameters.
	Returns:
	Returns the required memory size in bytes.
Init	<pre>ErrorCode_t(*ErrorCode_t USBD_HW_API::Init)(USBD_HANDLE_T *phUsb, USB_CORE_DESCS_T *pDesc, USBD_API_INIT_PARAM_T *param)</pre>
	Function to initialize USB device stack's DCD and core layers.
	This function is called by application layer to initialize USB hardware and core layers. On successful initialization the function returns a handle to USB device stack which should be passed to the rest of the functions.
	phUsbPointer to the USB device stack handle of type USBD_HANDLE_T. paramStructure containing USB device stack initialization parameters.
	Parameters:
	 phUsb = Pointer to the USB device stack handle of type USBD_HANDLE_T.
	param = Structure containing USB device stack initialization parameters.
	Returns:
	Returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK(0) = On success
	ERR_USBD_BAD_MEM_BUF(0x0004000b) = When insufficient memory buffer is passed or memory is not aligned on 2048 boundary.
Connect	<pre>void(*void USBD_HW_API::Connect)(USBD_HANDLE_T hUsb, uint32_t con)</pre>
	Function to make USB device visible/invisible on the USB bus.
	This function is called after the USB initialization. This function uses the soft connect feature to make the device visible on the USB bus. This function is called only after the application is ready to handle the USB data. The enumeration process is started by the host after the device detection. The driver handles the enumeration process according to the USB descriptors passed in the USB initialization function.
	hUsbHandle to the USB device stack. conStates whether to connect (1) or to disconnect (0). Parameters:
	1. hUsb = Handle to the USB device stack.
	2. con = States whether to connect (1) or to disconnect (0).
	Returns:
	Nothing.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 199. USBD_HW_API class structure

Member	Description
ISR	<pre>void(*void USBD_HW_API::ISR)(USBD_HANDLE_T hUsb)</pre>
	Function to USB device controller interrupt events.
	When the user application is active the interrupt handlers are mapped in the user flash space. The user application must provide an interrupt handler for the USB interrupt and call this function in the interrupt handler routine. The driver interrupt handler takes appropriate action according to the data received on the USB bus.
	hUsbHandle to the USB device stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	Returns:
	Nothing.
Reset	void(*void USBD_HW_API::Reset)(USBD_HANDLE_T hUsb)
	Function to Reset USB device stack and hardware controller.
	Reset USB device stack and hardware controller. Disables all endpoints except EP0. Clears all pending interrupts and resets endpoint transfer queues. This function is called internally by pUsbApi->hw->init() and from reset event.
	hUsbHandle to the USB device stack.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	Returns:
	Nothing.
ForceFullSpeed	<pre>void(*void USBD_HW_API::ForceFullSpeed)(USBD_HANDLE_T hUsb, uint32_t cfg)</pre>
	Function to force high speed USB device to operate in full speed mode.
	This function is useful for testing the behavior of current device when connected to a full speed only hosts.
	hUsbHandle to the USB device stack. cfgWhen 1 - set force full-speed or 0 - clear force full-speed.
	Parameters:
	1. hUsb = Handle to the USB device stack.
	2. cfg = When 1 - set force full-speed or 0 - clear force full-speed.
	Returns:
	Nothing.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 199. USBD_HW_API class structure

Table 199. USBD_HW_API class structure		
Member	Description	
WakeUpCfg	<pre>void(*void USBD_HW_API::WakeUpCfg)(USBD_HANDLE_T hUsb, uint32_t cfg)</pre>	
	Function to configure USB device controller to walk-up host on remote events.	
	This function is called by application layer to configure the USB device controller to wake up on remote events. It is recommended to call this function from users's USB_WakeUpCfg() callback routine registered with stack.	
	Remark: User's USB_WakeUpCfg() is registered with stack by setting the USB_WakeUpCfg member of USBD_API_INIT_PARAM_T structure before calling pUsbApi->hw->Init() routine. Certain USB device controllers needed to keep some clocks always on to generate resume signaling through pUsbApi->hw->WakeUp(). This hook is provided to support such controllers. In most controllers cases this is an empty routine.	
	Parameters:	
	1. hUsb = Handle to the USB device stack.	
	cfg = When 1 - Configure controller to wake on remote events or 0 - Configure controller not to wake on remote events.	
	Returns:	
	Nothing.	
SetAddress	<pre>void(*void USBD_HW_API::SetAddress)(USBD_HANDLE_T hUsb, uint32_t adr)</pre>	
	Function to set USB address assigned by host in device controller hardware.	
	This function is called automatically when USB_REQUEST_SET_ADDRESS request is received by the stack from USB host. This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.	
	hUsbHandle to the USB device stack. adrUSB bus Address to which the device controller should respond. Usually assigned by the USB host.	
	Parameters:	
	1. hUsb = Handle to the USB device stack.	
	adr = USB bus Address to which the device controller should respond. Usually assigned by the USB host.	
	Returns:	
	Nothing.	
Configure	void(*void USBD_HW_API::Configure)(USBD_HANDLE_T hUsb, uint32_t cfg)	
	Function to configure device controller hardware with selected configuration.	
	This function is called automatically when USB_REQUEST_SET_CONFIGURATION request is received by the stack from USB host. This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.	
	hUsbHandle to the USB device stack. cfgConfiguration index.	
	Parameters:	
	1. hUsb = Handle to the USB device stack.	
	2. cfg = Configuration index.	
	Returns:	
	Nothing.	

UM10524 NXP Semiconductors

Chapter 11: LPC1345/46/47 USB on-chip drivers

Member	Description				
ConfigEP	void(*void USBD_HW_API::ConfigEP)(USBD_HANDLE_T hUsb, USB_ENDPOINT_DESCRIPTOR *pEPD)				
	Function to configure USB Endpoint according to descriptor.				
	This function is called automatically when USB_REQUEST_SET_CONFIGURATION request is received by the stack from USB host. All the endpoints associated with the selected configuration are configured. This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.				
	hUsbHandle to the USB device stack. pEPDEndpoint descriptor structure defined in USB 2.0 specification.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	pEPD = Endpoint descriptor structure defined in USB 2.0 specification.				
	Returns:				
	Nothing.				
DirCtrlEP	<pre>void(*void USBD_HW_API::DirCtrlEP)(USBD_HANDLE_T hUsb, uint32_t dir)</pre>				
	Function to set direction for USB control endpoint EP0.				
	This function is called automatically by the stack on need basis. This interface is provided to users to invoke this function in other scenarios which are not handle by current stack. In most user applications this function is not called directly. Also this function can be used by users who are selectively modifying the USB device stack's standard handlers through callback interface exposed by the stack.				
	hUsbHandle to the USB device stack. cfgWhen 1 - Set EP0 in IN transfer mode 0 - Set EP0 in OUT transfer mode				
	Parameters:				
	hUsb = Handle to the USB device stack.				
	2. cfg = When 1 - Set EP0 in IN transfer mode 0 - Set EP0 in OUT transfer mode				
	Returns:				
	Nothing.				

Chapter 11: LPC1345/46/47 USB on-chip drivers

Member	Description				
EnableEP	void(*void USBD_HW_API::EnableEP)(USBD_HANDLE_T hUsb, uint32_t EPNum)				
	Function to enable selected USB endpoint.				
	This function enables interrupts on selected endpoint.				
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	Returns:				
	Nothing.				
	This function enables interrupts on selected endpoint.				
	hUsbHandle to the USB device stack. EPNumEndpoint number corresponding to the event as per USB specification. ie. An EP1_IN is represented by 0x81 number. For device events set this param to 0x0. eventType of endpoint event. See USBD_EVENT_T for more details. enable1 - enable event, 0 - disable event.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	EPNum = Endpoint number corresponding to the event as per USB specification. ie. An EP1_IN is represented by 0x81 number. For device events set this param to 0x0.				
	event = Type of endpoint event. See USBD_EVENT_T for more details.				
	4. enable = 1 - enable event, 0 - disable event.				
	Returns:				
	Returns ErrorCode_t type to indicate success or error condition.				
	Return values:				
	1. LPC_OK(0) = - On success				
	2. ERR_USBD_INVALID_REQ(0x00040001) = - Invalid event type.				
DisableEP	void(*void USBD_HW_API::DisableEP)(USBD_HANDLE_T hUsb, uint32_t EPNum)				
	Function to disable selected USB endpoint.				
	This function disables interrupts on selected endpoint.				
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	Returns:				
	Nothing.				

Chapter 11: LPC1345/46/47 USB on-chip drivers

Member	Description			
ResetEP	<pre>void(*void USBD_HW_API::ResetEP)(USBD_HANDLE_T hUsb, uint32_t EPNum)</pre>			
	Function to reset selected USB endpoint.			
	This function flushes the endpoint buffers and resets data toggle logic.			
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Parameters:			
	 hUsb = Handle to the USB device stack. 			
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Returns:			
	Nothing.			
SetStallEP	void(*void USBD_HW_API::SetStallEP)(USBD_HANDLE_T hUsb, uint32_t EPNum)			
	Function to STALL selected USB endpoint.			
	Generates STALL signalling for requested endpoint.			
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Parameters:			
	1. hUsb = Handle to the USB device stack.			
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Returns:			
	Nothing.			
CIrStallEP	void(*void USBD_HW_API::ClrStallEP)(USBD_HANDLE_T hUsb, uint32_t EPNum)			
	Function to clear STALL state for the requested endpoint.			
	This function clears STALL state for the requested endpoint.			
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Parameters:			
	1. hUsb = Handle to the USB device stack.			
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.			
	Returns:			
	Nothing.			

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 199. USBD HW API class structure

Table 199. USBD_HW_API class structure					
Member	Description				
SetTestMode	<pre>ErrorCode_t(*ErrorCode_t USBD_HW_API::SetTestMode)(USBD_HANDLE_T hUsb, uint8_t mode)</pre>				
	Function to set high speed USB device controller in requested test mode.				
	USB-IF requires the high speed device to be put in various test modes for electrical testing. This USB device stack calls this function whenever it receives USB_REQUEST_CLEAR_FEATURE request for USB_FEATURE_TEST_MODE. Users can put the device in test mode by directly calling this function. Returns ERR_USBD_INVALID_REQ when device controller is full-speed only.				
	hUsbHandle to the USB device stack. modeTest mode defined in USB 2.0 electrical testing specification.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	2. mode = Test mode defined in USB 2.0 electrical testing specification.				
	Returns:				
	Returns ErrorCode_t type to indicate success or error condition.				
	Return values:				
	1. LPC_OK(0) = - On success				
	 ERR_USBD_INVALID_REQ(0x00040001) = - Invalid test mode or Device controller is full-speed only. 				
ReadEP	<pre>uint32_t(*uint32_t USBD_HW_API::ReadEP)(USBD_HANDLE_T hUsb, uint32_t EPNum, uint8_t *pData)</pre>				
	Function to read data received on the requested endpoint.				
	This function is called by USB stack and the application layer to read the data received on the requested endpoint.				
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number. pDataPointer to the data buffer where data is to be copied.				
	Parameters:				
	hUsb = Handle to the USB device stack.				
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	pData = Pointer to the data buffer where data is to be copied.				
	Returns:				
	Returns the number of bytes copied to the buffer.				

Chapter 11: LPC1345/46/47 USB on-chip drivers

Description					
uint32_t(*uint32_t USBD_HW_API::ReadReqEP)(USBD_HANDLE_T hUsb, uint32_t EPNum, uint8_t *pData, uint32_t len)					
Function to queue read request on the specified endpoint.					
This function is called by USB stack and the application layer to queue a read request on the specified endpoint.					
hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number. pDataPointer to the data buffer where data is to be copied. This buffer address should be accessible by USB DMA master. lenLength of the buffer passed.					
Parameters:					
1. hUsb = Handle to the USB device stack.					
EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.					
pData = Pointer to the data buffer where data is to be copied. This buffer address should be accessible by USB DMA master.					
4. len = Length of the buffer passed.					
Returns:					
Returns the length of the requested buffer.					
<pre>uint32_t(*uint32_t USBD_HW_API::ReadSetupPkt)(USBD_HANDLE_T hUsb, uint32_t EPNum,</pre>					
Function to read setup packet data received on the requested endpoint.					
This function is called by USB stack and the application layer to read setup packet data received on the requested endpoint.					
hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP0_IN is represented by 0x80 number. pDataPointer to the data buffer where data is to be copied.					
Parameters:					
1. hUsb = Handle to the USB device stack.					
EPNum = Endpoint number as per USB specification. ie. An EP0_IN is represented by 0x80 number.					
3. pData = Pointer to the data buffer where data is to be copied.					
Returns:					
Returns the number of bytes copied to the buffer.					

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 199. USBD_HW_API class structure

Member	Description				
WriteEP	uint32_t(*uint32_t USBD_HW_API::WriteEP)(USBD_HANDLE_T hUsb, uint32_t EPNum, uint8_t *pData, uint32_t cnt)				
	Function to write data to be sent on the requested endpoint.				
	This function is called by USB stack and the application layer to send data on the requested endpoint.				
	hUsbHandle to the USB device stack. EPNumEndpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number. pDataPointer to the data buffer from where data is to be copied. cntNumber of bytes to write.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	EPNum = Endpoint number as per USB specification. ie. An EP1_IN is represented by 0x81 number.				
	3. pData = Pointer to the data buffer from where data is to be copied.				
	4. cnt = Number of bytes to write.				
	Returns:				
	Returns the number of bytes written.				
WakeUp	<pre>void(*void USBD_HW_API::WakeUp)(USBD_HANDLE_T hUsb)</pre>				
	Function to generate resume signaling on bus for remote host wake-up.				
	This function is called by application layer to remotely wake up host controller when system is in suspend state. Application should indicate this remote wake up capability by setting USB_CONFIG_REMOTE_WAKEUP in bmAttributes of Configuration Descriptor. Also this routine will generate resume signalling only if host enables USB_FEATURE_REMOTE_WAKEUP by sending SET_FEATURE request before suspending the bus.				
	hUsbHandle to the USB device stack.				
	Parameters:				
	1. hUsb = Handle to the USB device stack.				
	Returns:				
	Nothing.				
EnableEvent	<pre>ErrorCode_t(*ErrorCode_t(* USBD_HW_API::EnableEvent)(USBD_HANDLE_T hUsb, uint32_t EPNum,</pre>				

11.5.35 USBD_MSC_API

MSC class API functions structure. This module exposes functions which interact directly with USB device controller hardware.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 200. USBD_MSC_API class structure

Member	Description				
GetMemSize	uint32_t(*uint32_t USBD_MSC_API::GetMemSize)(USBD_MSC_INIT_PARAM_T *param)				
	Function to determine the memory required by the MSC function driver module.				
	This function is called by application layer before calling pUsbApi->msc->Init(), to allocate memory used by MSC function driver module. The application should allocate the memory which is accessible by USB controller/DMA controller.				
	Remark: Some memory areas are not accessible by all bus masters.				
	Parameters:				
	1. param = Structure containing MSC function driver module initialization parameters.				
	Returns:				
	Returns the required memory size in bytes.				
init	<pre>ErrorCode_t(*ErrorCode_t USBD_MSC_API::init)(USBD_HANDLE_T hUsb,</pre>				
	Function to initialize MSC function driver module.				
	This function is called by application layer to initialize MSC function driver module.				
	hUsbHandle to the USB device stack. paramStructure containing MSC function driver module initialization parameters.				
	Parameters:				
	 hUsb = Handle to the USB device stack. 				
	 param = Structure containing MSC function driver module initialization parameters. Returns: 				
	Returns ErrorCode_t type to indicate success or error condition.				
	Return values:				
	1. LPC OK = On success				
	 ERR_USBD_BAD_MEM_BUF = Memory buffer passed is not 4-byte aligned or smaller than required. 				
	 ERR_API_INVALID_PARAM2 = Either MSC_Write() or MSC_Read() or MSC_Verify() callbacks are not defined. 				
	4. ERR_USBD_BAD_INTF_DESC = Wrong interface descriptor is passed.				
	5. ERR_USBD_BAD_EP_DESC = Wrong endpoint descriptor is passed.				

11.5.36 USBD_MSC_INIT_PARAM

Mass Storage class function driver initialization parameter data structure.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 201. USBD_MSC_INIT_PARAM class structure

Member	Description				
mem_base	uint32_tuint32_t USBD_MSC_INIT_PARAM::mem_base				
	Base memory location from where the stack can allocate data and buffers.				
	Remark: The memory address set in this field should be accessible by USB DMA controller. Also this value should be aligned on 4 byte boundary.				
mem_size	uint32_tuint32_t USBD_MSC_INIT_PARAM::mem_size				
	The size of memory buffer which stack can use.				
	Remark: The mem_size should be greater than the size returned by USBD_MSC_API::GetMemSize() routine.				
InquiryStr	uint8_t *uint8_t* USBD_MSC_INIT_PARAM::InquiryStr				
	Pointer to the 28 character string. This string is sent in response to the SCSI Inquiry command.				
	Remark: The data pointed by the pointer should be of global scope.				
BlockCount	uint32_tuint32_t USBD_MSC_INIT_PARAM::BlockCount				
	Number of blocks present in the mass storage device				
BlockSize	uint32_tuint32_t USBD_MSC_INIT_PARAM::BlockSize				
	Block size in number of bytes				
MemorySize	uint32_tuint32_t USBD_MSC_INIT_PARAM::MemorySize				
	Memory size in number of bytes				
intf_desc	uint8_t *uint8_t* USBD_MSC_INIT_PARAM::intf_desc				
	Pointer to the interface descriptor within the descriptor array (
MSC_Write	<pre>void(*void(* USBD_MSC_INIT_PARAM::MSC_Write)(uint32_t offset, uint8_t **src, uint32_t length))(uint32_t offset, uint8_t **src, uint32_t length)</pre>				
	MSC Write callback function.				
	This function is provided by the application software. This function gets called when host sends a write command.				
	offsetDestination start address. srcPointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept. lengthNumber of bytes to be written.				
	Parameters:				
	offset = Destination start address.				
	 src = Pointer to a pointer to the source of data. Pointer-to-pointer is used to implement zero-copy buffers. See Zero-Copy Data Transfer model for more details on zero-copy concept. 				
	3. length = Number of bytes to be written.				
	Returns:				
	Returns.				

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 201. USBD_MSC_INIT_PARAM class structure

Member

Description

MSC_Read

MSC Read callback function.

This function is provided by the application software. This function gets called when host sends a read command.

offsetSource start address. dstPointer to a pointer to the source of data. The MSC function drivers implemented in stack are written with zero-copy model. Meaning the stack doesn't make an extra copy of buffer before writing/reading data from USB hardware FIFO. Hence the parameter is pointer to a pointer containing address buffer (uint8_t** dst). So that the user application can update the buffer pointer instead of copying data to address pointed by the parameter. /note The updated buffer address should be accessible by USB DMA master. If user doesn't want to use zero-copy model, then the user should copy data to the address pointed by the passed buffer pointer parameter and shouldn't change the address value. See Zero-Copy Data Transfer model for more details on zero-copy concept. lengthNumber of bytes to be read.

Parameters:

- 1. offset = Source start address.
- 2. dst = Pointer to a pointer to the source of data. The MSC function drivers implemented in stack are written with zero-copy model. Meaning the stack doesn't make an extra copy of buffer before writing/reading data from USB hardware FIFO. Hence the parameter is pointer to a pointer containing address buffer (uint8_t** dst). So that the user application can update the buffer pointer instead of copying data to address pointed by the parameter. /note The updated buffer address should be access able by USB DMA master. If user doesn't want to use zero-copy model, then the user should copy data to the address pointed by the passed buffer pointer parameter and shouldn't change the address value. See Zero-Copy Data Transfer model for more details on zero-copy concept.
- 3. length = Number of bytes to be read.

Returns:

Nothing.

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 201. USBD_MSC_INIT_PARAM class structure

Member	Description				
MSC_Verify	<pre>ErrorCode_t(*ErrorCode_t(* USBD_MSC_INIT_PARAM::MSC_Verify)(uint32_t offset, uint8_t buf[], uint32_t length))(uint32_t offset, uint8_t buf[], uint32_t length)</pre>				
	MSC Verify callback function.				
	This function is provided by the application software. This function gets called when host sends a verify command. The callback function should compare the buffer with the destination memory at the requested offset and				
	offsetDestination start address. bufBuffer containing the data sent by the host. lengthNumber of bytes to verify.				
	Parameters:				
	offset = Destination start address.				
	2. buf = Buffer containing the data sent by the host.				
	length = Number of bytes to verify.				
	Returns:				
	Returns ErrorCode_t type to indicate success or error condition.				
	Return values:				
	 LPC_OK = If data in the buffer matches the data at destination 				
	2. ERR_FAILED = At least one byte is different.				
MSC_GetWriteBuf	<pre>void(*void(* USBD_MSC_INIT_PARAM::MSC_GetWriteBuf)(uint32_t offset, uint8_t</pre>				
	Optional callback function to optimize MSC_Write buffer transfer.				
	This function is provided by the application software. This function gets called when host sends SCSI_WRITE10/SCSI_WRITE12 command. The callback function should update the				
	offsetDestination start address. bufBuffer containing the data sent by the host. lengthNumber of bytes to write.				
	Parameters:				
	offset = Destination start address.				
	2. buf = Buffer containing the data sent by the host.				
	3. length = Number of bytes to write.				
	Returns:				
	Nothing.				

Chapter 11: LPC1345/46/47 USB on-chip drivers

Table 201. USBD_MSC_INIT_PARAM class structure

Member	Description
MSC_Ep0_Hdlr	<pre>ErrorCode_t(*ErrorCode_t(* USBD_MSC_INIT_PARAM::MSC_Ep0_Hdlr)(USBD_HANDLE_T hUsb, void *data, uint32_t event))(USBD_HANDLE_T hUsb, void *data, uint32_t event)</pre>
	Optional user overridable function to replace the default MSC class handler.
	The application software could override the default EP0 class handler with their own by providing the handler function address as this data member of the parameter structure. Application which like the default handler should set this data member to zero before calling the USBD_MSC_API::Init().
	Remark:
	Parameters:
	1. hUsb = Handle to the USB device stack.
	data = Pointer to the data which will be passed when callback function is called by the stack.
	event = Type of endpoint event. See USBD_EVENT_T for more details.
	Returns:
	The call back should returns ErrorCode_t type to indicate success or error condition.
	Return values:
	1. LPC_OK = On success.
	 ERR_USBD_UNHANDLED = Event is not handled hence pass the event to next in line. ERR_USBD_xxx = For other error conditions.

UM10524

Chapter 12: LPC1315/16/17/45/46/47 USART

Rev. 4 — 12 March 2013

User manual

12.1 How to read this chapter

The USART controller is available on all LPC1315/16/17/45/46/47 parts.

12.2 Basic configuration

The USART is configured as follows:

- The USART block is enabled through the SYSAHBCLKCTRL register (see Table 19).
- The peripheral USART clock (PCLK), which is used by the USART baud rate generator, is controlled by the UARTCLKDIV register (see <u>Table 21</u>).

12.3 Features

- 16-byte receive and transmit FIFOs.
- · Register locations conform to '550 industry standard.
- Receiver FIFO trigger points at 1, 4, 8, and 14 bytes.
- Built-in baud rate generator.
- Software or hardware flow control.
- RS-485/EIA-485 9-bit mode support with output enable.
- RTS/CTS flow control and other modem control signals.
- 1X-clock send or receive.
- ISO 7816-3 compliant smart card interface.
- IrDA support.

12.4 Pin description

Some of the following pins are not available in some packages.

Table 202. USART pin description

Pin	Type	Description
RXD	Input	Serial Input. Serial receive data.
TXD	Output	Serial Output. Serial transmit data (input/output in smart card mode).
RTS	Output	Request To Send. RS-485 direction control pin.
CTS	Input	Clear To Send.
DTR	Output	Data Terminal Ready.
DSR	Input	Data Set Ready.
DCD	Input	Data Carrier Detect.
RI	Input	Ring Indicator.
SCLK	I/O	Serial Clock.

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5 Register description

The USART contains registers organized as shown in <u>Table 203</u>. The Divisor Latch Access Bit (DLAB) is contained in LCR[7] and enables access to the Divisor Latches.

Offsets/addresses not shown in Table 203 are reserved.

Table 203. Register overview: USART (base address: 0x4000 8000)

Name	Access	Address offset	Description	Reset value[1]	Reference
RBR	RO	0x000	Receiver Buffer Register. Contains the next received character to be read. (DLAB=0)	NA	Table 204
THR	WO	0x000	Transmit Holding Register. The next character to be transmitted is written here. (DLAB=0)	NA	Table 205
DLL	R/W	0x000	Divisor Latch LSB. Least significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider. (DLAB=1)	0x01	Table 206
DLM	R/W	0x004	Divisor Latch MSB. Most significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider. (DLAB=1)	0	Table 207
IER	R/W	0x004	Interrupt Enable Register. Contains individual interrupt enable bits for the seven potential USART interrupts. (DLAB=0)	0	Table 208
IIR	RO	0x008	Interrupt ID Register. Identifies which interrupt(s) are pending.	0x01	Table 209
FCR	WO	0x008	FIFO Control Register. Controls USART FIFO usage and modes.	0	<u>Table 211</u>
LCR	R/W	0x00C	Line Control Register. Contains controls for frame formatting and break generation.	0	Table 212
MCR	R/W	0x010	Modem Control Register.	0	Table 213
LSR	RO	0x014	Line Status Register. Contains flags for transmit and receive status, including line errors.	0x60	Table 214
MSR	RO	0x018	Modem Status Register.	0	Table 216
SCR	R/W	0x01C	Scratch Pad Register. Eight-bit temporary storage for software.	0	Table 217
ACR	R/W	0x020	Auto-baud Control Register. Contains controls for the auto-baud feature.	0	Table 218
ICR	R/W	0x024	IrDA Control Register. Enables and configures the IrDA (remote control) mode.	0	Table 219
FDR	R/W	0x028	Fractional Divider Register. Generates a clock input for the baud rate divider.	0x10	Table 221
OSR	R/W	0x02C	Oversampling Register. Controls the degree of oversampling during each bit time.	0xF0	Table 223
TER	R/W	0x030	Transmit Enable Register. Turns off USART transmitter for use with software flow control.	0x80	Table 224
HDEN	R/W	0x040	Half duplex enable register.	0	<u>Table 225</u>
SCICTRL	R/W	0x048	Smart Card Interface Control register. Enables and configures the Smart Card Interface feature.	0	Table 226
RS485CTRL	R/W	0x04C	RS-485/EIA-485 Control. Contains controls to configure various aspects of RS-485/EIA-485 modes.	0	Table 227
UM10524			All information provided in this document is subject to legal disclaimers.	© NXP B.V.	. 2013. All rights reserved.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 203. Register overview: USART (base address: 0x4000 8000)

Name	Access	Address offset	Description	Reset value[1]	Reference
RS485ADRMATCH	R/W	0x050	RS-485/EIA-485 address match. Contains the address match value for RS-485/EIA-485 mode.	0	Table 228
RS485DLY	R/W	0x054	RS-485/EIA-485 direction control delay.	0	Table 229
SYNCCTRL	R/W	0x058	Synchronous mode control register.	0	Table 230

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

12.5.1 USART Receiver Buffer Register (when DLAB = 0, Read Only)

The RBR is the top byte of the USART RX FIFO. The top byte of the RX FIFO contains the oldest character received and can be read via the bus interface. The LSB (bit 0) contains the first-received data bit. If the character received is less than 8 bits, the unused MSBs are padded with zeros.

The Divisor Latch Access Bit (DLAB) in the LCR must be zero in order to access the RBR. The RBR is always Read Only.

Since PE, FE and BI bits (see <u>Table 215</u>) correspond to the byte on the top of the RBR FIFO (i.e. the one that will be read in the next read from the RBR), the right approach for fetching the valid pair of received byte and its status bits is first to read the content of the LSR register, and then to read a byte from the RBR.

Table 204. USART Receiver Buffer Register when DLAB = 0, Read Only (RBR - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset Value
7:0	RBR	The USART Receiver Buffer Register contains the oldest received byte in the USART RX FIFO.	undefined
31:8	-	Reserved	-

12.5.2 USART Transmitter Holding Register (when DLAB = 0, Write Only)

The THR is the top byte of the USART TX FIFO. The top byte is the newest character in the TX FIFO and can be written via the bus interface. The LSB represents the first bit to transmit.

The Divisor Latch Access Bit (DLAB) in the LCR must be zero in order to access the THR. The THR is always Write Only.

Table 205. USART Transmitter Holding Register when DLAB = 0, Write Only (THR - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset Value
7:0	THR	Writing to the USART Transmit Holding Register causes the data to be stored in the USART transmit FIFO. The byte will be sent when it is the oldest byte in the FIFO and the transmitter is available.	NA
31:8	-	Reserved	-

User manual

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.3 USART Divisor Latch LSB and MSB Registers (when DLAB = 1)

The USART Divisor Latch is part of the USART Baud Rate Generator and holds the value used (optionally with the Fractional Divider) to divide the UART_PCLK clock in order to produce the baud rate clock, which must be the multiple of the desired baud rate that is specified by the Oversampling Register (typically 16X). The DLL and DLM registers together form a 16-bit divisor. DLL contains the lower 8 bits of the divisor and DLM contains the higher 8 bits. A zero value is treated like 0x0001. The Divisor Latch Access Bit (DLAB) in the LCR must be one in order to access the USART Divisor Latches. Details on how to select the right value for DLL and DLM can be found in Section 12.5.14.

Table 206. USART Divisor Latch LSB Register when DLAB = 1 (DLL - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset value
7:0	DLLSB	The USART Divisor Latch LSB Register, along with the DLM register, determines the baud rate of the USART.	0x01
31:8	-	Reserved	-

Table 207. USART Divisor Latch MSB Register when DLAB = 1 (DLM - address 0x4000 8004) bit description

Bit	Symbol	Description	Reset value
7:0	DLMSB	The USART Divisor Latch MSB Register, along with the DLL register, determines the baud rate of the USART.	0x00
31:8	-	Reserved	-

12.5.4 USART Interrupt Enable Register (when DLAB = 0)

The IER is used to enable the various USART interrupt sources.

Table 208. USART Interrupt Enable Register when DLAB = 0 (IER - address 0x4000 8004) bit description

Bit	Symbol	Value	Description	Reset value
0	RBRINTEN		RBR Interrupt Enable. Enables the Receive Data Available interrupt. It also controls the Character Receive Time-out interrupt.	0
		0	Disable the RDA interrupt.	
	1 Enable the RDA interrupt.	Enable the RDA interrupt.		
1	THREINTEN		THRE Interrupt Enable. Enables the THRE interrupt. The status of this interrupt can be read from LSR[5].	0
		0	Disable the THRE interrupt.	
		1	Enable the THRE interrupt.	
2	RLSINTEN 0		Enables the Receive Line Status interrupt. The status of this interrupt can be read from LSR[4:1].	0
		0	Disable the RLS interrupt.	
		1	Enable the RLS interrupt.	
3	MSINTEN		Enables the Modem Status interrupt. The components of this interrupt can be read from the MSR.	0
		0	Disable the MS interrupt.	
		1	Enable the MS interrupt.	

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 208. USART Interrupt Enable Register when DLAB = 0 (IER - address 0x4000 8004) bit description ...continued

Bit	Symbol	Value	Description	Reset value
7:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
8	ABEOINTEN		Enables the end of auto-baud interrupt.	0
		0	Disable end of auto-baud Interrupt.	
		1	Enable end of auto-baud Interrupt.	
9	ABTOINTEN		Enables the auto-baud time-out interrupt.	0
		0	Disable auto-baud time-out Interrupt.	
		1	Enable auto-baud time-out Interrupt.	
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.5.5 USART Interrupt Identification Register (Read Only)

IIR provides a status code that denotes the priority and source of a pending interrupt. The interrupts are frozen during a IIR access. If an interrupt occurs during a IIR access, the interrupt is recorded for the next IIR access.

Table 209. USART Interrupt Identification Register Read only (IIR - address 0x4004 8008) bit description

Bit	Symbol	Value	Description	Reset value
0	INTSTATUS		Interrupt status. Note that IIR[0] is active low. The pending interrupt can be determined by evaluating IIR[3:1].	1
		0	At least one interrupt is pending.	
		1	No interrupt is pending.	
3:1	3:1 INTID		Interrupt identification. IER[3:1] identifies an interrupt corresponding to the USART Rx FIFO. All other values of IER[3:1] not listed below are reserved.	0
		0x3	1 - Receive Line Status (RLS).	
		0x2	2a - Receive Data Available (RDA).	
		0x6	2b - Character Time-out Indicator (CTI).	
		0x1	3 - THRE Interrupt.	
		0x0	4 - Modem status	
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
7:6	FIFOEN		These bits are equivalent to FCR[0].	0
8	ABEOINT		End of auto-baud interrupt. True if auto-baud has finished successfully and interrupt is enabled.	0
9	ABTOINT		Auto-baud time-out interrupt. True if auto-baud has timed out and interrupt is enabled.	0
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 12: LPC1315/16/17/45/46/47 USART

Bits IIR[9:8] are set by the auto-baud function and signal a time-out or end of auto-baud condition. The auto-baud interrupt conditions are cleared by setting the corresponding Clear bits in the Auto-baud Control Register.

If the IntStatus bit is one and no interrupt is pending and the IntId bits will be zero. If the IntStatus is 0, a non auto-baud interrupt is pending in which case the IntId bits identify the type of interrupt and handling as described in <u>Table 210</u>. Given the status of IIR[3:0], an interrupt handler routine can determine the cause of the interrupt and how to clear the active interrupt. The IIR must be read in order to clear the interrupt prior to exiting the Interrupt Service Routine.

The USART RLS interrupt (IIR[3:1] = 011) is the highest priority interrupt and is set whenever any one of four error conditions occur on the USART RX input: overrun error (OE), parity error (PE), framing error (FE) and break interrupt (BI). The USART Rx error condition that set the interrupt can be observed via LSR[4:1]. The interrupt is cleared upon a LSR read.

The USART RDA interrupt (IIR[3:1] = 010) shares the second level priority with the CTI interrupt (IIR[3:1] = 110). The RDA is activated when the USART Rx FIFO reaches the trigger level defined in FCR7:6 and is reset when the USART Rx FIFO depth falls below the trigger level. When the RDA interrupt goes active, the CPU can read a block of data defined by the trigger level.

The CTI interrupt (IIR[3:1] = 110) is a second level interrupt and is set when the USART Rx FIFO contains at least one character and no USART Rx FIFO activity has occurred in 3.5 to 4.5 character times. Any USART Rx FIFO activity (read or write of USART RSR) will clear the interrupt. This interrupt is intended to flush the USART RBR after a message has been received that is not a multiple of the trigger level size. For example, if a 105 character message was to be sent and the trigger level was 10 characters, the CPU would receive 10 RDA interrupts resulting in the transfer of 100 characters and 1 to 5 CTI interrupts (depending on the service routine) resulting in the transfer of the remaining 5 characters.

Table 210. USART Interrupt Handling

IIR[3:0] value[1]	Priority	Interrupt type	Interrupt source	Interrupt reset
0001	-	None	None	-
0110	Highest	RX Line Status / Error	OE ^[2] or PE ^[2] or BI ^[2]	LSR Read ^[2]
0100	Second	RX Data Available	Rx data available or trigger level reached in FIFO (FCR0=1)	RBR Read ^[3] or USART FIFO drops below trigger level

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 210. USART Interrupt Handling

IIR[3:0] value[1] Second Character Time-out indication Character input or removed during a time period depending on how many characters are in FIFO and what the trigger level is set at (3.5 to 4.5 character times). The exact time will be: [(word length) × 7 - 2] × 8 + [(trigger level - number]	
character input or removed during a time period depending on how many characters are in FIFO and what the trigger level is set at (3.5 to 4.5 character times). The exact time will be:	Interrupt reset
of characters) × 8 + 1] RCLKs	RBR Read ^[3]
0010 Third THRE THRE	IIR Read[4] (if source of interrupt) or THR write
0000 Fourth Modem CTS, DSR, RI, or DCD. Status	MSR Read

- [1] Values "0000", "0011", "0111", "1000", "1001", "1010", "1011", "1110", "1110", "1111" are reserved.
- [2] For details see Section 12.5.9 "USART Line Status Register (Read-Only)"
- [3] For details see Section 12.5.1 "USART Receiver Buffer Register (when DLAB = 0, Read Only)"
- [4] For details see Section 12.5.5 "USART Interrupt Identification Register (Read Only)" and Section 12.5.2 "USART Transmitter Holding Register (when DLAB = 0, Write Only)"

The USART THRE interrupt (IIR[3:1] = 001) is a third level interrupt and is activated when the USART THR FIFO is empty provided certain initialization conditions have been met. These initialization conditions are intended to give the USART THR FIFO a chance to fill up with data to eliminate many THRE interrupts from occurring at system start-up. The initialization conditions implement a one character delay minus the stop bit whenever THRE = 1 and there have not been at least two characters in the THR at one time since the last THRE = 1 event. This delay is provided to give the CPU time to write data to THR without a THRE interrupt to decode and service. A THRE interrupt is set immediately if the USART THR FIFO has held two or more characters at one time and currently, the THR is empty. The THRE interrupt is reset when a THR write occurs or a read of the IIR occurs and the THRE is the highest interrupt (IIR[3:1] = 001).

The modem status interrupt (IIR3:1 = 000) is the lowest priority USART interrupt and is activated whenever there is a state change on the CTS, DCD, or DSR or a trailing edge on the RI pin. The source of the modem interrupt can be read in MSR3:0. Reading the MSR clears the modem interrupt.

12.5.6 USART FIFO Control Register (Write Only)

The FCR controls the operation of the USART RX and TX FIFOs.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 211. USART FIFO Control Register Write only (FCR - address 0x4000 8008) bit description

Bit	Symbol	Value	Description	Reset value	
0	FIFOEN		FIFO enable	0	
		0	USART FIFOs are disabled. Must not be used in the application.		
		1	Active high enable for both USART Rx and TX FIFOs and FCR[7:1] access. This bit must be set for proper USART operation. Any transition on this bit will automatically clear the USART FIFOs.		
1	RXFIFO		RX FIFO Reset	0	
	RES	0	No impact on either of USART FIFOs.		
			1	Writing a logic 1 to FCR[1] will clear all bytes in USART Rx FIFO, reset the pointer logic. This bit is self-clearing.	
2	TXFIFO RES		TX FIFO Reset	0	
		RES	RES 0 N	No impact on either of USART FIFOs.	
				1	Writing a logic 1 to FCR[2] will clear all bytes in USART TX FIFO, reset the pointer logic. This bit is self-clearing.
3	-	-	Reserved	0	
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	
7:6	RXTL		RX Trigger Level. These two bits determine how many USART FIFO characters must be received by the FIFO before an interrupt is activated.	0	
		0x0	Trigger level 0 (1 character or 0x01).		
		0x1	Trigger level 1 (4 characters or 0x04).		
		0x2	Trigger level 2 (8 characters or 0x08).		
		0x3	Trigger level 3 (14 characters or 0x0E).		
31:8	-	-	Reserved	-	

12.5.7 USART Line Control Register

The LCR determines the format of the data character that is to be transmitted or received.

Table 212. USART Line Control Register (LCR - address 0x4000 800C) bit description

Bit	Symbol	Value	Description	Reset Value
1:0	WLS		Word Length Select	0
		0x0	5-bit character length.	
		0x1	6-bit character length.	
		0x2	7-bit character length.	
		0x3	8-bit character length.	
2	SBS		Stop Bit Select	0
		0	1 stop bit.	
		1	2 stop bits (1.5 if LCR[1:0]=00).	

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 212. USART Line Control Register (LCR - address 0x4000 800C) bit description

Bit	Symbol	Value	Description	Reset Value
3	PE		Parity Enable	0
		0	Disable parity generation and checking.	
		1	Enable parity generation and checking.	
5:4	PS		Parity Select	0
		0x0	Odd parity. Number of 1s in the transmitted character and the attached parity bit will be odd.	
		0x1	Even Parity. Number of 1s in the transmitted character and the attached parity bit will be even.	
		0x2	Forced 1 stick parity.	
		0x3	Forced 0 stick parity.	
6	BC		Break Control	0
		0	Disable break transmission.	
		1	Enable break transmission. Output pin USART TXD is forced to logic 0 when LCR[6] is active high.	
7	DLAB		Divisor Latch Access Bit	0
		0	Disable access to Divisor Latches.	
		1	Enable access to Divisor Latches.	
31:8	-	-	Reserved	-

12.5.8 USART Modem Control Register

The MCR enables the modem loopback mode and controls the modem output signals.

Table 213. USART Modem Control Register (MCR - address 0x4000 8010) bit description

Bit	Symbol	Value	Description	Reset value
0	DTRCTRL		Source for modem output pin $\overline{\text{DTR}}$. This bit reads as 0 when modem loopback mode is active.	0
1	RTSCTRL		Source for modem output pin $\overline{\text{RTS}}$. This bit reads as 0 when modem loopback mode is active.	0
3:2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0
4	LMS		Loopback Mode Select. The modem loopback mode provides a mechanism to perform diagnostic loopback testing. Serial data from the transmitter is connected internally to serial input of the receiver. Input pin, RXD, has no effect on loopback and output pin, TXD is held in marking state. The DSR, CTS, DCD, and RI pins are ignored. Externally, DTR and RTS are set inactive. Internally, the upper four bits of the MSR are driven by the lower four bits of the MCR. This permits modem status interrupts to be generated in loopback mode by writing the lower four bits of MCR.	0
		0	Disable modem loopback mode.	
		1	Enable modem loopback mode.	
5	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

Chapter 12: LPC1315/16/17/45/46/47 USART

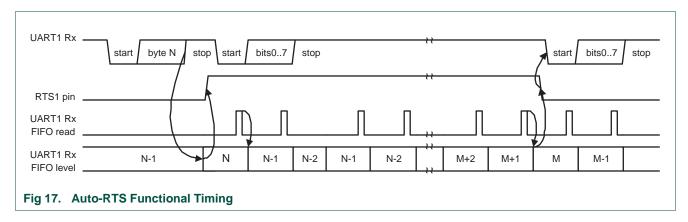
Table 213. USART Modem Control Register (MCR - address 0x4000 8010) bit description

Bit	Symbol	Value	Description	Reset value
6	RTSEN		RTS enable	0
		0	Disable auto-rts flow control.	
		1	Enable auto-rts flow control.	
7	CTSEN		CTS enable	0
		0	Disable auto-cts flow control.	
		1	Enable auto-cts flow control.	
31:8	-	-	Reserved	-

12.5.8.1 Auto-flow control

If auto-RTS mode is enabled, the USART's receiver FIFO hardware controls the RTS output of the USART. If the auto-CTS mode is enabled, the USART's transmitter will only start sending if the CTS pin is low.

12.5.8.1.1 **Auto-RTS**


The auto-RTS function is enabled by setting the RTSen bit. Auto-RTS data flow control originates in the RBR module and is linked to the programmed receiver FIFO trigger level. If auto-RTS is enabled, the data-flow is controlled as follows:

When the receiver FIFO level reaches the programmed trigger level, RTS is deasserted (to a high value). It is possible that the sending USART sends an additional byte after the trigger level is reached (assuming the sending USART has another byte to send) because it might not recognize the deassertion of RTS until after it has begun sending the additional byte. RTS is automatically reasserted (to a low value) once the receiver FIFO has reached the previous trigger level. The reassertion of RTS signals the sending USART to continue transmitting data.

If Auto-RTS mode is disabled, the RTSen bit controls the RTS output of the USART. If Auto-RTS mode is enabled, hardware controls the RTS output, and the actual value of RTS will be copied in the RTS Control bit of the USART. As long as Auto-RTS is enabled, the value of the RTS Control bit is read-only for software.

Example: Suppose the USART operating in type '550 mode has the trigger level in FCR set to 0x2, then, if Auto-RTS is enabled, the USART will deassert the RTS output as soon as the receive FIFO contains 8 bytes (Table 211 on page 215). The RTS output will be reasserted as soon as the receive FIFO hits the previous trigger level: 4 bytes.

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.8.1.2 Auto-CTS

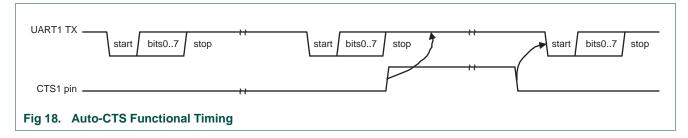

The Auto-CTS function is enabled by setting the CTSen bit. If Auto-CTS is enabled, the transmitter circuitry checks the CTS input before sending the next data byte. When CTS is active (low), the transmitter sends the next byte. To stop the transmitter from sending the following byte, CTS must be released before the middle of the last stop bit that is currently being sent. In Auto-CTS mode, a change of the CTS signal does not trigger a modem status interrupt unless the CTS Interrupt Enable bit is set, but the Delta CTS bit in the MSR will be set. Table 214 lists the conditions for generating a Modem Status interrupt.

Table 214. Modem status interrupt generation

Enable modem status interrupt (IER[3])	CTSen (MCR[7])	CTS interrupt enable (IER[7])	Delta CTS (MSR[0])	Delta DCD or trailing edge RI or Delta DSR (MSR[3:1])	Modem status interrupt
0	X	X	X	X	No
1	0	Х	0	0	No
1	0	Х	1	X	Yes
1	0	Х	Х	1	Yes
1	1	0	Х	0	No
1	1	0	Х	1	Yes
1	1	1	0	0	No
1	1	1	1	Х	Yes
1	1	1	Х	1	Yes

The auto-CTS function typically eliminates the need for CTS interrupts. When flow control is enabled, a $\overline{\text{CTS}}$ state change does not trigger host interrupts because the device automatically controls its own transmitter. Without Auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error can result. Figure 18 illustrates the Auto-CTS functional timing.

Chapter 12: LPC1315/16/17/45/46/47 USART

During transmission of the second character the $\overline{\text{CTS}}$ signal is negated. The <u>third</u> character is not sent thereafter. The USART maintains 1 on TXD as long as $\overline{\text{CTS}}$ is negated (high). As soon as $\overline{\text{CTS}}$ is asserted, transmission resumes and a start bit is sent followed by the data bits of the next character.

12.5.9 USART Line Status Register (Read-Only)

The LSR is a read-only register that provides status information on the USART TX and RX blocks.

Table 215. USART Line Status Register Read only (LSR - address 0x4000 8014) bit description

Bit	Symbol	Value	Description	Reset Value
0	RDR		Receiver Data Ready:LSR[0] is set when the RBR holds an unread character and is cleared when the USART RBR FIFO is empty.	0
		0	RBR is empty.	
		1	RBR contains valid data.	
1	1 OE		Overrun Error. The overrun error condition is set as soon as it occurs. A LSR read clears LSR[1]. LSR[1] is set when USART RSR has a new character assembled and the USART RBR FIFO is full. In this case, the USART RBR FIFO will not be overwritten and the character in the USART RSR will be lost.	0
		0	Overrun error status is inactive.	
		1	Overrun error status is active.	
2	PE		Parity Error. When the parity bit of a received character is in the wrong state, a parity error occurs. A LSR read clears LSR[2]. Time of parity error detection is dependent on FCR[0].	0
			Note: A parity error is associated with the character at the top of the USART RBR FIFO.	
		0	Parity error status is inactive.	
		1	Parity error status is active.	

219 of 416

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 215. USART Line Status Register Read only (LSR - address 0x4000 8014) bit description ...continued

descriptioncontinued					
Bit	Symbol	Value	Description	Reset Value	
3	FE		Framing Error. When the stop bit of a received character is a logic 0, a framing error occurs. A LSR read clears LSR[3]. The time of the framing error detection is dependent on FCR0. Upon detection of a framing error, the RX will attempt to re-synchronize to the data and assume that the bad stop bit is actually an early start bit. However, it cannot be assumed that the next received byte will be correct even if there is no Framing Error.	0	
			Note: A framing error is associated with the character at the top of the USART RBR FIFO.		
		0	Framing error status is inactive.		
		1	Framing error status is active.		
4	ВІ		Break Interrupt. When RXD1 is held in the spacing state (all zeros) for one full character transmission (start, data, parity, stop), a break interrupt occurs. Once the break condition has been detected, the receiver goes idle until RXD1 goes to marking state (all ones). A LSR read clears this status bit. The time of break detection is dependent on FCR[0].	0	
			Note: The break interrupt is associated with the character at the top of the USART RBR FIFO.		
		0	Break interrupt status is inactive.		
		1	Break interrupt status is active.		
5	THRE		Transmitter Holding Register Empty. THRE is set immediately upon detection of an empty USART THR and is cleared on a THR write.	1	
		0	THR contains valid data.		
		1	THR is empty.		
6	TEMT		Transmitter Empty. TEMT is set when both THR and TSR are empty; TEMT is cleared when either the TSR or the THR contain valid data.	1	
		0	THR and/or the TSR contains valid data.		
		1	THR and the TSR are empty.		
7	RXFE		Error in RX FIFO. LSR[7] is set when a character with a RX error such as framing error, parity error or break interrupt, is loaded into the RBR. This bit is cleared when the LSR register is read and there are no subsequent errors in the USART FIFO.	0	
		0	RBR contains no USART RX errors or FCR[0]=0.		
		1	USART RBR contains at least one USART RX error.		
8	TXERR		Tx Error. In smart card T=0 operation, this bit is set when the smart card has NACKed a transmitted character, one more than the number of times indicated by the TXRETRY field.	0	
31:9	-	-	Reserved	-	
	-				

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.10 USART Modem Status Register

The MSR is a read-only register that provides status information on USART input signals. Bit 0 is cleared when (after) this register is read.

Table 216: USART Modem Status Register (MSR - address 0x4000 8018) bit description

			Reset value
0 DCTS		Delta CTS. Set upon state change of input CTS. Cleared on an MSR read.	0
	0	No change detected on modem input, CTS.	
	1	State change detected on modem input, CTS.	
1 DDSR		Delta DSR. Set upon state change of input DSR. Cleared on an MSR read.	0
	0	No change detected on modem input, DSR.	
	1	State change detected on modem input, DSR.	
2 TERI		Trailing Edge RI. Set upon low to high transition of input RI. Cleared on an MSR read.	0
	0	No change detected on modem input, RI.	
	1	Low-to-high transition detected on RI.	
3 DDCD		Delta DCD. Set upon state change of input DCD. Cleared on an MSR read.	0
	0	No change detected on modem input, DCD.	
	1	State change detected on modem input, DCD.	
4 CTS	-	Clear To Send State. Complement of input signal CTS. This bit is connected to MCR[1] in modem loopback mode.	0
5 DSR	-	Data Set Ready State. Complement of input signal DSR. This bit is connected to MCR[0] in modem loopback mode.	0
6 RI	-	Ring Indicator State. Complement of input RI. This bit is connected to MCR[2] in modem loopback mode.	0
7 DCD	-	Data Carrier Detect State. Complement of input DCD. This bit is connected to MCR[3] in modem loopback mode.	0
31:8 -	-	Reserved, the value read from a reserved bit is not defined.	NA

12.5.11 USART Scratch Pad Register

The SCR has no effect on the USART operation. This register can be written and/or read at user's discretion. There is no provision in the interrupt interface that would indicate to the host that a read or write of the SCR has occurred.

Table 217. USART Scratch Pad Register (SCR - address 0x4000 801C) bit description

Bit	Symbol	Description	Reset Value
7:0	PAD	A readable, writable byte.	0x00
31:8	-	Reserved	-

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.12 USART Auto-baud Control Register

The USART Auto-baud Control Register (ACR) controls the process of measuring the incoming clock/data rate for baud rate generation, and can be read and written at the user's discretion.

Table 218. USART Auto-baud Control Register (ACR - address 0x4000 8020) bit description

Bit	Symbol	Value	Description	Reset value
0	START		This bit is automatically cleared after auto-baud completion.	0
		0	Auto-baud stop (auto-baud is not running).	
		1	Auto-baud start (auto-baud is running). Auto-baud run bit. This bit is automatically cleared after auto-baud completion.	
1	1 MODE		Auto-baud mode select bit.	0
			Mode 0.	
		1	Mode 1.	
2	AUTORESTART		Start mode	0
		0	No restart	
		1	Restart in case of time-out (counter restarts at next USART Rx falling edge)	
7:3	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0
8	ABEOINTCLR		End of auto-baud interrupt clear bit (write only accessible).	0
		0	Writing a 0 has no impact.	
		1	Writing a 1 will clear the corresponding interrupt in the IIR.	
9	ABTOINTCLR		Auto-baud time-out interrupt clear bit (write only accessible).	0
		0	Writing a 0 has no impact.	
		1	Writing a 1 will clear the corresponding interrupt in the IIR.	
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

12.5.12.1 Auto-baud

The USART auto-baud function can be used to measure the incoming baud rate based on the "AT" protocol (Hayes command). If enabled the auto-baud feature will measure the bit time of the receive data stream and set the divisor latch registers DLM and DLL accordingly.

Auto-baud is started by setting the ACR Start bit. Auto-baud can be stopped by clearing the ACR Start bit. The Start bit will clear once auto-baud has finished and reading the bit will return the status of auto-baud (pending/finished).

Chapter 12: LPC1315/16/17/45/46/47 USART

Two auto-baud measuring modes are available which can be selected by the ACR Mode bit. In Mode 0 the baud rate is measured on two subsequent falling edges of the USART Rx pin (the falling edge of the start bit and the falling edge of the least significant bit). In Mode 1 the baud rate is measured between the falling edge and the subsequent rising edge of the USART Rx pin (the length of the start bit).

The ACR AutoRestart bit can be used to automatically restart baud rate measurement if a time-out occurs (the rate measurement counter overflows). If this bit is set, the rate measurement will restart at the next falling edge of the USART Rx pin.

The auto-baud function can generate two interrupts.

- The IIR ABTOInt interrupt will get set if the interrupt is enabled (IER ABToIntEn is set and the auto-baud rate measurement counter overflows).
- The IIR ABEOInt interrupt will get set if the interrupt is enabled (IER ABEOIntEn is set and the auto-baud has completed successfully).

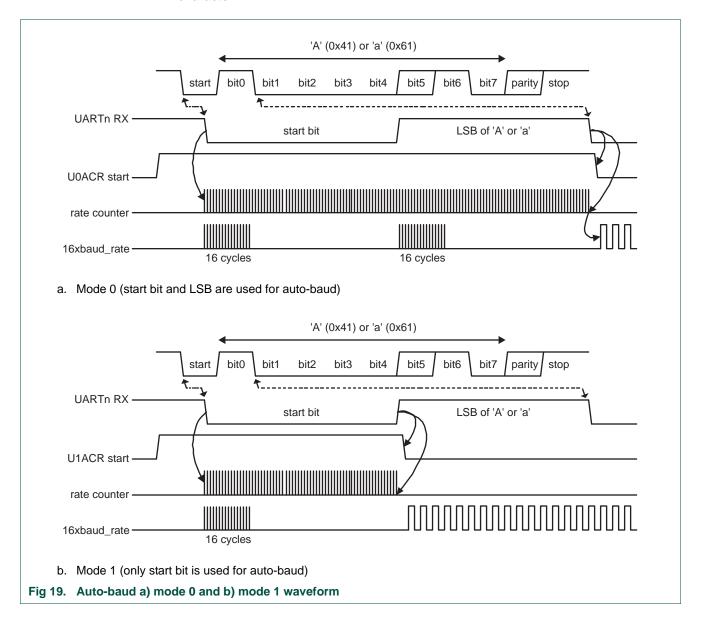
The auto-baud interrupts have to be cleared by setting the corresponding ACR ABTOIntCIr and ABEOIntEn bits.

The fractional baud rate generator must be disabled (DIVADDVAL = 0) during auto-baud. Also, when auto-baud is used, any write to DLM and DLL registers should be done before ACR register write. The minimum and the maximum baud rates supported by USART are a function of USART_PCLK and the number of data bits, stop bits and parity bits.

$$ratemin = \frac{2 \times PCLK}{16 \times 2^{15}} \le UART_{baudrate} \le \frac{PCLK}{16 \times (2 + databits + paritybits + stopbits)} = ratemax$$
 (2)

12.5.12.2 Auto-baud modes

When the software is expecting an "AT" command, it configures the USART with the expected character format and sets the ACR Start bit. The initial values in the divisor latches DLM and DLM don't care. Because of the "A" or "a" ASCII coding ("A" = 0x41, "a" = 0x61), the USART Rx pin sensed start bit and the LSB of the expected character are delimited by two falling edges. When the ACR Start bit is set, the auto-baud protocol will execute the following phases:


- 1. On ACR Start bit setting, the baud rate measurement counter is reset and the USART RSR is reset. The RSR baud rate is switched to the highest rate.
- 2. A falling edge on USART Rx pin triggers the beginning of the start bit. The rate measuring counter will start counting UART_PCLK cycles.
- During the receipt of the start bit, 16 pulses are generated on the RSR baud input with the frequency of the USART input clock, guaranteeing the start bit is stored in the RSR.
- During the receipt of the start bit (and the character LSB for Mode = 0), the rate counter will continue incrementing with the pre-scaled USART input clock (UART_PCLK).
- 5. If Mode = 0, the rate counter will stop on next falling edge of the USART Rx pin. If Mode = 1, the rate counter will stop on the next rising edge of the USART Rx pin.

UM10524

UM10524 **NXP Semiconductors**

Chapter 12: LPC1315/16/17/45/46/47 USART

6. The rate counter is loaded into DLM/DLL and the baud rate will be switched to normal operation. After setting the DLM/DLL, the end of auto-baud interrupt IIR ABEOInt will be set, if enabled. The RSR will now continue receiving the remaining bits of the character.

12.5.13 USART IrDA Control Register

The IrDA Control Register enables and configures the IrDA mode. The value of the ICR should not be changed while transmitting or receiving data, or data loss or corruption may occur.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 219: USART IrDA Control Register (ICR - 0x4000 8024) bit description

Bit	Symbol	Value	Description	Reset value			
0	IRDAEN		IrDA mode enable	0			
			IrDA mode is disabled.				
		1	IrDA mode is enabled.				
1	IRDAINV		Serial input inverter	0			
		O The serial input is not inverted.					
		1	The serial input is inverted. This has no effect on the serial output.				
2	2 FIXPULSEEN		IrDA fixed pulse width mode.	0			
		0	IrDA fixed pulse width mode disabled.				
		1	IrDA fixed pulse width mode enabled.				
5:3	PULSEDIV		Configures the pulse width when FixPulseEn = 1.	0			
		0x0	3 / (16 × baud rate)				
		0x1	$2 \times T_{PCLK}$				
		0x2	4 × T _{PCLK}				
		0x3	8 × T _{PCLK}				
		0x4	16 × T _{PCLK}				
		0x5	32 × T _{PCLK}				
		0x6	64 × T _{PCLK}				
		0x7	128 × T _{PCLK}				
31:6	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0			

The PulseDiv bits in the ICR are used to select the pulse width when the fixed pulse width mode is used in IrDA mode (IrDAEn = 1 and FixPulseEn = 1). The value of these bits should be set so that the resulting pulse width is at least 1.63 μ s. Table 220 shows the possible pulse widths.

Table 220: IrDA Pulse Width

FixPulseEn	PulseDiv	IrDA Transmitter Pulse width (μs)
0	Х	3 / (16 × baud rate)
1	0	2 × T _{PCLK}
1	1	4 × T _{PCLK}
1	2	8 × T _{PCLK}
1	3	16 × T _{PCLK}
1	4	$32 \times T_{PCLK}$
1	5	64 × T _{PCLK}
1	6	128 × T _{PCLK}
1	7	256 × T _{PCLK}

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.14 USART Fractional Divider Register

The USART Fractional Divider Register (FDR) controls the clock pre-scaler for the baud rate generation and can be read and written at the user's discretion. This pre-scaler takes the APB clock and generates an output clock according to the specified fractional requirements.

Important: If the fractional divider is active (DIVADDVAL > 0) and DLM = 0, the value of the DLL register must be 3 or greater.

Table 221. USART Fractional Divider Register (FDR - address 0x4000 8028) bit description

Bit	Function	Description	Reset value
3:0	DIVADDVAL	Baud rate generation pre-scaler divisor value. If this field is 0, fractional baud rate generator will not impact the USART baud rate.	0
7:4	MULVAL	Baud rate pre-scaler multiplier value. This field must be greater or equal 1 for USART to operate properly, regardless of whether the fractional baud rate generator is used or not.	1
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

This register controls the clock pre-scaler for the baud rate generation. The reset value of the register keeps the fractional capabilities of USART disabled making sure that USART is fully software and hardware compatible with USARTs not equipped with this feature.

The USART baud rate can be calculated as:

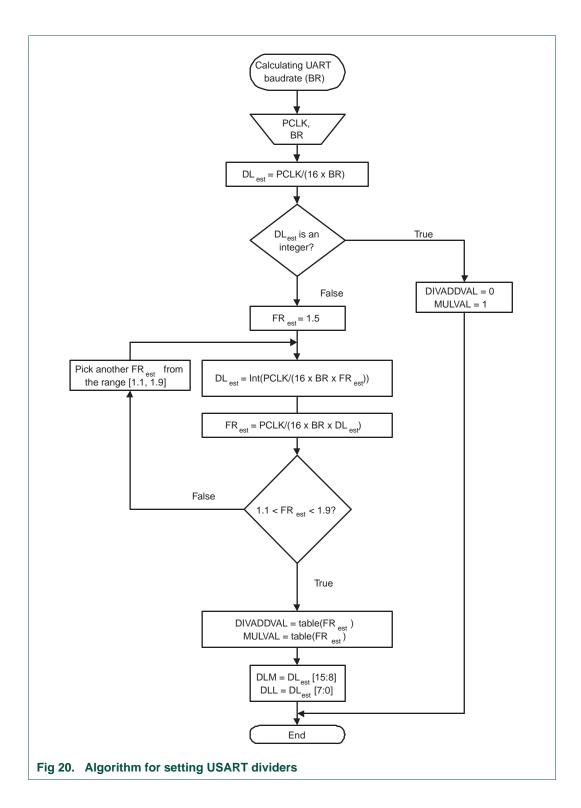
$$UART_{baudrate} = \frac{PCLK}{16 \times (256 \times U0DLM + U0DLL) \times \left(1 + \frac{DivAddVal}{MulVal}\right)}$$
(3)

Where UART PCLK is the peripheral clock, DLM and DLL are the standard USART baud rate divider registers, and DIVADDVAL and MULVAL are USART fractional baud rate generator specific parameters.

The value of MULVAL and DIVADDVAL should comply to the following conditions:

- 1. $1 \le MULVAL \le 15$
- 2. $0 \le DIVADDVAL \le 14$
- 3. DIVADDVAL< MULVAL

The value of the FDR should not be modified while transmitting/receiving data or data may be lost or corrupted.


If the FDR register value does not comply to these two requests, then the fractional divider output is undefined. If DIVADDVAL is zero then the fractional divider is disabled, and the clock will not be divided.

Chapter 12: LPC1315/16/17/45/46/47 USART

12.5.14.1 Baud rate calculation

The USART can operate with or without using the Fractional Divider. In real-life applications it is likely that the desired baud rate can be achieved using several different Fractional Divider settings. The following algorithm illustrates one way of finding a set of DLM, DLL, MULVAL, and DIVADDVAL values. Such a set of parameters yields a baud rate with a relative error of less than 1.1% from the desired one.

Chapter 12: LPC1315/16/17/45/46/47 USART

Chapter 12: LPC1315/16/17/45/46/47 USART

FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal
1.000	0/1	1.250	1/4	1.500	1/2	1.750	3/4
1.067	1/15	1.267	4/15	1.533	8/15	1.769	10/13
1.071	1/14	1.273	3/11	1.538	7/13	1.778	7/9
1.077	1/13	1.286	2/7	1.545	6/11	1.786	11/14
1.083	1/12	1.300	3/10	1.556	5/9	1.800	4/5
1.091	1/11	1.308	4/13	1.571	4/7	1.818	9/11
1.100	1/10	1.333	1/3	1.583	7/12	1.833	5/6
1.111	1/9	1.357	5/14	1.600	3/5	1.846	11/13
1.125	1/8	1.364	4/11	1.615	8/13	1.857	6/7
1.133	2/15	1.375	3/8	1.625	5/8	1.867	13/15
1.143	1/7	1.385	5/13	1.636	7/11	1.875	7/8
1.154	2/13	1.400	2/5	1.643	9/14	1.889	8/9
1.167	1/6	1.417	5/12	1.667	2/3	1.900	9/10
1.182	2/11	1.429	3/7	1.692	9/13	1.909	10/11
1.200	1/5	1.444	4/9	1.700	7/10	1.917	11/12
1.214	3/14	1.455	5/11	1.714	5/7	1.923	12/13
1.222	2/9	1.462	6/13	1.727	8/11	1.929	13/14
1.231	3/13	1.467	7/15	1.733	11/15	1.933	14/15

Table 222. Fractional Divider setting look-up table

12.5.14.1.1 Example 1: UART PCLK = 14.7456 MHz, BR = 9600

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 14.7456 \text{ MHz} / (16 \text{ x 9600}) = 96$. Since this DL_{est} is an integer number, DIVADDVAL = 0, MULVAL = 1, DLM = 0, and DLL = 96.

12.5.14.1.2 Example 2: UART_PCLK = 12.0 MHz, BR = 115200

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 12 \text{ MHz} / (16 \text{ x } 115200) = 6.51$. This DL_{est} is not an integer number and the next step is to estimate the FR parameter. Using an initial estimate of $FR_{est} = 1.5$ a new $DL_{est} = 4$ is calculated and FR_{est} is recalculated as $FR_{est} = 1.628$. Since FRest = 1.628 is within the specified range of 1.1 and 1.9, DIVADDVAL and MULVAL values can be obtained from the attached look-up table.

The closest value for FRest = 1.628 in the look-up <u>Table 222</u> is FR = 1.625. It is equivalent to DIVADDVAL = 5 and MULVAL = 8.

Based on these findings, the suggested USART setup would be: DLM = 0, DLL = 4, DIVADDVAL = 5, and MULVAL = 8. According to Equation 3, the USART's baud rate is 115384. This rate has a relative error of 0.16% from the originally specified 115200.

12.5.15 USART Oversampling Register

In most applications, the USART samples received data 16 times in each nominal bit time, and sends bits that are 16 input clocks wide. This register allows software to control the ratio between the input clock and bit clock. This is required for smart card mode, and provides an alternative to fractional division for other modes.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 223. USART Oversampling Register (OSR - address 0x4000 802C) bit description

Bit	Symbol	Description	Reset value
0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
3:1	OSFRAC	Fractional part of the oversampling ratio, in units of $1/8$ th of an input clock period. (001 = 0.125,, 111 = 0.875)	0
7:4	OSINT	Integer part of the oversampling ratio, minus 1. The reset values equate to the normal operating mode of 16 input clocks per bit time.	0xF
14:8	FDINT	In Smart Card mode, these bits act as a more-significant extension of the OSint field, allowing an oversampling ratio up to 2048 as required by ISO7816-3. In Smart Card mode, bits 14:4 should initially be set to 371, yielding an oversampling ratio of 372.	0
31:15	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Example: For a baud rate of 3.25 Mbps with a 24 MHz USART clock frequency, the ideal oversampling ratio is 24/3.25 or 7.3846. Setting OSINT to 0110 for 7 clocks/bit and OSFrac to 011 for 0.375 clocks/bit, results in an oversampling ratio of 7.375.

In Smart card mode, OSInt is extended by FDINT. This extends the possible oversampling to 2048, as required to support ISO 7816-3. Note that this value can be exceeded when D<0, but this is not supported by the USART. When Smart card mode is enabled, the initial value of OSINT and FDINT should be programmed as "00101110011" (372 minus one).

12.5.16 USART Transmit Enable Register

In addition to being equipped with full hardware flow control (auto-cts and auto-rts mechanisms described above), TER enables implementation of software flow control. When TxEn = 1, the USART transmitter will keep sending data as long as they are available. As soon as TxEn becomes 0, USART transmission will stop.

Although <u>Table 224</u> describes how to use TxEn bit in order to achieve hardware flow control, it is strongly suggested to let the USART hardware implemented auto flow control features take care of this and limit the scope of TxEn to software flow control.

Table 224 describes how to use TXEn bit in order to achieve software flow control.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 224. USART Transmit Enable Register (TER - address 0x4000 8030) bit description

Bit	Symbol	Description	Reset Value
6:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
7	TXEN	When this bit is 1, as it is after a Reset, data written to the THR is output on the TXD pin as soon as any preceding data has been sent. If this bit cleared to 0 while a character is being sent, the transmission of that character is completed, but no further characters are sent until this bit is set again. In other words, a 0 in this bit blocks the transfer of characters from the THR or TX FIFO into the transmit shift register. Software can clear this bit when it detects that the a hardware-handshaking TX-permit signal (CTS) has gone false, or with software handshaking, when it receives an XOFF character (DC3). Software can set this bit again when it detects that the TX-permit signal has gone true, or when it receives an XON (DC1) character.	1
31:8	-	Reserved	-

12.5.17 USART Half-duplex enable register

Remark: The HDEN register should be disabled when in smart card mode or IrDA mode (smart card and IrDA by default run in half-duplex mode).

After reset the USART will be in full-duplex mode, meaning that both TX and RX work independently. After setting the HDEN bit, the USART will be in half-duplex mode. In this mode, the USART ensures that the receiver is locked when idle, or will enter a locked state after having received a complete ongoing character reception. Line conflicts must be handled in software. The behavior of the USART is unpredictable when data is presented for reception while data is being transmitted.

For this reason, the value of the HDEN register should not be modified while sending or receiving data, or data may be lost or corrupted.

Table 225. USART Half duplex enable register (HDEN - addresses 0x4000 8040) bit description

Bit	Symbol	Value	Description	Reset value
0	HDEN	HDEN Half-duplex mode enable	Half-duplex mode enable	0
		0	Disable half-duplex mode.	
		1	Enable half-duplex mode.	
31:1	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

12.5.18 USART Smart Card Interface Control register

This register allows the USART to be used in asynchronous smart card applications.

231 of 416

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 226. USART Smart Card Interface Control register (SCICTRL - address 0x4000 8048) bit description

Bit	Symbol	Value	Description	Reset value
0	SCIEN		Smart Card Interface Enable.	0
		0	Smart card interface disabled.	
		1	Asynchronous half duplex smart card interface is enabled.	
1	NACKDIS		NACK response disable. Only applicable in T=0.	0
		0	A NACK response is enabled.	
		1	A NACK response is inhibited.	
2	PROTSEL		Protocol selection as defined in the ISO7816-3 standard.	0
		0	T = 0	
		1	T = 1	
4:3	-	-	Reserved.	-
7:5	TXRETRY	-	When the protocol selection T bit (above) is 0, the field controls the maximum number of retransmissions that the USART will attempt if the remote device signals NACK. When NACK has occurred this number of times plus one, the Tx Error bit in the LSR is set, an interrupt is requested if enabled, and the USART is locked until the FIFO is cleared.	-
15:8	XTRAGUARD	-	When the protocol selection T bit (above) is 0, this field indicates the number of bit times (ETUs) by which the guard time after a character transmitted by the USART should exceed the nominal 2 bit times. 0xFF in this field may indicate that there is just a single bit after a character and 11 bit times/character	
31:16	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.5.19 USART RS485 Control register

The RS485CTRL register controls the configuration of the USART in RS-485/EIA-485 mode.

Table 227. USART RS485 Control register (RS485CTRL - address 0x4000 804C) bit description

Bit	Symbol	Value	Description	Reset value
0	NMMEN		NMM enable.	0
		0	RS-485/EIA-485 Normal Multidrop Mode (NMM) is disabled.	0
		1	RS-485/EIA-485 Normal Multidrop Mode (NMM) is enabled. In this mode, an address is detected when a received byte causes the USART to set the parity error and generate an interrupt.	

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 227. USART RS485 Control register (RS485CTRL - address 0x4000 804C) bit description ...continued

Bit	Symbol	Value	Description	Reset value
1	RXDIS		Receiver enable.	0
		0	The receiver is enabled.	
		1	The receiver is disabled.	
2	AADEN		AAD enable.	0
		0	Auto Address Detect (AAD) is disabled.	
		1	Auto Address Detect (AAD) is enabled.	
3 S	SEL		Select direction control pin	0
		0	$\frac{\text{If direction control is enabled (bit DCTRL = 1), pin}}{\text{RTS}} \text{ is used for direction control.}$	
		1	If direction control is enabled (bit DCTRL = 1), pin \overline{DTR} is used for direction control.	
4	DCTRL		Auto direction control enable.	0
		0 Disable Auto Direction Control.	Disable Auto Direction Control.	
		1	Enable Auto Direction Control.	
5	OINV		Polarity control. This bit reverses the polarity of the direction control signal on the RTS (or DTR) pin.	0
		0	The direction control pin will be driven to logic 0 when the transmitter has data to be sent. It will be driven to logic 1 after the last bit of data has been transmitted.	
		1	The direction control pin will be driven to logic 1 when the transmitter has data to be sent. It will be driven to logic 0 after the last bit of data has been transmitted.	
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.5.20 USART RS-485 Address Match register

The RS485ADRMATCH register contains the address match value for RS-485/EIA-485 mode.

Table 228. USART RS-485 Address Match register (RS485ADRMATCH - address 0x4000 8050) bit description

Bit	Symbol	Description	Reset value
7:0	ADRMATCH	Contains the address match value.	0x00
31:8	-	Reserved	-

12.5.21 USART RS-485 Delay value register

The user may program the 8-bit RS485DLY register with a delay between the last stop bit leaving the TXFIFO and the de-assertion of $\overline{\text{RTS}}$ (or $\overline{\text{DTR}}$). This delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be programmed.

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 229. USART RS-485 Delay value register (RS485DLY - address 0x4000 8054) bit description

Bit	Symbol	Description	Reset value
7:0	DLY	Contains the direction control (RTS or DTR) delay value. This register works in conjunction with an 8-bit counter.	0x00
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.5.22 USART Synchronous mode control register

SYNCCTRL register controls the synchronous mode. When this mode is in effect, the USART generates or receives a bit clock on the SCLK pin and applies it to the transmit and receive shift registers. Synchronous mode should not be used with smart card mode.

Table 230. USART Synchronous mode control register (SYNCCTRL - address 0x4000 8058) bit description

Bit	Symbol	Value	Description	Reset value
0	SYNC		Enables synchronous mode.	0
		0	Disabled	
		1	Enabled	
1	CSRC		Clock source select.	0
		0	Synchronous slave mode (SCLK in)	
		1	Synchronous master mode (SCLK out)	
2	FES		Falling edge sampling.	0
		0	RxD is sampled on the rising edge of SCLK	
		1	RxD is sampled on the falling edge of SCLK	
3	TSBYPASS		Transmit synchronization bypass in synchronous slave mode.	0
		0	The input clock is synchronized prior to being used in clock edge detection logic.	
		1	The input clock is not synchronized prior to being used in clock edge detection logic. This allows for a high er input clock rate at the expense of potential metastability.	
4	CSCEN		Continuous master clock enable (used only when CSRC is 1)	0
		0	SCLK cycles only when characters are being sent on TxD	
		1	SCLK runs continuously (characters can be received on RxD independently from transmission on TxD)	
5	SSDIS		Start/stop bits	0
		0	Send start and stop bits as in other modes.	
		1	Do not send start/stop bits.	

Chapter 12: LPC1315/16/17/45/46/47 USART

Table 230. USART Synchronous mode control register (SYNCCTRL - address 0x4000 8058) bit description

Bit	Symbol	Value	Description	Reset value
6	CCCLR		Continuous clock clear	0
		0	CSCEN is under software control.	
		 Hardware clears CSCEN after each of received. 	Hardware clears CSCEN after each character is received.	
31:7	-		Reserved. The value read from a reserved bit is not defined.	NA

After reset, synchronous mode is disabled. Synchronous mode is enabled by setting the SYNC bit. When SYNC is 1, the USART operates as follows:

- The CSRC bit controls whether the USART sends (master mode) or receives (slave mode) a serial bit clock on the SCLK pin.
- When CSRC is 1 selecting master mode, the CSCEN bit selects whether the USART produces clocks on SCLK continuously (CSCEN=1) or only when transmit data is being sent on TxD (CSCEN=0).
- 3. The SSDIS bit controls whether start and stop bits are used. When SSDIS is 0, the USART sends and samples for start and stop bits as in other modes. When SSDIS is 1, the USART neither sends nor samples for start or stop bits, and each falling edge on SCLK samples a data bit on RxD into the receive shift register, as well as shifting the transmit shift register.

The rest of this section provides further details of operation when SYNC is 1.

Data changes on TxD from falling edges on SCLK. When SSDIS is 0, the FES bit controls whether the USART samples serial data on RxD on rising edges or falling edges on SCLK. When SSDIS is 1, the USART ignores FES and always samples RxD on falling edges on SCLK.

The combination SYNC=1, CSRC=1, CSCEN=1, and SSDIS=1 is a difficult operating mode, because SCLK applies to both directions of data flow and there is no defined mechanism to signal the receivers when valid data is present on TxD or RxD.

Lacking such a mechanism, SSDIS=1 can be used with CSCEN=0 or CSRC=0 in a mode similar to the SPI protocol, in which characters are (at least conceptually) "exchanged" between the USART and remote device for each set of 8 clock cycles on SCLK. Such operation can be called full-duplex, but the same hardware mode can be used in a half-duplex way under control of a higher-layer protocol, in which the source of SCLK toggles it in groups of N cycles whenever data is to be sent in either direction. (N being the number of bits/character.)

When the LPC1315/16/17/45/46/47 USART is the clock source (CSRC=1), such half-duplex operation can lead to the rather artificial-seeming requirement of writing a dummy character to the Transmitter Holding Register in order to generate 8 clocks so that a character can be received. The CCCLR bit provides a more natural way of programming half-duplex reception. When the higher-layer protocol dictates that the LPC1315/16/17/45/46/47 USART should receive a character, software should write the

Chapter 12: LPC1315/16/17/45/46/47 USART

SYNCCTRL register with CSCEN=1 and CCCLR=1. After the USART has sent N clock cycles and thus received a character, it clears the CSCEN bit. If more characters need to be received thereafter, software can repeat setting CSCEN and CCCLR.

Aside from such half-duplex operation, the primary use of CSCEN=1 is with SSDIS=0, so that start bits indicate the transmission of each character in each direction.

12.6 Functional description

12.6.1 RS-485/EIA-485 modes of operation

The RS-485/EIA-485 feature allows the USART to be configured as an addressable slave. The addressable slave is one of multiple slaves controlled by a single master.

The USART master transmitter will identify an address character by setting the parity (9th) bit to '1'. For data characters, the parity bit is set to '0'.

Each USART slave receiver can be assigned a unique address. The slave can be programmed to either manually or automatically reject data following an address which is not theirs.

RS-485/EIA-485 Normal Multidrop Mode

Setting the RS485CTRL bit 0 enables this mode. In this mode, an address is detected when a received byte causes the USART to set the parity error and generate an interrupt.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received data bytes will be ignored and will not be stored in the RXFIFO. When an address byte is detected (parity bit = '1') it will be placed into the RXFIFO and an Rx Data Ready Interrupt will be generated. The processor can then read the address byte and decide whether or not to enable the receiver to accept the following data.

While the receiver is enabled (RS485CTRL bit 1 ='0'), all received bytes will be accepted and stored in the RXFIFO regardless of whether they are data or address. When an address character is received a parity error interrupt will be generated and the processor can decide whether or not to disable the receiver.

RS-485/EIA-485 Auto Address Detection (AAD) mode

When both RS485CTRL register bits 0 (9-bit mode enable) and 2 (AAD mode enable) are set, the USART is in auto address detect mode.

In this mode, the receiver will compare any address byte received (parity = '1') to the 8-bit value programmed into the RS485ADRMATCH register.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received byte will be discarded if it is either a data byte OR an address byte which fails to match the RS485ADRMATCH value.

When a matching address character is detected it will be pushed onto the RXFIFO along with the parity bit, and the receiver will be automatically enabled (RS485CTRL bit 1 will be cleared by hardware). The receiver will also generate an Rx Data Ready Interrupt.

Chapter 12: LPC1315/16/17/45/46/47 USART

While the receiver is enabled (RS485CTRL bit 1 = '0'), all bytes received will be accepted and stored in the RXFIFO until an address byte which does not match the RS485ADRMATCH value is received. When this occurs, the receiver will be automatically disabled in hardware (RS485CTRL bit 1 will be set), The received non-matching address character will not be stored in the RXFIFO.

RS-485/EIA-485 Auto Direction Control

RS485/EIA-485 mode includes the option of allowing the transmitter to automatically control the state of the DIR pin as a direction control output signal.

Setting RS485CTRL bit 4 = '1' enables this feature.

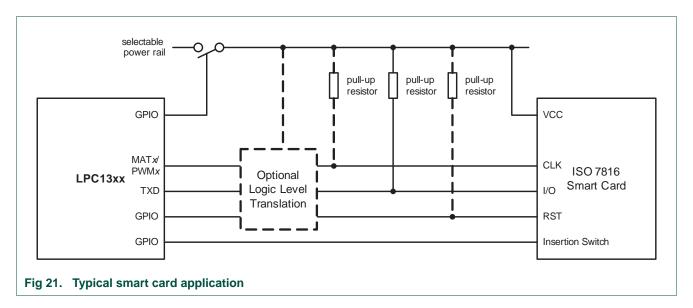
Keep RS485CTRL bit 3 zero so that direction control, if enabled, will use the RTS pin.

When Auto Direction Control is enabled, the selected pin will be asserted (driven LOW) when the CPU writes data into the TXFIFO. The pin will be de-asserted (driven HIGH) once the last bit of data has been transmitted. See bits 4 and 5 in the RS485CTRL register.

The RS485CTRL bit 4 takes precedence over all other mechanisms controlling the direction control pin with the exception of loopback mode.

RS485/EIA-485 driver delay time

The driver delay time is the delay between the last stop bit leaving the TXFIFO and the de-assertion of RTS. This delay time can be programmed in the 8-bit RS485DLY register. The delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be used.

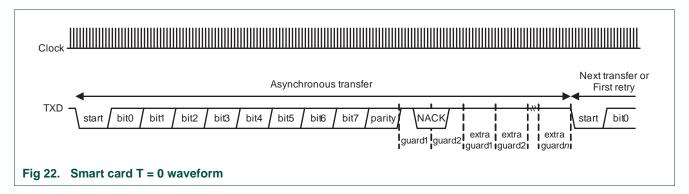

RS485/EIA-485 output inversion

The polarity of the direction control signal on the RTS (or DTR) pins can be reversed by programming bit 5 in the RS485CTRL register. When this bit is set, the direction control pin will be driven to logic 1 when the transmitter has data waiting to be sent. The direction control pin will be driven to logic 0 after the last bit of data has been transmitted.

12.6.2 Smart card mode

Figure 21 shows a typical asynchronous smart card application.

Chapter 12: LPC1315/16/17/45/46/47 USART



When the SCIEN bit in the SCICTRL register (Table 226) is set as described, the USART provides bidirectional serial data on the open-drain TXD pin. No RXD pin is used when SCIEN is 1. If a clock source is needed as an oscillator source into the Smart Card, a timer match or PWM output can be used in cases when a higher frequency clock is needed that is not synchronous with the data bit rate. The USART SCLK pin will output synchronously with the data and at the data bit rate and may not be adequate for most asynchronous cards. Software must use timers to implement character and block waiting times (no hardware support via trigger signals is provided on the LPC1315/16/17/45/46/47). GPIO pins can be used to control the smart card reset and power pins. Any power supplied to the card must be externally switched as card power supply requirements often exceed source currents possible on the LPC1315/16/17/45/46/47. As the specific application may accommodate any of the available ISO 7816 class A, B, or C power requirements, be aware of the logic level tolerances and requirements when communicating or powering cards that use different power rails than the LPC1315/16/17/45/46/47.

12.6.2.1 Smart card set-up procedure

A T = 0 protocol transfer consists of 8-bits of data, an even parity bit, and two guard bits that allow for the receiver of the particular transfer to flag parity errors through the NACK response (see Figure 22). Extra guard bits may be added according to card requirements. If no NACK is sent (provided the interface accepts them in SCICTRL), the next byte may be transmitted immediately after the last guard bit. If the NACK is sent, the transmitter will retry sending the byte until successfully received or until the SCICTRL retry limit has been met.

Chapter 12: LPC1315/16/17/45/46/47 USART

The smart card must be set up with the following considerations:

- If necessary, program PRESETCTRL (<u>Table 7</u>) so that the USART is not continuously reset.
- Program one IOCON register to enable a USART TXD function.
- If the smart card to be communicated with requires a clock, program one IOCON register for the USART SCLK function. The USART will use it as an output.
- Program UARTCLKDIV (<u>Table 21</u>) for an initial USART frequency of 3.58 MHz.
- Program the OSR (Section 12.5.15) for 372x oversampling.
- If necessary, program the DLM and DLL (<u>Section 12.5.3</u>) to 00 and 01 respectively, to pass the USART clock through without division.
- Program the LCR (Section 12.5.7) for 8-bit characters, parity enabled, even parity.
- Program the GPIO signals associated with the smart card so that (in this order):
 - a. Reset is low.
 - b. VCC is provided to the card (GPIO pins do not have the required 200 mA drive).
 - c. VPP (if provided to the card) is at "idle" state.
- Program SCICTRL (<u>Section 12.5.18</u>) to enable the smart card feature with the desired options.
- Set up one or more timer(s) to provide timing as needed for ISO 7816 startup.
- Program SYSAHBCLKCTRL (Table 19) to enable the USART clock.

Thereafter, software should monitor card insertion, handle activation, wait for answer to reset as described in ISO7816-3.

12.7 Architecture

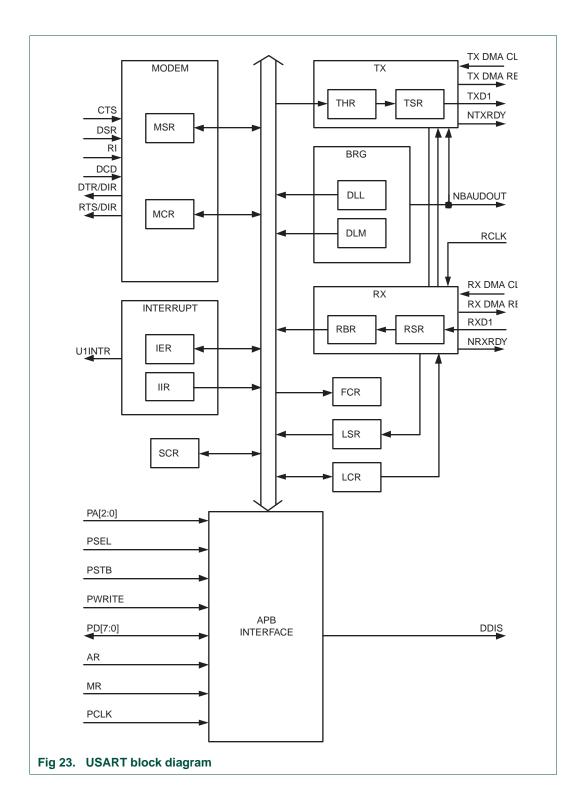
The architecture of the USART is shown below in the block diagram.

The APB interface provides a communications link between the CPU or host and the USART.

The USART receiver block, RX, monitors the serial input line, RXD, for valid input. The USART RX Shift Register (RSR) accepts valid characters via RXD. After a valid character is assembled in the RSR, it is passed to the USART RX Buffer Register FIFO to await access by the CPU or host via the generic host interface.

UM10524 **NXP Semiconductors**

Chapter 12: LPC1315/16/17/45/46/47 USART


The USART transmitter block, TX, accepts data written by the CPU or host and buffers the data in the USART TX Holding Register FIFO (THR). The USART TX Shift Register (TSR) reads the data stored in the THR and assembles the data to transmit via the serial output pin, TXD1.

The USART Baud Rate Generator block, BRG, generates the timing enables used by the USART TX block. The BRG clock input source is USART_PCLK. The main clock is divided down per the divisor specified in the DLL and DLM registers. This divided down clock is a 16x oversample clock, NBAUDOUT.

The interrupt interface contains registers IER and IIR. The interrupt interface receives several one clock wide enables from the TX and RX blocks.

Status information from the TX and RX is stored in the LSR. Control information for the TX and RX is stored in the LCR.

Chapter 12: LPC1315/16/17/45/46/47 USART

UM10524

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Rev. 4 — 12 March 2013

User manual

13.1 How to read this chapter

Two SSP/SPI interfaces are available on all LPC1315/16/17/45/46/47 parts.

13.2 Basic configuration

The SSP0/1 are configured using the following registers:

- 1. Pins: The SSP/SPI pins must be configured in the IOCON register block.
- 2. Power: In the SYSAHBCLKCTRL register, set bit 11 for SSP0 and bit 18 for SSP1 (Table 19).
- 3. Peripheral clock: Enable the SSP0/SSP1 peripheral clocks by writing to the SSP0/1CLKDIV registers (<u>Table 20/Table 22</u>).
- Reset: Before accessing the SSP/SPI block, ensure that the SSP0/1_RST_N bits (bit 0 and bit 2) in the PRESETCTRL register (<u>Table 7</u>) are set to 1. This de-asserts the reset signal to the SSP/SPI block.

13.3 Features

- Compatible with Motorola SPI, 4-wire TI SSI, and National Semiconductor Microwire buses.
- Synchronous Serial Communication.
- Supports master or slave operation.
- Eight-frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.

13.4 General description

The SSP/SPI is a Synchronous Serial Port (SSP) controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice it is often the case that only one of these data flows carries meaningful data.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

13.5 Pin description

Table 231. SSP/SPI pin descriptions

Pin	Туре	Interfa	ice pin function	1	Pin description
name		SPI	SSI	Microwire	·
SCK0/1	I/O	SCK	CLK	SK	Serial Clock. SCK/CLK/SK is a clock signal used to synchronize the transfer of data. It is driven by the master and received by the slave. When SSP/SPI interface is used, the clock is programmable to be active-high or active-low, otherwise it is always active-high. SCK only switches during a data transfer. Any other time, the SSP/SPI interface either holds it in its inactive state or does not drive it (leaves it in high-impedance state).
SSEL0/1	I/O	SSEL	FS	CS	Frame Sync/Slave Select. When the SSP/SPI interface is a bus master, it drives this signal to an active state before the start of serial data and then releases it to an inactive state after the data has been sent. The active state of this signal can be high or low depending upon the selected bus and mode. When the SSP/SPI interface is a bus slave, this signal qualifies the presence of data from the Master according to the protocol in use.
					When there is just one bus master and one bus slave, the Frame Sync or Slave Select signal from the Master can be connected directly to the slave's corresponding input. When there is more than one slave on the bus, further qualification of their Frame Select/Slave Select inputs will typically be necessary to prevent more than one slave from responding to a transfer.
MISO0/1	I/O	MISO	DR(M) DX(S)	SI(M) SO(S)	Master In Slave Out. The MISO signal transfers serial data from the slave to the master. When the SSP/SPI is a slave, serial data is output on this signal. When the SSP/SPI is a master, it clocks in serial data from this signal. When the SSP/SPI is a slave and is not selected by FS/SSEL, it does not drive this signal (leaves it in high-impedance state).
MOSI0/1	I/O	MOSI	DX(M) DR(S)	SO(M) SI(S)	Master Out Slave In. The MOSI signal transfers serial data from the master to the slave. When the SSP/SPI is a master, it outputs serial data on this signal. When the SSP/SPI is a slave, it clocks in serial data from this signal.

13.6 Register description

The register addresses of the SPI controllers are shown in <u>Table 232</u>.

The reset value reflects the data stored in used bits only. It does not include the content of reserved bits.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Remark: Register names use the SSP prefix to indicate that the SPI controllers have full SSP capabilities.

Table 232. Register overview: SSP/SPI0 (base address 0x4004 0000)

Name	Access	Address offset	Description	Reset value	Reference
CR0	R/W	0x000	Control Register 0. Selects the serial clock rate, bus type, and data size.	0	Table 234
CR1	R/W	0x004	Control Register 1. Selects master/slave and other modes.	0	Table 235
DR	R/W	0x008	Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO.	0	Table 236
SR	RO	0x00C	Status Register	0x0000 0003	Table 237
CPSR	R/W	0x010	Clock Prescale Register	0	Table 238
IMSC	R/W	0x014	Interrupt Mask Set and Clear Register	0	<u>Table 239</u>
RIS	RO	0x018	Raw Interrupt Status Register	0000x0 0008	Table 240
MIS	RO	0x01C	Masked Interrupt Status Register	0	Table 241
ICR	WO	0x020	SSPICR Interrupt Clear Register	NA	Table 242

Table 233. Register overview: SSP/SPI1 (base address 0x4005 8000)

Name	Access	Address offset	Description	Reset value	Reference
CR0	R/W	0x000	Control Register 0. Selects the serial clock rate, bus type, and data size.	0	Table 234
CR1	R/W	0x004	Control Register 1. Selects master/slave and other modes.	0	Table 235
DR	R/W	0x008	Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO.	0	Table 236
SR	RO	0x00C	Status Register	0x0000 0003	Table 237
CPSR	R/W	0x010	Clock Prescale Register	0	Table 238
IMSC	R/W	0x014	Interrupt Mask Set and Clear Register	0	Table 239
RIS	RO	0x018	Raw Interrupt Status Register	0x0000 0008	Table 240
MIS	RO	0x01C	Masked Interrupt Status Register	0	Table 241
ICR	WO	0x020	SSPICR Interrupt Clear Register	NA	Table 242

13.6.1 SSP/SPI Control Register 0

This register controls the basic operation of the SSP/SPI controller.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Table 234. SSP/SPI Control Register 0 (CR0 - address 0x4004 0000 (SSP0) and 0x4005 8000 (SSP1)) bit description

	100)		escription	
Bit	Symbol	Value	Description	Reset Value
3:0	DSS		Data Size Select. This field controls the number of bits transferred in each frame. Values 0000-0010 are not supported and should not be used.	0000
		0x3	4-bit transfer	
		0x4	5-bit transfer	
		0x5	6-bit transfer	
		0x6	7-bit transfer	
		0x7	8-bit transfer	
		0x8	9-bit transfer	
		0x9	10-bit transfer	
		0xA	11-bit transfer	
		0xB	12-bit transfer	
		0xC	13-bit transfer	
		0xD	14-bit transfer	
		0xE	15-bit transfer	
		0xF	16-bit transfer	
5:4	FRF		Frame Format.	00
		0x0	SPI	
		0x1	TI	
		0x2	Microwire	
		0x3	This combination is not supported and should not be used.	
6	CPOL		Clock Out Polarity. This bit is only used in SPI mode.	0
		0	SPI controller maintains the bus clock low between frames.	
		1	SPI controller maintains the bus clock high between frames.	
7	CPHA		Clock Out Phase. This bit is only used in SPI mode.	0
		0	SPI controller captures serial data on the first clock transition of the frame, that is, the transition away from the inter-frame state of the clock line.	
		1	SPI controller captures serial data on the second clock transition of the frame, that is, the transition back to the inter-frame state of the clock line.	
15:8	SCR		Serial Clock Rate. The number of prescaler output clocks per bit on the bus, minus one. Given that CPSDVSR is the prescale divider, and the APB clock PCLK clocks the prescaler, the bit frequency is PCLK / (CPSDVSR \times [SCR+1]).	0x00
31:16	-	-	Reserved	-
-				

13.6.2 SSP/SPI Control Register 1

This register controls certain aspects of the operation of the SSP/SPI controller.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Table 235. SSP/SPI Control Register 1 (CR1 - address 0x4004 0004 (SSP0) and 0x4005 8004 (SSP1)) bit description

	(SOL 1)) bit description			
Bit	Symbol	Value	Description	Reset Value
0	LBM		Loop Back Mode.	0
		0	During normal operation.	
		1	Serial input is taken from the serial output (MOSI or MISO) rather than the serial input pin (MISO or MOSI respectively).	
1	SSE		SPI Enable.	0
		0	The SPI controller is disabled.	
		1	The SPI controller will interact with other devices on the serial bus. Software should write the appropriate control information to the other SSP/SPI registers and interrupt controller registers, before setting this bit.	
2	MS		Master/Slave Mode.This bit can only be written when the SSE bit is 0.	0
		0	The SPI controller acts as a master on the bus, driving the SCLK, MOSI, and SSEL lines and receiving the MISO line.	
		1	The SPI controller acts as a slave on the bus, driving MISO line and receiving SCLK, MOSI, and SSEL lines.	
3	SOD		Slave Output Disable. This bit is relevant only in slave mode (MS = 1). If it is 1, this blocks this SPI controller from driving the transmit data line (MISO).	0
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.6.3 SSP/SPI Data Register

Software can write data to be transmitted to this register and read data that has been received.

Table 236. SSP/SPI Data Register (DR - address 0x4004 0008 (SSP0) and 0x4005 8008 (SSP1)) bit description

Bit	Symbol	Description	Reset Value
15:0	DATA	Write: software can write data to be sent in a future frame to this register whenever the TNF bit in the Status register is 1, indicating that the Tx FIFO is not full. If the Tx FIFO was previously empty and the SPI controller is not busy on the bus, transmission of the data will begin immediately. Otherwise the data written to this register will be sent as soon as all previous data has been sent (and received). If the data length is less than 16 bit, software must right-justify the data written to this register.	0x0000
		Read: software can read data from this register whenever the RNE bit in the Status register is 1, indicating that the Rx FIFO is not empty. When software reads this register, the SPI controller returns data from the least recent frame in the Rx FIFO. If the data length is less than 16 bit, the data is right-justified in this field with higher order bits filled with 0s.	
31:16	-	Reserved.	-

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

13.6.4 SSP/SPI Status Register

This read-only register reflects the current status of the SPI controller.

Table 237. SSP/SPI Status Register (SR - address 0x4004 000C (SSP0) and 0x4005 800C (SSP1)) bit description

Bit	Symbol	Description	Reset Value
0	TFE	Transmit FIFO Empty. This bit is 1 is the Transmit FIFO is empty, 0 if not.	1
1	TNF	Transmit FIFO Not Full. This bit is 0 if the Tx FIFO is full, 1 if not.	1
2	RNE	Receive FIFO Not Empty. This bit is 0 if the Receive FIFO is empty, 1 if not.	0
3	RFF	Receive FIFO Full. This bit is 1 if the Receive FIFO is full, 0 if not.	0
4	BSY	Busy. This bit is 0 if the SPI controller is idle, 1 if it is currently sending/receiving a frame and/or the Tx FIFO is not empty.	0
31:5	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.6.5 SSP/SPI Clock Prescale Register

This register controls the factor by which the Prescaler divides the SPI peripheral clock SPI_PCLK to yield the prescaler clock that is, in turn, divided by the SCR factor in the SSPCR0 registers, to determine the bit clock.

Table 238. SSP/SPI Clock Prescale Register (CPSR - address 0x4004 0010 (SSP0) and 0x4005 8010 (SSP1)) bit description

Bit	Symbol	Description	Reset Value
7:0	CPSDVSR	This even value between 2 and 254, by which SPI_PCLK is divided to yield the prescaler output clock. Bit 0 always reads as 0.	0
31:8	-	Reserved.	-

Important: the SSPnCPSR value must be properly initialized, or the SPI controller will not be able to transmit data correctly.

In Slave mode, the SPI clock rate provided by the master must not exceed 1/12 of the SPI peripheral clock selected in (<u>Table 20/Table 22</u>). The content of the SSPnCPSR register is not relevant.

In master mode, CPSDVSR_{min} = 2 or larger (even numbers only).

13.6.6 SSP/SPI Interrupt Mask Set/Clear Register

This register controls whether each of the four possible interrupt conditions in the SPI controller are enabled.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Table 239. SSP/SPI Interrupt Mask Set/Clear register (IMSC - address 0x4004 0014 (SSP0) and 0x4005 8014 (SSP1)) bit description

Bit	Symbol	Description	Reset Value
0	RORIM	Software should set this bit to enable interrupt when a Receive Overrun occurs, that is, when the Rx FIFO is full and another frame is completely received. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0
1	RTIM	Software should set this bit to enable interrupt when a Receive Time-out condition occurs. A Receive Time-out occurs when the Rx FIFO is not empty, and no has not been read for a time-out period. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR × [SCR+1]).	0
2	RXIM	Software should set this bit to enable interrupt when the Rx FIFO is at least half full.	0
3	TXIM	Software should set this bit to enable interrupt when the $TxFIFO$ is at least half empty.	0
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.6.7 SSP/SPI Raw Interrupt Status Register

This read-only register contains a 1 for each interrupt condition that is asserted, regardless of whether or not the interrupt is enabled in the IMSC registers.

Table 240. SSP/SPI Raw Interrupt Status register (RIS - address 0x4004 0018 (SSP0) and 0x4005 8018 (SSP1)) bit description

	Symbol	Description	Reset value
0	RORRIS	This bit is 1 if another frame was completely received while the RxFIFO was full. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0
1	RTRIS	This bit is 1 if the Rx FIFO is not empty, and has not been read for a time-out period. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	0
2	RXRIS	This bit is 1 if the Rx FIFO is at least half full.	0
3	TXRIS	This bit is 1 if the Tx FIFO is at least half empty.	1
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.6.8 SSP/SPI Masked Interrupt Status Register

This read-only register contains a 1 for each interrupt condition that is asserted and enabled in the IMSC registers. When an SSP/SPI interrupt occurs, the interrupt service routine should read this register to determine the causes of the interrupt.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

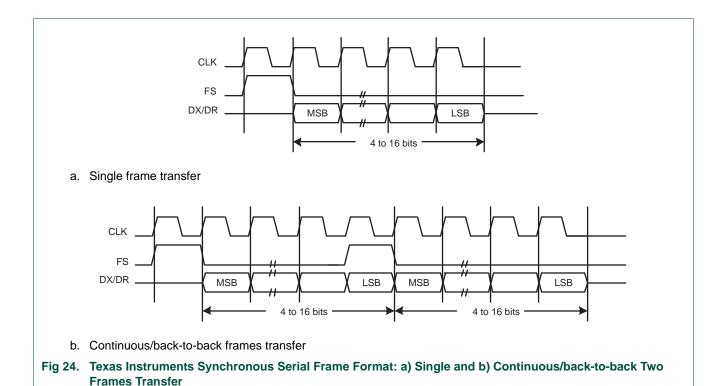
Table 241. SSP/SPI Masked Interrupt Status register (MIS - address 0x4004 001C (SSP0) and 0x4005 801C (SSP1)) bit description

Bit	Symbol	Description	Reset value
0	RORMIS	This bit is 1 if another frame was completely received while the RxFIFO was full, and this interrupt is enabled.	0
1	RTMIS	This bit is 1 if the Rx FIFO is not empty, has not been read for a time-out period, and this interrupt is enabled. The time-out period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	0
2	RXMIS	This bit is 1 if the Rx FIFO is at least half full, and this interrupt is enabled.	0
3	TXMIS	This bit is 1 if the Tx FIFO is at least half empty, and this interrupt is enabled.	0
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.6.9 SSP/SPI Interrupt Clear Register

Software can write one or more ones to this write-only register, to clear the corresponding interrupt conditions in the SPI controller. Note that the other two interrupt conditions can be cleared by writing or reading the appropriate FIFO or disabled by clearing the corresponding bit in SSPIMSC registers.

Table 242. SSP/SPI interrupt Clear Register (ICR - address 0x4004 0020 (SSP0) and 0x4005 8020 (SSP1)) bit description


Bit	Symbol	Description	Reset Value
0	RORIC	Writing a 1 to this bit clears the "frame was received when RxFIFO was full" interrupt.	NA
1	RTIC	Writing a 1 to this bit clears the Rx FIFO was not empty and has not been read for a timeout period interrupt. The timeout period is the same for master and slave modes and is determined by the SSP bit rate: 32 bits at PCLK / (CPSDVSR \times [SCR+1]).	NA
31:2	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.7 Functional description

13.7.1 Texas Instruments synchronous serial frame format

<u>Figure 24</u> shows the 4-wire Texas Instruments synchronous serial frame format supported by the SPI module.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

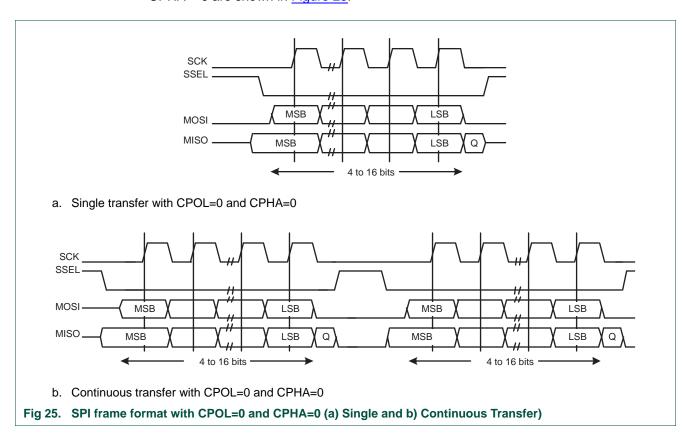
For device configured as a master in this mode, CLK and FS are forced LOW, and the transmit data line DX is in 3-state mode whenever the SSP is idle. Once the bottom entry of the transmit FIFO contains data, FS is pulsed HIGH for one CLK period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of CLK, the MSB of the 4-bit to 16-bit data frame is shifted out on the DX pin. Likewise, the MSB of the received data is shifted onto the DR pin by the off-chip serial slave device.

Both the SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each CLK. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of CLK after the LSB has been latched.

13.7.2 SPI frame format

The SPI interface is a four-wire interface where the SSEL signal behaves as a slave select. The main feature of the SPI format is that the inactive state and phase of the SCK signal are programmable through the CPOL and CPHA bits within the SSPCR0 control register.

13.7.2.1 Clock Polarity (CPOL) and Phase (CPHA) control


When the CPOL clock polarity control bit is LOW, it produces a steady state low value on the SCK pin. If the CPOL clock polarity control bit is HIGH, a steady state high value is placed on the CLK pin when data is not being transferred.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

The CPHA control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the CPHA phase control bit is LOW, data is captured on the first clock edge transition. If the CPHA clock phase control bit is HIGH, data is captured on the second clock edge transition.

13.7.2.2 SPI format with CPOL=0,CPHA=0

Single and continuous transmission signal sequences for SPI format with CPOL = 0, CPHA = 0 are shown in Figure 25.

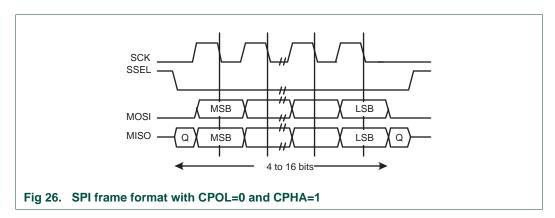
In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP/SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. This causes slave data to be enabled onto the MISO input line of the master. Master's MOSI is enabled.

One half SCK period later, valid master data is transferred to the MOSI pin. Now that both the master and slave data have been set, the SCK master clock pin goes HIGH after one further half SCK period.

The data is captured on the rising and propagated on the falling edges of the SCK signal.


Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

In the case of a single word transmission, after all bits of the data word have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

13.7.2.3 SPI format with CPOL=0,CPHA=1

The transfer signal sequence for SPI format with CPOL = 0, CPHA = 1 is shown in Figure 26, which covers both single and continuous transfers.

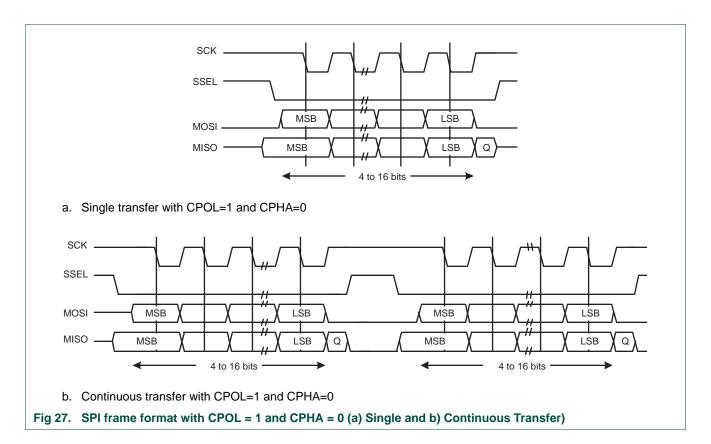
In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP/SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI pin is enabled. After a further one half SCK period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SCK is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SCK signal.

In the case of a single word transfer, after all bits have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.


For continuous back-to-back transfers, the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

13.7.2.4 SPI format with CPOL = 1,CPHA = 0

Single and continuous transmission signal sequences for SPI format with CPOL=1, CPHA=0 are shown in Figure 27.

UM10524

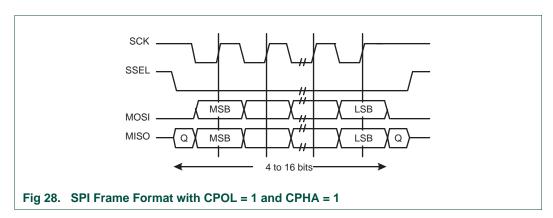
Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SSP/SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW, which causes slave data to be immediately transferred onto the MISO line of the master. Master's MOSI pin is enabled.

One half period later, valid master data is transferred to the MOSI line. Now that both the master and slave data have been set, the SCK master clock pin becomes LOW after one further half SCK period. This means that data is captured on the falling edges and be propagated on the rising edges of the SCK signal.


In the case of a single word transmission, after all bits of the data word are transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

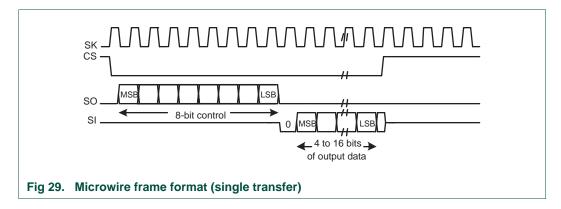
Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

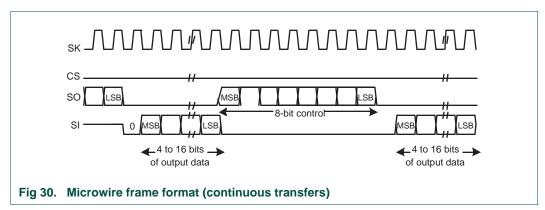
13.7.2.5 SPI format with CPOL = 1, CPHA = 1

The transfer signal sequence for SPI format with CPOL = 1, CPHA = 1 is shown in Figure 28, which covers both single and continuous transfers.

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.


If the SSP/SPI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI is enabled. After a further one half SCK period, both master and slave data are enabled onto their respective transmission lines. At the same time, the SCK is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SCK signal.


After all bits have been transferred, in the case of a single word transmission, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured. For continuous back-to-back transmissions, the SSEL pins remains in its active LOW state, until the final bit of the last word has been captured, and then returns to its idle state as described above. In general, for continuous back-to-back transfers the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

13.7.3 Semiconductor Microwire frame format

<u>Figure 29</u> shows the Microwire frame format for a single frame. <u>Figure 30</u> shows the same format when back-to-back frames are transmitted.

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSP/SPI to the off-chip slave device. During this transmission, no incoming data is received by the SSP/SPI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bit in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

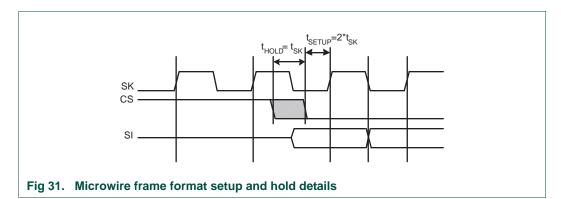
- The SK signal is forced LOW.
- CS is forced HIGH.
- The transmit data line SO is arbitrarily forced LOW.

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of CS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SO pin. CS remains LOW for the duration of the frame transmission. The SI pin remains tri-stated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SK. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSP/SPI. Each bit is driven onto SI line on the falling edge of SK. The SSP/SPI in

Chapter 13: LPC1315/16/17/45/46/47 SSP/SPI

turn latches each bit on the rising edge of SK. At the end of the frame, for single transfers, the CS signal is pulled HIGH one clock period after the last bit has been latched in the receive serial shifter, that causes the data to be transferred to the receive FIFO.


Note: The off-chip slave device can tri-state the receive line either on the falling edge of SK after the LSB has been latched by the receive shiftier, or when the CS pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the CS line is continuously asserted (held LOW) and transmission of data occurs back to back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge SK, after the LSB of the frame has been latched into the SSP/SPI.

13.7.3.1 Setup and hold time requirements on CS with respect to SK in Microwire mode

In the Microwire mode, the SSP/SPI slave samples the first bit of receive data on the rising edge of SK after CS has gone LOW. Masters that drive a free-running SK must ensure that the CS signal has sufficient setup and hold margins with respect to the rising edge of SK.

<u>Figure 31</u> illustrates these setup and hold time requirements. With respect to the SK rising edge on which the first bit of receive data is to be sampled by the SSP/SPI slave, CS must have a setup of at least two times the period of SK on which the SSP/SPI operates. With respect to the SK rising edge previous to this edge, CS must have a hold of at least one SK period.

256 of 416

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Rev. 4 — 12 March 2013

User manual

14.1 How to read this chapter

The I²C-bus block is identical for all LPC1315/16/17/45/46/47 parts.

14.2 Basic configuration

The I²C-bus interface is configured using the following registers:

- 1. Pins: The I2C pin functions and the I2C mode are configured in the IOCON register block (Table 60 and Table 61).
- 2. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 5 (Table 19).
- Reset: Before accessing the I2C block, ensure that the I2C_RST_N bit (bit 1) in the PRESETCTRL register (<u>Table 7</u>) is set to 1. This de-asserts the reset signal to the I2C block.

14.3 Features

- The I²C-bus contains a standard I²C-compliant bus interface with two pins.
- The I²C- bus interfaces may be configured as Master, Slave, or Master/Slave.
- Supports Fast-mode Plus.
- Arbitration is handled between simultaneously transmitting masters without corruption of serial data on the bus.
- Programmable clock allows adjustment of I²C transfer rates.
- Data transfer is bidirectional between masters and slaves.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization is used as a handshake mechanism to suspend and resume serial transfer.
- Optional recognition of up to four distinct slave addresses.
- Monitor mode allows observing all I²C-bus traffic, regardless of slave address.
- I²C-bus can be used for test and diagnostic purposes.

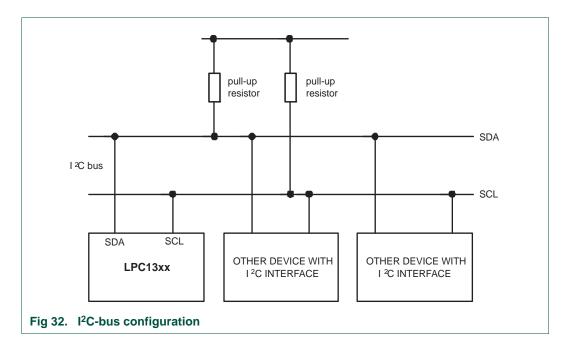
14.4 Applications

Interfaces to external I²C standard parts, such as serial RAMs, LCDs, tone generators, other microcontrollers, etc.

14.5 General description

A typical I²C-bus configuration is shown in <u>Figure 32</u>. Depending on the state of the direction bit (R/W), two types of data transfers are possible on the I²C-bus:

UM10524 **NXP Semiconductors**


Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.

 Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. Next follows the data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since a Repeated START condition is also the beginning of the next serial transfer, the I²C bus will not be released.

The I²C interface is byte oriented and has four operating modes: master transmitter mode, master receiver mode, slave transmitter mode and slave receiver mode.

The I²C interface complies with the entire I²C specification, supporting the ability to turn power off to the ARM Cortex-M3 without interfering with other devices on the same I²C-bus.

14.5.1 I²C Fast-mode Plus

Fast-Mode Plus supports a 1 Mbit/sec transfer rate to communicate with the I²C-bus products which NXP Semiconductors is now providing.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.6 Pin description

Table 243. I²C-bus pin description

Pin	Туре	Description
SDA	Input/Output	I ² C Serial Data
SCL	Input/Output	I ² C Serial Clock

The I²C-bus pins must be configured through the IOCON_PIO0_4 (<u>Table 60</u>) and IOCON_PIO0_5 (<u>Table 61</u>) registers for Standard/ Fast-mode or Fast-mode Plus. In Fast-mode Plus, rates above 400 kHz and up to 1 MHz may be selected. The I²C-bus pins are open-drain outputs and fully compatible with the I²C-bus specification.

14.7 Register description

Table 244. Register overview: I²C (base address 0x4000 0000)

Name	Access	Address offset	Description	Reset value[1]	Reference
CONSET	R/W	0x000	I2C Control Set Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is set. Writing a zero has no effect on the corresponding bit in the I ² C control register.	0x00	Table 245
STAT	RO	0x004	I2C Status Register. During I ² C operation, this register provides detailed status codes that allow software to determine the next action needed.	0xF8	Table 246
DAT	R/W	0x008	I2C Data Register. During master or slave transmit mode, data to be transmitted is written to this register. During master or slave receive mode, data that has been received may be read from this register.	0x00	Table 247
ADR0	R/W	0x00C	I2C Slave Address Register 0. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00	Table 248
SCLH	R/W	0x010	SCH Duty Cycle Register High Half Word. Determines the high time of the I ² C clock.	0x04	<u>Table 249</u>
SCLL	R/W	0x014	SCL Duty Cycle Register Low Half Word. Determines the low time of the I ² C clock. I2nSCLL and I2nSCLH together determine the clock frequency generated by an I ² C master and certain times used in slave mode.	0x04	Table 250
CONCLR	WO	0x018	I2C Control Clear Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is cleared. Writing a zero has no effect on the corresponding bit in the I ² C control register.	NA	Table 252
MMCTRL	R/W	0x01C	Monitor mode control register.	0x00	Table 253
ADR1	R/W	0x020	I2C Slave Address Register 1. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00	Table 254

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 244. Register overview: I²C (base address 0x4000 0000) ...continued

Name	Access	Address offset	Description	Reset value ^[1]	Reference
ADR2	R/W	0x024	I2C Slave Address Register 2. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00	Table 254
ADR3	R/W	0x028	I2C Slave Address Register 3. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00	Table 254
DATA_BUFFER	RO	0x02C	Data buffer register. The contents of the 8 MSBs of the I2DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus.	0x00	Table 255
MASK0	R/W	0x030	I2C Slave address mask register 0 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00	Table 256
MASK1	R/W	0x034	I2C Slave address mask register 1. This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00	Table 256
MASK2	R/W	0x038	I2C Slave address mask register 2 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00	Table 256
MASK3	R/W	0x03C	I2C Slave address mask register 3 . This mask register is associated with I2ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00	Table 256

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

14.7.1 I²C Control Set register (CONSET)

The CONSET registers control setting of bits in the CON register that controls operation of the I^2C interface. Writing a one to a bit of this register causes the corresponding bit in the I^2C control register to be set. Writing a zero has no effect.

Table 245. I²C Control Set register (CONSET - address 0x4000 0000) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AA	Assert acknowledge flag.	
3	SI	I ² C interrupt flag.	0
4	STO	STOP flag.	0

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 245. I²C Control Set register (CONSET - address 0x4000 0000) bit description

Bit	Symbol	Description	Reset value
5	STA	START flag.	0
6	I2EN	I ² C interface enable.	0
31:7	-	Reserved. The value read from a reserved bit is not defined.	-

I2EN I²C Interface Enable. When I2EN is 1, the I²C interface is enabled. I2EN can be cleared by writing 1 to the I2ENC bit in the CONCLR register. When I2EN is 0, the I²C interface is disabled.

When I2EN is "0", the SDA and SCL input signals are ignored, the I²C block is in the "not addressed" slave state, and the STO bit is forced to "0".

I2EN should not be used to temporarily release the I²C-bus since, when I2EN is reset, the I²C-bus status is lost. The AA flag should be used instead.

STA is the START flag. Setting this bit causes the I²C interface to enter master mode and transmit a START condition or transmit a Repeated START condition if it is already in master mode.

When STA is 1 and the I²C interface is not already in master mode, it enters master mode, checks the bus and generates a START condition if the bus is free. If the bus is not free, it waits for a STOP condition (which will free the bus) and generates a START condition after a delay of a half clock period of the internal clock generator. If the I²C interface is already in master mode and data has been transmitted or received, it transmits a Repeated START condition. STA may be set at any time, including when the I²C interface is in an addressed slave mode.

STA can be cleared by writing 1 to the STAC bit in the CONCLR register. When STA is 0, no START condition or Repeated START condition will be generated.

If STA and STO are both set, then a STOP condition is transmitted on the I^2C -bus if it the interface is in master mode, and transmits a START condition thereafter. If the I^2C interface is in slave mode, an internal STOP condition is generated, but is not transmitted on the bus.

STO is the STOP flag. Setting this bit causes the I²C interface to transmit a STOP condition in master mode, or recover from an error condition in slave mode. When STO is 1 in master mode, a STOP condition is transmitted on the I²C-bus. When the bus detects the STOP condition, STO is cleared automatically.

In slave mode, setting this bit can recover from an error condition. In this case, no STOP condition is transmitted to the bus. The hardware behaves as if a STOP condition has been received and it switches to "not addressed" slave receiver mode. The STO flag is cleared by hardware automatically.

SI is the I²C Interrupt Flag. This bit is set when the I²C state changes. However, entering state F8 does not set SI since there is nothing for an interrupt service routine to do in that case.

While SI is set, the low period of the serial clock on the SCL line is stretched, and the serial transfer is suspended. When SCL is HIGH, it is unaffected by the state of the SI flag. SI must be reset by software, by writing a 1 to the SIC bit in the CONCLR register.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

AA is the Assert Acknowledge Flag. When set to 1, an acknowledge (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

- 1. The address in the Slave Address Register has been received.
- 2. The General Call address has been received while the General Call bit (GC) in the ADR register is set.
- 3. A data byte has been received while the I²C is in the master receiver mode.
- 4. A data byte has been received while the I²C is in the addressed slave receiver mode

The AA bit can be cleared by writing 1 to the AAC bit in the CONCLR register. When AA is 0, a not acknowledge (HIGH level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

- 1. A data byte has been received while the I²C is in the master receiver mode.
- 2. A data byte has been received while the I²C is in the addressed slave receiver mode.

14.7.2 I²C Status register (STAT)

Each I²C Status register reflects the condition of the corresponding I²C interface. The I²C Status register is Read-Only.

Table 246. I²C Status register (STAT - 0x4000 0004) bit description

Bit	Symbol	Description	Reset value
2:0	-	These bits are unused and are always 0.	0
7:3	Status	These bits give the actual status information about the I ² C interface.	0x1F
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

The three least significant bits are always 0. Taken as a byte, the status register contents represent a status code. There are 26 possible status codes. When the status code is 0xF8, there is no relevant information available and the SI bit is not set. All other 25 status codes correspond to defined I²C states. When any of these states entered, the SI bit will be set. For a complete list of status codes, refer to tables from Table 261 to Table 266.

14.7.3 I²C Data register (DAT)

This register contains the data to be transmitted or the data just received. The CPU can read and write to this register only while it is not in the process of shifting a byte, when the SI bit is set. Data in DAT register remains stable as long as the SI bit is set. Data in DAT register is always shifted from right to left: the first bit to be transmitted is the MSB (bit 7), and after a byte has been received, the first bit of received data is located at the MSB of the DAT register.

Table 247. I²C Data register (DAT - 0x4000 0008) bit description

Bit	Symbol	Description	Reset value
7:0	Data	This register holds data values that have been received or are to be transmitted.	0
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.7.4 I²C Slave Address register 0 (ADR0)

This register is readable and writable and are only used when an I²C interface is set to slave mode. In master mode, this register has no effect. The LSB of the ADR register is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

If this register contains 0x00, the I²C will not acknowledge any address on the bus. All four registers (ADR0 to ADR3) will be cleared to this disabled state on reset. See also Table 254.

Table 248. I²C Slave Address register 0 (ADR0- 0x4000 000C) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

14.7.5 I²C SCL HIGH and LOW duty cycle registers (SCLH and SCLL)

Table 249. I²C SCL HIGH Duty Cycle register (SCLH - address 0x4000 0010) bit description

Bit	Symbol	Description	Reset value
15:0	SCLH	Count for SCL HIGH time period selection.	0x0004
31:16	-	Reserved. The value read from a reserved bit is not defined.	-

Table 250. I²C SCL Low duty cycle register (SCLL - 0x4000 0014) bit description

Bit	Symbol	Description	Reset value
15:0	SCLL	Count for SCL low time period selection.	0x0004
31:16	-	Reserved. The value read from a reserved bit is not defined.	-

14.7.5.1 Selecting the appropriate I²C data rate and duty cycle

Software must set values for the registers SCLH and SCLL to select the appropriate data rate and duty cycle. SCLH defines the number of I2C_PCLK cycles for the SCL HIGH time, SCLL defines the number of I2C_PCLK cycles for the SCL low time. The frequency is determined by the following formula (I2C_PCLK is the frequency of the peripheral I2C clock):

(4)

$$I^2C_{bitfrequency} = \frac{I2CPCLK}{SCLH + SCLL}$$

The values for SCLL and SCLH must ensure that the data rate is in the appropriate I²C data rate range. Each register value must be greater than or equal to 4. <u>Table 251</u> gives some examples of I²C-bus rates based on I2C_PCLK frequency and SCLL and SCLH values.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 251. SCLL + SCLH values for selected I²C clock values

I ² C mode	I ² C bit				I2C_	_PCLK	(MHz)			
	frequency	6	8	10	12	16	20	30	40	50
		SCLH + SCLL								
Standard mode	100 kHz	60	80	100	120	160	200	300	400	500
Fast-mode	400 kHz	15	20	25	30	40	50	75	100	125
Fast-mode Plus	1 MHz	-	8	10	12	16	20	30	40	50

SCLL and SCLH values should not necessarily be the same. Software can set different duty cycles on SCL by setting these two registers. For example, the I²C-bus specification defines the SCL low time and high time at different values for a Fast-mode and Fast-mode Plus I²C.

14.7.6 I²C Control Clear register (CONCLR)

The CONCLR register control clearing of bits in the CON register that controls operation of the I²C interface. Writing a one to a bit of this register causes the corresponding bit in the I²C control register to be cleared. Writing a zero has no effect.

Table 252. I²C Control Clear register (CONCLR - 0x4000 0018) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AAC	Assert acknowledge Clear bit.	
3	SIC	I ² C interrupt Clear bit.	0
4	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
5	STAC	START flag Clear bit.	0
6	I2ENC	I ² C interface Disable bit.	0
7	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31:8	-	Reserved. The value read from a reserved bit is not defined.	-

AAC is the Assert Acknowledge Clear bit. Writing a 1 to this bit clears the AA bit in the CONSET register. Writing 0 has no effect.

SIC is the I²C Interrupt Clear bit. Writing a 1 to this bit clears the SI bit in the CONSET register. Writing 0 has no effect.

STAC is the START flag Clear bit. Writing a 1 to this bit clears the STA bit in the CONSET register. Writing 0 has no effect.

I2ENC is the I²C Interface Disable bit. Writing a 1 to this bit clears the I2EN bit in the CONSET register. Writing 0 has no effect.

14.7.7 I²C Monitor mode control register (MMCTRL)

This register controls the Monitor mode which allows the I²C module to monitor traffic on the I²C bus without actually participating in traffic or interfering with the I²C bus.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 253. I²C Monitor mode control register (MMCTRL - 0x4000 001C) bit description

Bit	Symbol	Value	Description	Reset value		
0	MM_ENA		Monitor mode enable.	0		
		0	Monitor mode disabled.			
		1	The I ² C module will enter monitor mode. In this mode the SDA output will be forced high. This will prevent the I ² C module from outputting data of any kind (including ACK) onto the I ² C data bus.			
			Depending on the state of the ENA_SCL bit, the output may be also forced high, preventing the module from having control over the I ² C clock line.			
1	1 ENA_SCL		SCL output enable.	0		
				0	When this bit is cleared to '0', the SCL output will be forced high when the module is in monitor mode. As described above, this will prevent the module from having any control over the I ² C clock line.	
		1	When this bit is set, the I ² C module may exercise the same control over the clock line that it would in normal operation. This means that, acting as a slave peripheral, the I ² C module can "stretch" the clock line (hold it low) until it has had time to respond to an I ² C interrupt.[1]			
2	MATCH_ALL		Select interrupt register match.	0		
			When this bit is cleared, an interrupt will only be generated when a match occurs to one of the (up-to) four address registers described above. That is, the module will respond as a normal slave as far as address-recognition is concerned.			
		1	When this bit is set to '1' and the I ² C is in monitor mode, an interrupt will be generated on ANY address received. This will enable the part to monitor all traffic on the bus.			
31:3	-	-	Reserved. The value read from reserved bits is not defined.			

^[1] When the ENA_SCL bit is cleared and the I²C no longer has the ability to stall the bus, interrupt response time becomes important. To give the part more time to respond to an I²C interrupt under these conditions, a DATA_BUFFER register is used (Section 14.7.9) to hold received data for a full 9-bit word transmission time.

Remark: The ENA_SCL and MATCH_ALL bits have no effect if the MM_ENA is '0' (i.e. if the module is NOT in monitor mode).

14.7.7.1 Interrupt in Monitor mode

All interrupts will occur as normal when the module is in monitor mode. This means that the first interrupt will occur when an address-match is detected (any address received if the MATCH_ALL bit is set, otherwise an address matching one of the four address registers).

Subsequent to an address-match detection, interrupts will be generated after each data byte is received for a slave-write transfer, or after each byte that the module "thinks" it has transmitted for a slave-read transfer. In this second case, the data register will actually contain data transmitted by some other slave on the bus which was actually addressed by the master.

265 of 416

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Following all of these interrupts, the processor may read the data register to see what was actually transmitted on the bus.

14.7.7.2 Loss of arbitration in Monitor mode

In monitor mode, the I²C module will not be able to respond to a request for information by the bus master or issue an ACK). Some other slave on the bus will respond instead. This will most probably result in a lost-arbitration state as far as our module is concerned.

Software should be aware of the fact that the module is in monitor mode and should not respond to any loss of arbitration state that is detected. In addition, hardware may be designed into the module to block some/all loss of arbitration states from occurring if those state would either prevent a desired interrupt from occurring or cause an unwanted interrupt to occur. Whether any such hardware will be added is still to be determined.

14.7.8 I²C Slave Address registers (ADR[1, 2, 3])

These registers are readable and writable and are only used when an I²C interface is set to slave mode. In master mode, this register has no effect. The LSB of the ADR register is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

If these registers contain 0x00, the I²C will not acknowledge any address on the bus. All four registers will be cleared to this disabled state on reset (also see <u>Table 248</u>).

Table 254. I²C Slave Address registers (ADR[1, 2, 3]- 0x4000 00[20, 24, 28]) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00
31:8	-	Reserved. The value read from a reserved bit is not defined.	0

14.7.9 I²C Data buffer register (DATA_BUFFER)

In monitor mode, the I²C module may lose the ability to stretch the clock (stall the bus) if the ENA_SCL bit is not set. This means that the processor will have a limited amount of time to read the contents of the data received on the bus. If the processor reads the DAT shift register, as it ordinarily would, it could have only one bit-time to respond to the interrupt before the received data is overwritten by new data.

To give the processor more time to respond, a new 8-bit, read-only DATA_BUFFER register will be added. The contents of the 8 MSBs of the DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus. This means that the processor will have nine bit transmission times to respond to the interrupt and read the data before it is overwritten.

The processor will still have the ability to read the DAT register directly, as usual, and the behavior of DAT will not be altered in any way.

Although the DATA_BUFFER register is primarily intended for use in monitor mode with the ENA_SCL bit = '0', it will be available for reading at any time under any mode of operation.

266 of 416

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 255. I²C Data buffer register (DATA_BUFFER - 0x4000 002C) bit description

Bit	Symbol	Description	Reset value
7:0	Data	This register holds contents of the 8 MSBs of the DAT shift register.	0
31:8	-	Reserved. The value read from a reserved bit is not defined.	0

14.7.10 I²C Mask registers (MASK[0, 1, 2, 3])

The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the ADRn register associated with that mask register. In other words, bits in an ADRn register which are masked are not taken into account in determining an address match.

On reset, all mask register bits are cleared to '0'.

The mask register has no effect on comparison to the General Call address ("0000000").

Bits(31:8) and bit(0) of the mask registers are unused and should not be written to. These bits will always read back as zeros.

When an address-match interrupt occurs, the processor will have to read the data register (DAT) to determine what the received address was that actually caused the match.

Table 256. I²C Mask registers (MASK[0, 1, 2, 3] - 0x4000 00[30, 34, 38, 3C]) bit description

Bit	Symbol	Description	Reset value
0	-	Reserved. User software should not write ones to reserved bits. This bit reads always back as 0.	0
7:1	MASK	Mask bits.	0x00
31:8	-	Reserved. The value read from reserved bits is undefined.	0

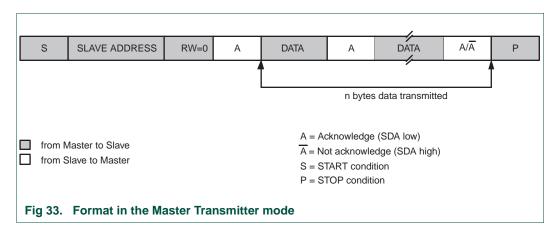
14.8 I²C operating modes

In a given application, the I²C block may operate as a master, a slave, or both. In the slave mode, the I²C hardware looks for any one of its four slave addresses and the General Call address. If one of these addresses is detected, an interrupt is requested. If the processor wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave operation is not interrupted. If bus arbitration is lost in the master mode, the I²C block switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

14.8.1 Master Transmitter mode

In this mode data is transmitted from master to slave. Before the master transmitter mode can be entered, the CONSET register must be initialized as shown in <u>Table 257</u>. I2EN must be set to 1 to enable the I²C function. If the AA bit is 0, the I²C interface will not acknowledge any address when another device is master of the bus, so it can not enter slave mode. The STA, STO and SI bits must be 0. The SI Bit is cleared by writing 1 to the SIC bit in the CONCLR register. THe STA bit should be cleared after writing the slave address.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

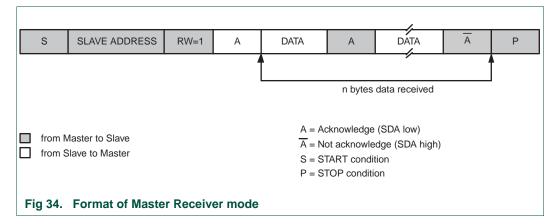

Table 257. CONSET used to configure Master mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	0	-	-

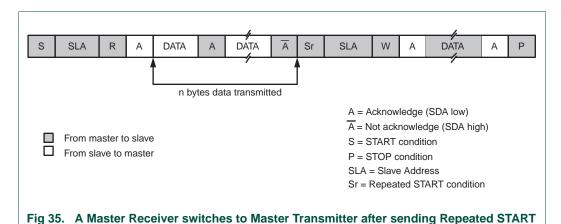
The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this mode the data direction bit (R/W) should be 0 which means Write. The first byte transmitted contains the slave address and Write bit. Data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

The I²C interface will enter master transmitter mode when software sets the STA bit. The I²C logic will send the START condition as soon as the bus is free. After the START condition is transmitted, the SI bit is set, and the status code in the STAT register is 0x08. This status code is used to vector to a state service routine which will load the slave address and Write bit to the DAT register, and then clear the SI bit. SI is cleared by writing a 1 to the SIC bit in the CONCLR register.

When the slave address and R/W bit have been transmitted and an acknowledgment bit has been received, the SI bit is set again, and the possible status codes now are 0x18, 0x20, or 0x38 for the master mode, or 0x68, 0x78, or 0xB0 if the slave mode was enabled (by setting AA to 1). The appropriate actions to be taken for each of these status codes are shown in Table 261 to Table 266.



14.8.2 Master Receiver mode


In the master receiver mode, data is received from a slave transmitter. The transfer is initiated in the same way as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load the slave address and the data direction bit to the I²C Data register (DAT), and then clear the SI bit. In this case, the data direction bit (R/W) should be 1 to indicate a read.

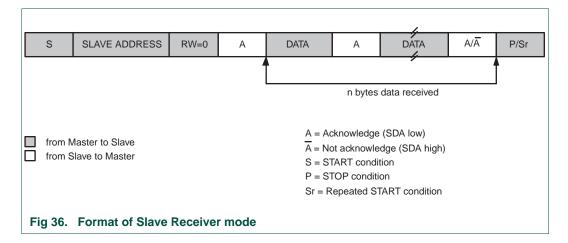
When the slave address and data direction bit have been transmitted and an acknowledge bit has been received, the SI bit is set, and the Status Register will show the status code. For master mode, the possible status codes are 0x40, 0x48, or 0x38. For slave mode, the possible status codes are 0x68, 0x78, or 0xB0. For details, refer to Table 262.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

After a Repeated START condition, I²C may switch to the master transmitter mode.

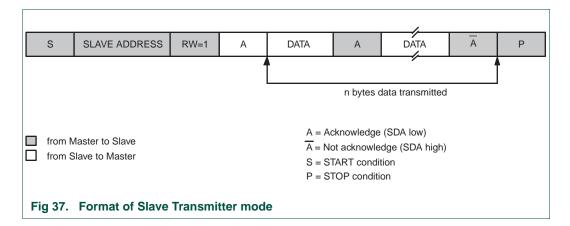
14.8.3 Slave Receiver mode

In the slave receiver mode, data bytes are received from a master transmitter. To initialize the slave receiver mode, write any of the Slave Address registers (ADR0-3) and write the I²C Control Set register (CONSET) as shown in Table 258.


Table 258. CONSET used to configure Slave mode

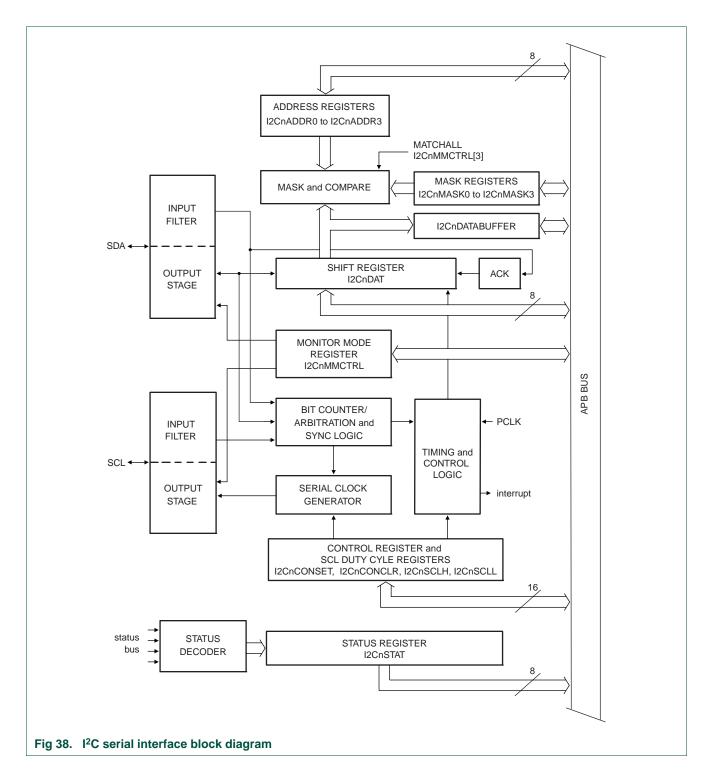
Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

I2EN must be set to 1 to enable the I²C function. AA bit must be set to 1 to acknowledge its own slave address or the General Call address. The STA, STO and SI bits are set to 0.


After ADR and CONSET are initialized, the I²C interface waits until it is addressed by its own address or general address followed by the data direction bit. If the direction bit is 0 (W), it enters slave receiver mode. If the direction bit is 1 (R), it enters slave transmitter mode. After the address and direction bit have been received, the SI bit is set and a valid status code can be read from the Status register (STAT). Refer to Table 265 for the status codes and actions.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.8.4 Slave Transmitter mode


The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will be 1, indicating a read operation. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer. In a given application, I²C may operate as a master and as a slave. In the slave mode, the I²C hardware looks for its own slave address and the General Call address. If one of these addresses is detected, an interrupt is requested. When the microcontrollers wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in the master mode, the I²C interface switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

14.9 I²C implementation and operation

<u>Figure 38</u> shows how the on-chip I²C-bus interface is implemented, and the following text describes the individual blocks.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.9.1 Input filters and output stages

Input signals are synchronized with the internal clock, and spikes shorter than three clocks are filtered out.

The output for I²C is a special pad designed to conform to the I²C specification.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.9.2 Address Registers, ADR0 to ADR3

These registers may be loaded with the 7-bit slave address (7 most significant bits) to which the I²C block will respond when programmed as a slave transmitter or receiver. The LSB (GC) is used to enable General Call address (0x00) recognition. When multiple slave addresses are enabled, the actual address received may be read from the DAT register at the state where the own slave address has been received.

14.9.3 Address mask registers, MASK0 to MASK3

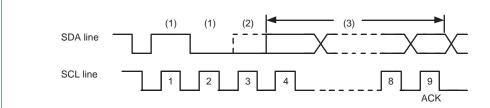
The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the ADRn register associated with that mask register. In other words, bits in an ADRn register which are masked are not taken into account in determining an address match.

When an address-match interrupt occurs, the processor will have to read the data register (DAT) to determine what the received address was that actually caused the match.

14.9.4 Comparator

The comparator compares the received 7-bit slave address with its own slave address (7 most significant bits in ADR). It also compares the first received 8-bit byte with the General Call address (0x00). If an equality is found, the appropriate status bits are set and an interrupt is requested.

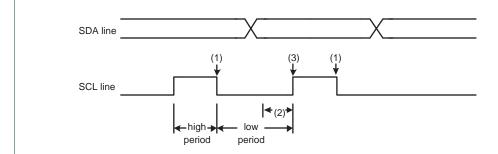
14.9.5 Shift register, DAT


This 8-bit register contains a byte of serial data to be transmitted or a byte which has just been received. Data in DAT is always shifted from right to left; the first bit to be transmitted is the MSB (bit 7) and, after a byte has been received, the first bit of received data is located at the MSB of DAT. While data is being shifted out, data on the bus is simultaneously being shifted in; DAT always contains the last byte present on the bus. Thus, in the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in DAT.

14.9.6 Arbitration and synchronization logic

In the master transmitter mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the I^2C -bus. If another device on the bus overrules a logic 1 and pulls the SDA line low, arbitration is lost, and the I^2C block immediately changes from master transmitter to slave receiver. The I^2C block will continue to output clock pulses (on SCL) until transmission of the current serial byte is complete.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode can only occur while the I²C block is returning a "not acknowledge: (logic 1) to the bus. Arbitration is lost when another device on the bus pulls this signal low. Since this can occur only at the end of a serial byte, the I²C block generates no further clock pulses. Figure 39 shows the arbitration procedure.


Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- (1) Another device transmits serial data
- (2) Another device overrules a logic (dotted line) transmitted this I²C master by pulling the SDA line low. Arbitration is lost, and this I²C enters Slave Receiver mode.
- (3) This I²C is in Slave Receiver mode but still generates clock pulses until the current byte has been transmitted. This I²C will not generate clock pulses for the next byte. Data on SDA originates from the new master once it has won arbitration.

Fig 39. Arbitration procedure

The synchronization logic will synchronize the serial clock generator with the clock pulses on the SCL line from another device. If two or more master devices generate clock pulses, the "mark" duration is determined by the device that generates the shortest "marks," and the "space" duration is determined by the device that generates the longest "spaces". Figure 40 shows the synchronization procedure.

- (1) Another device pulls the SCL line low before this I²C has timed a complete high time. The other device effectively determines the (shorter) HIGH period.
- (2) Another device continues to pull the SCL line low after this I²C has timed a complete low time and released SCL. The I²C clock generator is forced to wait until SCL goes HIGH. The other device effectively determines the (longer) LOW period.
- (3) The SCL line is released, and the clock generator begins timing the HIGH time.

Fig 40. Serial clock synchronization

A slave may stretch the space duration to slow down the bus master. The space duration may also be stretched for handshaking purposes. This can be done after each bit or after a complete byte transfer. the I²C block will stretch the SCL space duration after a byte has been transmitted or received and the acknowledge bit has been transferred. The serial interrupt flag (SI) is set, and the stretching continues until the serial interrupt flag is cleared.

14.9.7 Serial clock generator

This programmable clock pulse generator provides the SCL clock pulses when the I²C block is in the master transmitter or master receiver mode. It is switched off when the I²C block is in slave mode. The I²C output clock frequency and duty cycle is programmable

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

via the I²C Clock Control Registers. See the description of the I2CSCLL and I2CSCLH registers for details. The output clock pulses have a duty cycle as programmed unless the bus is synchronizing with other SCL clock sources as described above.

14.9.8 Timing and control

The timing and control logic generates the timing and control signals for serial byte handling. This logic block provides the shift pulses for DAT, enables the comparator, generates and detects START and STOP conditions, receives and transmits acknowledge bits, controls the master and slave modes, contains interrupt request logic, and monitors the I²C-bus status.

14.9.9 Control register, CONSET and CONCLR

The I²C control register contains bits used to control the following I²C block functions: start and restart of a serial transfer, termination of a serial transfer, bit rate, address recognition, and acknowledgment.

The contents of the I²C control register may be read as CONSET. Writing to CONSET will set bits in the I²C control register that correspond to ones in the value written. Conversely, writing to CONCLR will clear bits in the I²C control register that correspond to ones in the value written.

14.9.10 Status decoder and status register

The status decoder takes all of the internal status bits and compresses them into a 5-bit code. This code is unique for each I²C-bus status. The 5-bit code may be used to generate vector addresses for fast processing of the various service routines. Each service routine processes a particular bus status. There are 26 possible bus states if all four modes of the I²C block are used. The 5-bit status code is latched into the five most significant bits of the status register when the serial interrupt flag is set (by hardware) and remains stable until the interrupt flag is cleared by software. The three least significant bits of the status register are always zero. If the status code is used as a vector to service routines, then the routines are displaced by eight address locations. Eight bytes of code is sufficient for most of the service routines (see the software example in this section).

14.10 Details of I²C operating modes

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave Receiver
- Slave Transmitter

Data transfers in each mode of operation are shown in <u>Figure 41</u>, <u>Figure 42</u>, <u>Figure 43</u>, <u>Figure 44</u>, and <u>Figure 45</u>. <u>Table 259</u> lists abbreviations used in these figures when describing the I²C operating modes.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 259. Abbreviations used to describe an I²C operation

Abbreviation	Explanation
S	START Condition
SLA	7-bit slave address
R	Read bit (HIGH level at SDA)
W	Write bit (LOW level at SDA)
A	Acknowledge bit (LOW level at SDA)
Ā	Not acknowledge bit (HIGH level at SDA)
Data	8-bit data byte
Р	STOP condition

In Figure 41 to Figure 45, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in the STAT register. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.

When a serial interrupt routine is entered, the status code in STAT is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in tables from Table 261 to Table 267.

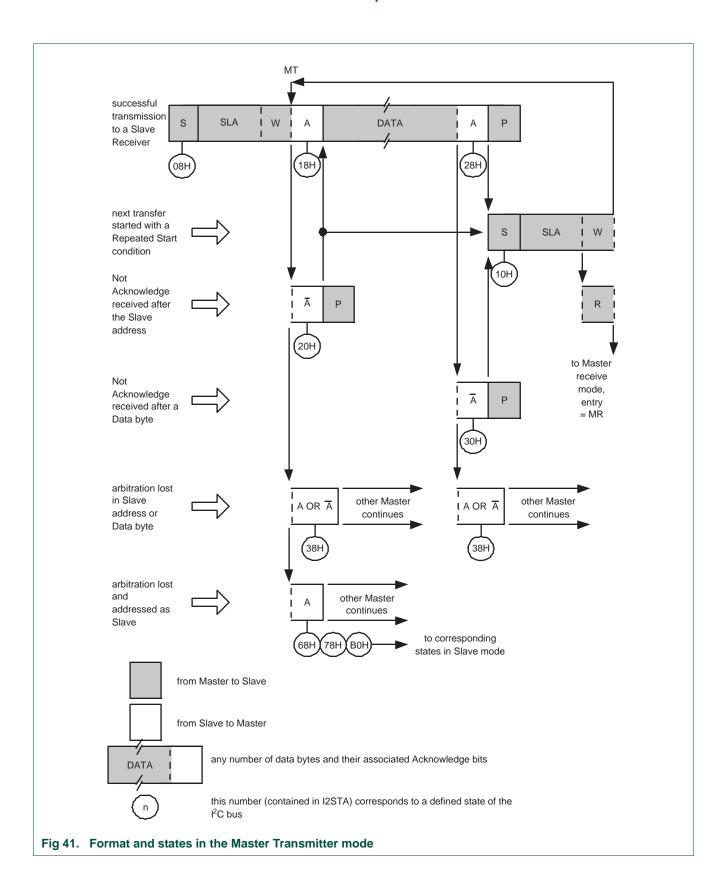
14.10.1 Master Transmitter mode

In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see Figure 41). Before the master transmitter mode can be entered, I2CON must be initialized as follows:

Table 260. CONSET used to initialize Master Transmitter mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	X	-	-

The I²C rate must also be configured in the SCLL and SCLH registers. I2EN must be set to logic 1 to enable the I²C block. If the AA bit is reset, the I²C block will not acknowledge its own slave address or the General Call address in the event of another device becoming master of the bus. In other words, if AA is reset, the I2C interface cannot enter slave mode. STA, STO, and SI must be reset.


Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

The master transmitter mode may now be entered by setting the STA bit. The I²C logic will now test the I²C-bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI) is set, and the status code in the status register (STAT) will be 0x08. This status code is used by the interrupt service routine to enter the appropriate state service routine that loads DAT with the slave address and the data direction bit (SLA+W). The SI bit in CON must then be reset before the serial transfer can continue.

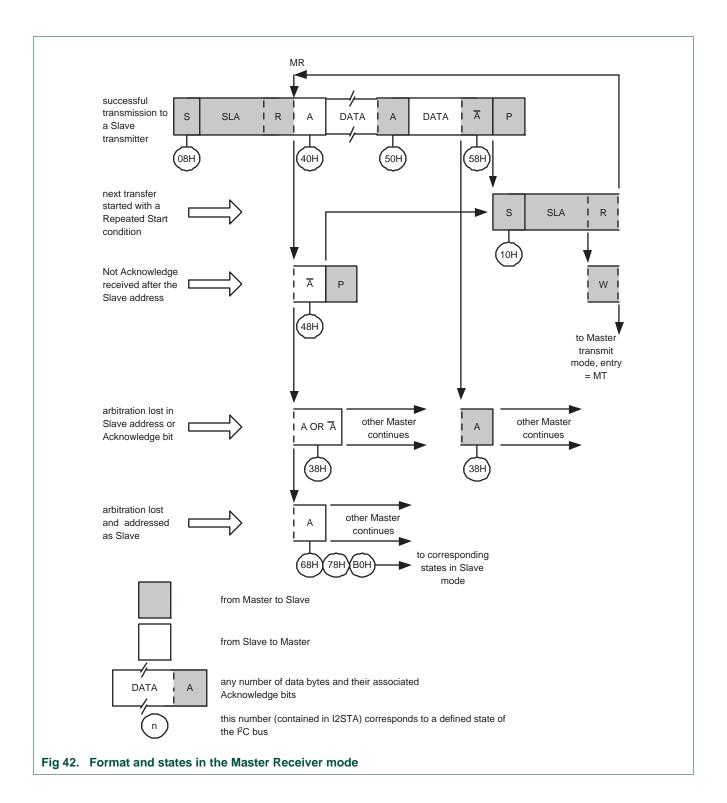
When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in STAT are possible. There are 0x18, 0x20, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = logic 1). The appropriate action to be taken for each of these status codes is detailed in Table 261. After a Repeated START condition (state 0x10). The I²C block may switch to the master receiver mode by loading DAT with SLA+R).

Table 261. Master Transmitter mode

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code	and hardware	To/From DAT	То С	ON			
(I2CSTAT)			STA	STO	SI	AA	
80x0	A START condition has been transmitted.	Load SLA+W; clear STA	Χ	0	0	Х	SLA+W will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+W or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+R; Clear STA	Χ	0	0	Х	SLA+R will be transmitted; the I ² C block will be switched to MST/REC mode.
0x18	SLA+W has been transmitted; ACK has	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit wi be received.
	been received.	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
		No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x20	SLA+W has been transmitted; NOT ACK has been received.	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit wi be received.
		No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
		No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x28	Data byte in DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit wi be received.
	ACK has been received.	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
	received.	No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x30	Data byte in DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit wi be received.
	NOT ACK has been	No DAT action or	1	0	0	Х	Repeated START will be transmitted.
	received.	No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag wi be reset.
0x38	Arbitration lost in SLA+R/W or Data	No DAT action or	0	0	0	Х	I ² C-bus will be released; not addressed slave will be entered.
	bytes.	No DAT action	1	0	0	Х	A START condition will be transmitted when the bus becomes free.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.2 Master Receiver mode


In the master receiver mode, a number of data bytes are received from a slave transmitter (see <u>Figure 42</u>). The transfer is initialized as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load DAT with the 7-bit slave address and the data direction bit (SLA+R). The SI bit in CON must then be cleared before the serial transfer can continue.

When the slave address and the data direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in STAT are possible. These are 0x40, 0x48, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = 1). The appropriate action to be taken for each of these status codes is detailed in <u>Table 262</u>. After a Repeated START condition (state 0x10), the I²C block may switch to the master transmitter mode by loading DAT with SLA+W.

Table 262. Master Receiver mode

Status	Status of the I ² C-bus	Application softwa	are re	spons	е	Next action taken by I ² C hardware	
Code	and hardware	To/From DAT	To C	ON			
(STAT)			STA	STO	SI	AA	
0x08	A START condition has been transmitted.	Load SLA+R	X	0	0	Χ	SLA+R will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+R or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+W	Χ	0	0	Χ	SLA+W will be transmitted; the I^2C block will be switched to MST/TRX mode.
0x38	Arbitration lost in NOT ACK bit.	No DAT action or	0	0	0	Х	I ² C-bus will be released; the I ² C block will enter slave mode.
		No DAT action	1	0	0	Х	A START condition will be transmitted when the bus becomes free.
0x40	SLA+R has been transmitted; ACK has	No DAT action or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been received.	No DAT action	0	0	0	1	Data byte will be received; ACK bit will be returned.
0x48	SLA+R has been transmitted; NOT ACK	No DAT action or	1	0	0	X	Repeated START condition will be transmitted.
	has been received.	No DAT action or	0	1	0	X	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x50	Data byte has been received; ACK has	Read data byte or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been returned.	Read data byte	0	0	0	1	Data byte will be received; ACK bit will be returned.
0x58	Data byte has been received; NOT ACK	Read data byte or	1	0	0	X	Repeated START condition will be transmitted.
	has been returned.	Read data byte or	0	1	0	Χ	STOP condition will be transmitted; STO flag will be reset.
		Read data byte	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

281 of 416

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.3 Slave Receiver mode

In the slave receiver mode, a number of data bytes are received from a master transmitter (see <u>Figure 43</u>). To initiate the slave receiver mode, ADR and CON must be loaded as follows:

Table 263. ADR usage in Slave Receiver mode

Bit	7	6	5	4	3	2	1	0
Symbol			OW	n slave 7-b	oit address			GC

The upper 7 bits are the address to which the I²C block will respond when addressed by a master. If the LSB (GC) is set, the I²C block will respond to the General Call address (0x00); otherwise it ignores the General Call address.

Table 264. CONSET used to initialize Slave Receiver mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

The I²C-bus rate settings do not affect the I²C block in the slave mode. I2EN must be set to logic 1 to enable the I²C block. The AA bit must be set to enable the I²C block to acknowledge its own slave address or the General Call address. STA, STO, and SI must be reset.

When ADR and CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "0" (W) for the I²C block to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from STAT. This status code is used to vector to a state service routine. The appropriate action to be taken for each of these status codes is detailed in <u>Table 265</u>. The slave receiver mode may also be entered if arbitration is lost while the I²C block is in the master mode (see status 0x68 and 0x78).

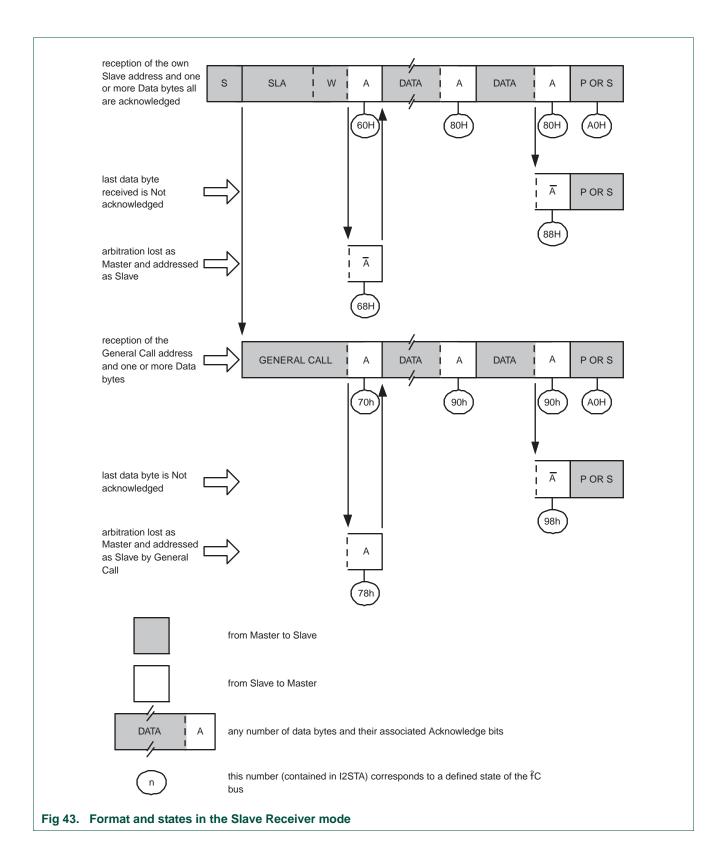

If the AA bit is reset during a transfer, the I²C block will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

Table 265. Slave Receiver mode

Status Code (STAT)	Status of the I ² C-bus and hardware	Application softw	are re	spons	е		Next action taken by I ² C hardware
		To/From DAT	То С	ON			
			STA	STO	SI	AA	
0x60	Own SLA+W has been received; ACK has been returned.	No DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
		No DAT action	Χ	0	0	1	Data byte will be received and ACK will be returned.
0x68	Arbitration lost in SLA+R/W as master; Own SLA+W has been received, ACK returned.	No DAT action or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
		No DAT action	Х	0	0	1	Data byte will be received and ACK will be returned.
0x70	General call address (0x00) has been received; ACK has been returned.	No DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
		No DAT action	Χ	0	0	1	Data byte will be received and ACK will be returned.
0x78	Arbitration lost in SLA+R/W as master; General call address has been received, ACK has been returned.	No DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
		No DAT action	X	0	0	1	Data byte will be received and ACK will be returned.
0x80	Previously addressed with own SLV address; DATA has been received; ACK has been returned.	Read data byte or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
		Read data byte	X	0	0	1	Data byte will be received and ACK will be returned.
0x88	Previously addressed with own SLA; DATA byte has been received; NOT ACK has been returned.	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General ca address will be recognized if ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; n recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General can address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0x90	Previously addressed with General Call; DATA byte has been received; ACK has been returned.	Read data byte or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
		Read data byte	X	0	0	1	Data byte will be received and ACK will be returned.

Table 265. Slave Receiver mode ...continued

Status Code (STAT)	Status of the I ² C-bus and hardware	Application softw	are re	spons	е	Next action taken by I ² C hardware	
		To/From DAT	To C	ON			
			STA	STO	SI	AA	
0x98	Previously addressed with General Call; DATA byte has been received; NOT ACK has been returned.	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0xA0	A STOP condition or Repeated START condition has been received while still addressed as SLV/REC or SLV/TRX.	No STDAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No STDAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No STDAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No STDAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.4 Slave Transmitter mode

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 44). Data transfer is initialized as in the slave receiver mode. When ADR and CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "1" (R) for the I²C block to operate in the slave transmitter mode. After its own slave address and the R bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from STAT. This status code is used to vector to a state service routine, and the appropriate action to be taken for each of these status codes is detailed in Table 266. The slave transmitter mode may also be entered if arbitration is lost while the I²C block is in the master mode (see state 0xB0).

If the AA bit is reset during a transfer, the I²C block will transmit the last byte of the transfer and enter state 0xC0 or 0xC8. The I²C block is switched to the not addressed slave mode and will ignore the master receiver if it continues the transfer. Thus the master receiver receives all 1s as serial data. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored, and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

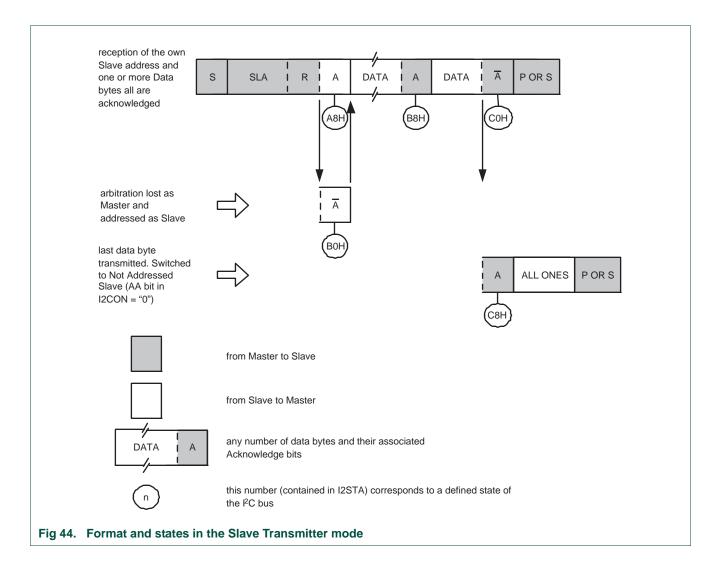

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

Table 266. Slave Transmitter mode

Status	Status of the I ² C-bus	Application softw	Next action taken by I ² C hardware				
Code (STAT)	and hardware	To/From DAT	То С	-			
			STA	STO	SI	AA	
0xA8	Own SLA+R has been received; ACK has been returned.	Load data byte or	Χ	0	0	0	Last data byte will be transmitted and ACK bit will be received.
		Load data byte	Χ	0	0	1	Data byte will be transmitted; ACK will be received.
0xB0	Arbitration lost in SLA+R/W as master; Own SLA+R has been received, ACK has been returned.	Load data byte or	Χ	0	0	0	Last data byte will be transmitted and ACK bit will be received.
		Load data byte	Χ	0	0	1	Data byte will be transmitted; ACK bit will be received.
0xB8	Data byte in DAT has been transmitted; ACK has been received.	Load data byte or	Χ	0	0	0	Last data byte will be transmitted and ACK bit will be received.
		Load data byte	Χ	0	0	1	Data byte will be transmitted; ACK bit will be received.
0xC0	Data byte in DAT has been transmitted; NOT ACK has been received.	No DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No DAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0xC8	Last data byte in DAT has been transmitted (AA = 0); ACK has been received.	No DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No DAT action	1	0	0	01	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.

287 of 416

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.5 Miscellaneous states

There are two STAT codes that do not correspond to a defined I²C hardware state (see Table 267). These are discussed below.

14.10.5.1 STAT = 0xF8

This status code indicates that no relevant information is available because the serial interrupt flag, SI, is not yet set. This occurs between other states and when the I²C block is not involved in a serial transfer.

14.10.5.2 STAT = 0x00

This status code indicates that a bus error has occurred during an I²C serial transfer. A bus error is caused when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. A bus error may also be caused when external interference disturbs the internal I²C block signals. When a bus error occurs, SI is set. To recover from a bus error, the STO flag must be set and SI must be cleared. This

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

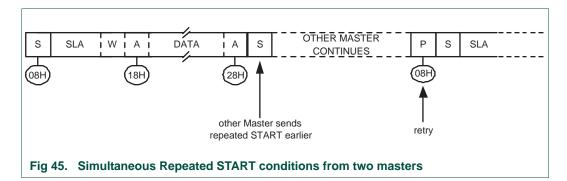
causes the I²C block to enter the "not addressed" slave mode (a defined state) and to clear the STO flag (no other bits in CON are affected). The SDA and SCL lines are released (a STOP condition is not transmitted).

Table 267. Miscellaneous States

Status Code (STAT)	Status of the I ² C-bus and hardware	Application softw To/From DAT	То С	-		AA	Next action taken by I ² C hardware
0xF8	No relevant state information available; SI = 0.	No DAT action	١	No COI	N actio	on	Wait or proceed current transfer.
0x00	Bus error during MST or selected slave modes, due to an illegal START or STOP condition. State 0x00 can also occur when interference causes the I ² C block to enter an undefined state.	No DAT action	0	1	0	X	Only the internal hardware is affected in the MST or addressed SLV modes. In all cases, the bus is released and the I ² C block is switched to the not addressed SLV mode. STO is reset.

14.10.6 Some special cases

The I²C hardware has facilities to handle the following special cases that may occur during a serial transfer:


- Simultaneous Repeated START conditions from two masters
- · Data transfer after loss of arbitration
- Forced access to the I²C-bus
- I²C-bus obstructed by a LOW level on SCL or SDA
- Bus error

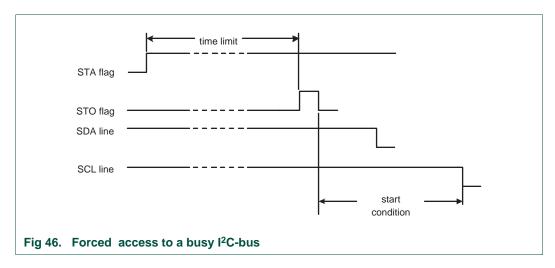
14.10.6.1 Simultaneous Repeated START conditions from two masters

A Repeated START condition may be generated in the master transmitter or master receiver modes. A special case occurs if another master simultaneously generates a Repeated START condition (see <u>Figure 45</u>). Until this occurs, arbitration is not lost by either master since they were both transmitting the same data.

If the I^2C hardware detects a Repeated START condition on the I^2C -bus before generating a Repeated START condition itself, it will release the bus, and no interrupt request is generated. If another master frees the bus by generating a STOP condition, the I^2C block will transmit a normal START condition (state 0x08), and a retry of the total serial data transfer can commence.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.6.2 Data transfer after loss of arbitration

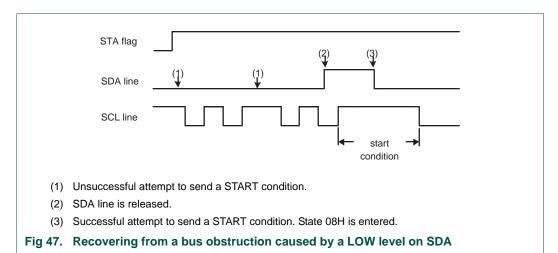

Arbitration may be lost in the master transmitter and master receiver modes (see <u>Figure 39</u>). Loss of arbitration is indicated by the following states in STAT; 0x38, 0x68, 0x78, and 0xB0 (see <u>Figure 41</u> and <u>Figure 42</u>).

If the STA flag in CON is set by the routines which service these states, then, if the bus is free again, a START condition (state 0x08) is transmitted without intervention by the CPU, and a retry of the total serial transfer can commence.

14.10.6.3 Forced access to the l²C-bus

In some applications, it may be possible for an uncontrolled source to cause a bus hang-up. In such situations, the problem may be caused by interference, temporary interruption of the bus or a temporary short-circuit between SDA and SCL.

If an uncontrolled source generates a superfluous START or masks a STOP condition, then the I²C-bus stays busy indefinitely. If the STA flag is set and bus access is not obtained within a reasonable amount of time, then a forced access to the I²C-bus is possible. This is achieved by setting the STO flag while the STA flag is still set. No STOP condition is transmitted. The I²C hardware behaves as if a STOP condition was received and is able to transmit a START condition. The STO flag is cleared by hardware (see Figure 46).



Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.6.4 I²C-bus obstructed by a LOW level on SCL or SDA

An I²C-bus hang-up can occur if either the SDA or SCL line is held LOW by any device on the bus. If the SCL line is obstructed (pulled LOW) by a device on the bus, no further serial transfer is possible, and the problem must be resolved by the device that is pulling the SCL bus line LOW.

Typically, the SDA line may be obstructed by another device on the bus that has become out of synchronization with the current bus master by either missing a clock, or by sensing a noise pulse as a clock. In this case, the problem can be solved by transmitting additional clock pulses on the SCL line (see Figure 47). The I²C interface does not include a dedicated time-out timer to detect an obstructed bus, but this can be implemented using another timer in the system. When detected, software can force clocks (up to 9 may be required) on SCL until SDA is released by the offending device. At that point, the slave may still be out of synchronization, so a START should be generated to insure that all I²C peripherals are synchronized.

14.10.6.5 Bus error

A bus error occurs when a START or STOP condition is detected at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data bit, or an acknowledge bit.

The I²C hardware only reacts to a bus error when it is involved in a serial transfer either as a master or an addressed slave. When a bus error is detected, the I²C block immediately switches to the not addressed slave mode, releases the SDA and SCL lines, sets the interrupt flag, and loads the status register with 0x00. This status code may be used to vector to a state service routine which either attempts the aborted serial transfer again or simply recovers from the error condition as shown in Table 267.

14.10.7 I²C state service routines

This section provides examples of operations that must be performed by various I²C state service routines. This includes:

- Initialization of the I²C block after a Reset.
- I²C Interrupt Service
- The 26 state service routines providing support for all four I²C operating modes.

UM10524

User manual

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.10.8 Initialization

In the initialization example, the I²C block is enabled for both master and slave modes. For each mode, a buffer is used for transmission and reception. The initialization routine performs the following functions:

- ADR is loaded with the part's own slave address and the General Call bit (GC)
- The I²C interrupt enable and interrupt priority bits are set
- The slave mode is enabled by simultaneously setting the I2EN and AA bits in CON and the serial clock frequency (for master modes) is defined by is defined by loading the SCLH and SCLL registers. The master routines must be started in the main program.

The I²C hardware now begins checking the I²C-bus for its own slave address and General Call. If the General Call or the own slave address is detected, an interrupt is requested and STAT is loaded with the appropriate state information.

14.10.9 I²C interrupt service

When the I²C interrupt is entered, STAT contains a status code which identifies one of the 26 state services to be executed.

14.10.10 The state service routines

Each state routine is part of the I²C interrupt routine and handles one of the 26 states.

14.10.11 Adapting state services to an application

The state service examples show the typical actions that must be performed in response to the 26 I²C state codes. If one or more of the four I²C operating modes are not used, the associated state services can be omitted, as long as care is taken that the those states can never occur.

In an application, it may be desirable to implement some kind of time-out during I²C operations, in order to trap an inoperative bus or a lost service routine.

14.11 Software example

14.11.1 Initialization routine

Example to initialize I²C Interface as a Slave and/or Master.

- 1. Load ADR with own Slave Address, enable General Call recognition if needed.
- 2. Enable I²C interrupt.
- 3. Write 0x44 to CONSET to set the I2EN and AA bits, enabling Slave functions. For Master only functions, write 0x40 to CONSET.

14.11.2 Start Master Transmit function

Begin a Master Transmit operation by setting up the buffer, pointer, and data count, then initiating a START.

1. Initialize Master data counter.

292 of 416

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 2. Set up the Slave Address to which data will be transmitted, and add the Write bit.
- 3. Write 0x20 to CONSET to set the STA bit.
- 4. Set up data to be transmitted in Master Transmit buffer.
- 5. Initialize the Master data counter to match the length of the message being sent.
- 6. Exit

14.11.3 Start Master Receive function

Begin a Master Receive operation by setting up the buffer, pointer, and data count, then initiating a START.

- 1. Initialize Master data counter.
- 2. Set up the Slave Address to which data will be transmitted, and add the Read bit.
- Write 0x20 to CONSET to set the STA bit.
- 4. Set up the Master Receive buffer.
- 5. Initialize the Master data counter to match the length of the message to be received.
- 6. Exit

14.11.4 I²C interrupt routine

Determine the I²C state and which state routine will be used to handle it.

- 1. Read the I²C status from STA.
- 2. Use the status value to branch to one of 26 possible state routines.

14.11.5 Non mode specific states

14.11.5.1 State: 0x00

Bus Error. Enter not addressed Slave mode and release bus.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.5.2 Master States

State 08 and State 10 are for both Master Transmit and Master Receive modes. The R/W bit decides whether the next state is within Master Transmit mode or Master Receive mode.

14.11.5.3 State: 0x08

A START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to DAT.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Master Transmit mode data buffer.

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

14.11.5.4 State: 0x10

A Repeated START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to DAT.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- Set up Master Transmit mode data buffer.
- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

14.11.6 Master Transmitter states

14.11.6.1 State: 0x18

Previous state was State 8 or State 10, Slave Address + Write has been transmitted, ACK has been received. The first data byte will be transmitted, an ACK bit will be received.

- 1. Load DAT with first data byte from Master Transmit buffer.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Increment Master Transmit buffer pointer.
- 5. Exit

14.11.6.2 State: 0x20

Slave Address + Write has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.6.3 State: 0x28

Data has been transmitted, ACK has been received. If the transmitted data was the last data byte then transmit a STOP condition, otherwise transmit the next data byte.

- 1. Decrement the Master data counter, skip to step 5 if not the last data byte.
- 2. Write 0x14 to CONSET to set the STO and AA bits.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Exit
- 5. Load DAT with next data byte from Master Transmit buffer.

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 6. Write 0x04 to CONSET to set the AA bit.
- 7. Write 0x08 to CONCLR to clear the SI flag.
- 8. Increment Master Transmit buffer pointer
- 9. Exit

14.11.6.4 State: 0x30

Data has been transmitted. NOT ACK received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.6.5 State: 0x38

Arbitration has been lost during Slave Address + Write or data. The bus has been released and not addressed Slave mode is entered. A new START condition will be transmitted when the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.7 Master Receive states

14.11.7.1 State: 0x40

Previous state was State 08 or State 10. Slave Address + Read has been transmitted, ACK has been received. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.7.2 State: 0x48

Slave Address + Read has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.7.3 State: 0x50

Data has been received, ACK has been returned. Data will be read from DAT. Additional data will be received. If this is the last data byte then NOT ACK will be returned, otherwise ACK will be returned.

- 1. Read data byte from DAT into Master Receive buffer.
- 2. Decrement the Master data counter, skip to step 5 if not the last data byte.
- 3. Write 0x0C to CONCLR to clear the SI flag and the AA bit.

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 4. Exit
- 5. Write 0x04 to CONSET to set the AA bit.
- 6. Write 0x08 to CONCLR to clear the SI flag.
- 7. Increment Master Receive buffer pointer
- 8. Exit

14.11.7.4 State: 0x58

Data has been received, NOT ACK has been returned. Data will be read from DAT. A STOP condition will be transmitted.

- 1. Read data byte from DAT into Master Receive buffer.
- 2. Write 0x14 to CONSET to set the STO and AA bits.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Exit

14.11.8 Slave Receiver states

14.11.8.1 State: 0x60

Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

14.11.8.2 State: 0x68

Arbitration has been lost in Slave Address and R/W bit as bus Master. Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK will be returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit.

14.11.8.3 State: 0x70

General call has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 4. Initialize Slave data counter.
- 5. Exit

14.11.8.4 State: 0x78

Arbitration has been lost in Slave Address + R/W bit as bus Master. General call has been received and ACK has been returned. Data will be received and ACK returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

14.11.8.5 State: 0x80

Previously addressed with own Slave Address. Data has been received and ACK has been returned. Additional data will be read.

- 1. Read data byte from DAT into the Slave Receive buffer.
- 2. Decrement the Slave data counter, skip to step 5 if not the last data byte.
- 3. Write 0x0C to CONCLR to clear the SI flag and the AA bit.
- 4. Exit.
- 5. Write 0x04 to CONSET to set the AA bit.
- 6. Write 0x08 to CONCLR to clear the SI flag.
- 7. Increment Slave Receive buffer pointer.
- 8. Exit

14.11.8.6 State: 0x88

Previously addressed with own Slave Address. Data has been received and NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.8.7 State: 0x90

Previously addressed with General Call. Data has been received, ACK has been returned. Received data will be saved. Only the first data byte will be received with ACK. Additional data will be received with NOT ACK.

- 1. Read data byte from DAT into the Slave Receive buffer.
- 2. Write 0x0C to CONCLR to clear the SI flag and the AA bit.
- 3. Exit

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

14.11.8.8 State: 0x98

Previously addressed with General Call. Data has been received, NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.8.9 State: 0xA0

A STOP condition or Repeated START has been received, while still addressed as a Slave. Data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

14.11.9 Slave Transmitter states

14.11.9.1 State: 0xA8

Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received.

- 1. Load DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

14.11.9.2 State: 0xB0

Arbitration lost in Slave Address and R/W bit as bus Master. Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received. STA is set to restart Master mode after the bus is free again.

- 1. Load DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x24 to CONSET to set the STA and AA bits.
- Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

14.11.9.3 State: 0xB8

Data has been transmitted, ACK has been received. Data will be transmitted, ACK bit will be received.

Load DAT from Slave Transmit buffer with data byte.

UM10524

Chapter 14: LPC1315/16/17/45/46/47 I2C-bus controller

- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Increment Slave Transmit buffer pointer.
- 5. Exit

14.11.9.4 State: 0xC0

Data has been transmitted, NOT ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit.

14.11.9.5 State: 0xC8

The last data byte has been transmitted, ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

UM10524

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer (WWDT)

Rev. 4 — 12 March 2013

User manual

15.1 How to read this chapter

The WWDT is identical on all LPC1315/16/17/45/46/47 parts.

15.2 Basic configuration

The WWDT is configured through the following registers:

- Power to the register interface (WWDT PCLK clock): In the SYSAHBCLKCTRL register, set bit 15 in <u>Table 19</u>.
- Enable the WWDT clock source (the watchdog oscillator or the IRC) in the PDRUNCFG register (Table 42).
- If needed, enable the watchdog interrupt for wake-up in the STARTERP1 register (Table 39).

15.3 Features

- Internally resets chip if not reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time-out period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Programmable 24-bit timer with internal fixed pre-scaler.
- Selectable time period from 1,024 watchdog clocks ($T_{WDCLK} \times 256 \times 4$) to over 67 million watchdog clocks ($T_{WDCLK} \times 2^{24} \times 4$) in increments of 4 watchdog clocks.
- "Safe" watchdog operation. Once enabled, requires a hardware reset or a Watchdog reset to be disabled.
- Incorrect feed sequence causes immediate watchdog event if enabled.
- The watchdog reload value can optionally be protected such that it can only be changed after the "warning interrupt" time is reached.
- Flag to indicate Watchdog reset.
- The Watchdog clock (WDCLK) source can be selected as the Internal High frequency oscillator (IRC) or the WatchDog oscillator.
- The Watchdog timer can be configured to run in Deep-sleep or Power-down mode when using the watchdog oscillator as the clock source.
- Debug mode.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

15.4 Applications

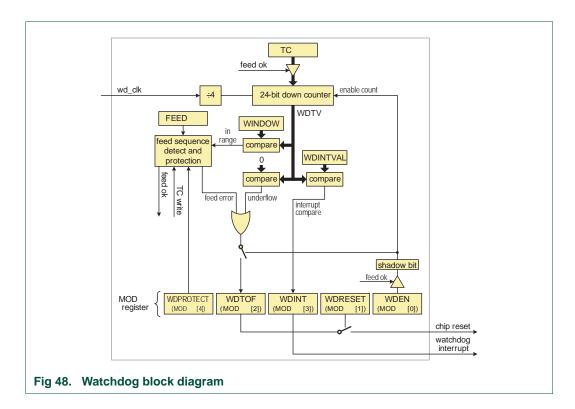
The purpose of the Watchdog Timer is to reset or interrupt the microcontroller within a programmable time if it enters an erroneous state. When enabled, a watchdog reset and/or will be generated if the user program fails to "feed" (reload) the Watchdog within a predetermined amount of time.

When a watchdog window is programmed, an early watchdog feed is also treated as a watchdog event. This allows preventing situations where a system failure may still feed the watchdog. For example, application code could be stuck in an interrupt service that contains a watchdog feed. Setting the window such that this would result in an early feed will generate a watchdog event, allowing for system recovery.

15.5 Description

The Watchdog consists of a fixed (divide by 4) pre-scaler and a 24 bit counter which decrements when clocked. The minimum value from which the counter decrements is 0xFF. Setting a value lower than 0xFF causes 0xFF to be loaded in the counter. Hence the minimum Watchdog interval is ($T_{WDCLK} \times 256 \times 4$) and the maximum Watchdog interval is ($T_{WDCLK} \times 2^{24} \times 4$) in multiples of ($T_{WDCLK} \times 4$). The Watchdog should be used in the following manner:

- Set the Watchdog timer constant reload value in the TC register.
- Set the Watchdog timer operating mode in the MOD register.
- Set a value for the watchdog window time in the WINDOW register if windowed operation is desired.
- Set a value for the watchdog warning interrupt in the WARNINT register if a warning interrupt is desired.
- Enable the Watchdog by writing 0xAA followed by 0x55 to the FEED register.
- The Watchdog must be fed again before the Watchdog counter reaches zero in order to prevent a watchdog event. If a window value is programmed, the feed must also occur after the watchdog counter passes that value.


When the Watchdog Timer is configured so that a watchdog event will cause a reset and the counter reaches zero, the CPU will be reset, loading the stack pointer and program counter from the vector table as for an external reset. The Watchdog time-out flag (WDTOF) can be examined to determine if the Watchdog has caused the reset condition. The WDTOF flag must be cleared by software.

When the Watchdog Timer is configured to generate a warning interrupt, the interrupt will occur when the counter matches the value defined by the WARNINT register.

15.5.1 Block diagram

The block diagram of the Watchdog is shown below in the <u>Figure 48</u>. The synchronization logic (PCLK - WDCLK) is not shown in the block diagram.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

15.6 Clocking and power control

The watchdog timer block uses two clocks: PCLK and WDCLK. PCLK is used for the APB accesses to the watchdog registers and is derived from the system clock (see Figure 3). The WDCLK is used for the watchdog timer counting and is derived from the wdt_clk in Figure 3. Either the IRC or the watchdog oscillator can be used as wdt_clk in Active mode or Sleep mode, but in Deep-sleep or Power-down modes only the watchdog oscillator is available.

Remark: If the LOCK bit is set in the MOD register (<u>Table 269</u>) and the IRC is selected as a clock source for the WWDT, the IRC is forced on during Deep-sleep and Power-down modes resulting in increased power consumption.

There is some synchronization logic between these two clock domains. When the MOD and TC registers are updated by APB operations, the new value will take effect in 3 WDCLK cycles on the logic in the WDCLK clock domain. When the watchdog timer is counting on WDCLK, the synchronization logic will first lock the value of the counter on WDCLK and then synchronize it with the PCLK for reading as the WDTV register by the CPU.

302 of 416

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

15.7 Using the WWDT lock features

The WWDT supports several lock features which can be enabled to ensure that the WWDT is running at all times:

- Accidental overwrite of the WWDT clock source
- Changing the WWDT clock source
- Changing the WWDT reload value

15.7.1 Accidental overwrite of the WWDT clock

If bit 31 of the WWDT CLKSEL register (<u>Table 274</u>) is set, writes to bit 0 of the CLKSEL register, the clock source select bit, will be ignored and the clock source will not change.

The clock source overwrite lock mechanism can simply be disabled by clearing bit 31 in the CLKSEL register.

15.7.2 Changing the WWDT clock source

If bit 5 in the WWDT MOD register is set, the current clock source as selected in the CLKSEL register is locked and can not be changed either by software or by hardware when Sleep, Deep-sleep or Power-down modes are entered. Therefore, the user must ensure that the appropriate WWDT clock source for each power mode is selected **before** setting bit 5 in the MOD register:

- Active or Sleep modes: Both the IRC or the watchdog oscillator are allowed.
- Deep-sleep mode: Both the IRC and the watchdog oscillator are allowed. However, using the IRC during Deep-sleep mode will increase the power consumption. To minimize power consumption, use the watchdog oscillator as clock source.
- Power-down mode: Only the watchdog oscillator is allowed as clock source for the WWDT. Therefore, before setting bit 5 and locking the clock source, the WWDT clock source must be set to the watchdog oscillator. Otherwise, the part may not be able to enter Power-down mode.
- Deep power-down mode: No clock locking mechanisms are in effect as neither the WWDT nor any of the clocks are running. However, an additional lock bit in the PMU can be set to prevent the part from even entering Deep power-down mode (see Table 48).

The clock source lock mechanism can only be disabled by a reset of any type.

15.7.3 Changing the WWDT reload value

If bit 4 is set in the WWDT MOD register, the watchdog time-out value (TC) can be changed only after the counter is below the value of WDWARNINT and WDWINDOW.

The reload overwrite lock mechanism can only be disabled by a reset of any type.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

15.8 Register description

The Watchdog Timer contains the registers shown in Table 268.

Table 268. Register overview: Watchdog timer (base address 0x4000 4000)

Name	Access	Address offset	Description	Reset Value ^[1]	Reference
MOD	R/W	0x000	Watchdog mode register. This register contains the basic mode and status of the Watchdog Timer.	0	Table 269
TC	R/W	0x004	Watchdog timer constant register. This 24-bit register determines the time-out value.	0xFF	Table 271
FEED	WO	0x008	Watchdog feed sequence register. Writing 0xAA followed by 0x55 to this register reloads the Watchdog timer with the value contained in WDTC.	NA	Table 272
TV	RO	0x00C	Watchdog timer value register. This 24-bit register reads out the current value of the Watchdog timer.	0xFF	Table 273
CLKSEL	R/W	0x010	Watchdog clock select register.	0	Table 273
WARNINT	R/W	0x014	Watchdog Warning Interrupt compare value.	0	Table 275
WINDOW	R/W	0x018	Watchdog Window compare value.	0xFF FFFF	Table 276

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

15.8.1 Watchdog mode register

The WDMOD register controls the operation of the Watchdog. Note that a watchdog feed must be performed before any changes to the WDMOD register take effect.

Table 269. Watchdog mode register (MOD - 0x4000 4000) bit description

Bit	Symbol	Value	Description	Reset value
0	WDEN		Watchdog enable bit. Once this bit has been written with a 1 it cannot be rewritten with a 0.	0
		0	The watchdog timer is stopped.	
		1	The watchdog timer is running.	
1	WDRESET		Watchdog reset enable bit. Once this bit has been written with a 1 it cannot be rewritten with a 0.	0
		0	A watchdog timeout will not cause a chip reset.	
		1	A watchdog timeout will cause a chip reset.	
2	WDTOF		Watchdog time-out flag. Set when the watchdog timer times out, by a feed error, or by events associated with WDPROTECT. Cleared by software. Causes a chip reset if WDRESET = 1.	0 (only after external reset)
3	WDINT		Warning interrupt flag. Set when the timer reaches the value in WDWARNINT. Cleared by software.	0

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

Table 269. Watchdog mode register (MOD - 0x4000 4000) bit description

Bit	Symbol	Value	Description	Reset value
4	WDPROTECT		Watchdog update mode. This bit can be set once by software and is only cleared by a reset.	0
		0	The watchdog time-out value (TC) can be changed at any time.	
		1	The watchdog time-out value (TC) can be changed only after the counter is below the value of WDWARNINT and WDWINDOW.	
5	LOCK		A 1 in this bit prevents disabling or powering down the clock source selected by bit 0 of the WDCLKSRC register and also prevents switching to a clock source that is disabled or powered down. This bit can be set once by software and is only cleared by any reset.	0
			Remark: If this bit is one and the WWDT clock source is the IRC when Deep-sleep or Power-down modes are entered, the IRC remains running thereby increasing power consumption in Deep-sleep mode and potentially preventing the part from entering Power-down mode correctly (see <u>Section 15.7</u>).	
31:6	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Once the **WDEN**, **WDPROTECT**, or **WDRESET** bits are set they can not be cleared by software. Both flags are cleared by an external reset or a Watchdog timer reset.

WDTOF The Watchdog time-out flag is set when the Watchdog times out, when a feed error occurs, or when PROTECT =1 and an attempt is made to write to the TC register. This flag is cleared by software writing a 0 to this bit.

WDINT The Watchdog interrupt flag is set when the Watchdog counter reaches the value specified by WARNINT. This flag is cleared when any reset occurs, and is cleared by software by writing a 0 to this bit.

In all power modes except Deep power-down mode, a Watchdog reset or interrupt can occur when the watchdog is running and has an operating clock source. The watchdog oscillator or the IRC can be selected to keep running in Sleep and Deep-sleep modes. In Power-down mode, only the watchdog oscillator is allowed. If a watchdog interrupt occurs in Sleep, Deep-sleep mode, or Power-down mode and the WWDT interrupt is enabled in the NVIC, the device will wake up. Note that in Deep-sleep and Power-down modes, the WWDT interrupt must be enabled in the STARTERP1 register in addition to the NVIC.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

Table 270. Watchdog operating modes selection

WDEN	WDRESET	Mode of Operation
0	X (0 or 1)	Debug/Operate without the Watchdog running.
1	0	Watchdog interrupt mode: the watchdog warning interrupt will be generated but watchdog reset will not.
		When this mode is selected, the watchdog counter reaching the value specified by WDWARNINT will set the WDINT flag and the Watchdog interrupt request will be generated.
1	1	Watchdog reset mode: both the watchdog interrupt and watchdog reset are enabled.
		When this mode is selected, the watchdog counter reaching the value specified by WDWARNINT will set the WDINT flag and the Watchdog interrupt request will be generated, and the watchdog counter reaching zero will reset the microcontroller. A watchdog feed prior to reaching the value of WDWINDOW will also cause a watchdog reset.

15.8.2 Watchdog Timer Constant register

The TC register determines the time-out value. Every time a feed sequence occurs the value in the TC is loaded into the Watchdog timer. The TC resets to 0x00 00FF. Writing a value below 0xFF will cause 0x00 00FF to be loaded into the TC. Thus the minimum time-out interval is $T_{WDCLK} \times 256 \times 4$.

If the WDPROTECT bit in WDMOD = 1, an attempt to change the value of TC before the watchdog counter is below the values of WDWARNINT and WDWINDOW will cause a watchdog reset and set the WDTOF flag.

Table 271. Watchdog Timer Constant register (TC - 0x4000 4004) bit description

Bit	Symbol	Description	Reset Value
23:0	COUNT	Watchdog time-out value.	0x00 00FF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.3 Watchdog Feed register

Writing 0xAA followed by 0x55 to this register will reload the Watchdog timer with the WDTC value. This operation will also start the Watchdog if it is enabled via the WDMOD register. Setting the WDEN bit in the WDMOD register is not sufficient to enable the Watchdog. A valid feed sequence must be completed after setting WDEN before the Watchdog is capable of generating a reset. Until then, the Watchdog will ignore feed errors.

After writing 0xAA to WDFEED, access to any Watchdog register other than writing 0x55 to WDFEED causes an immediate reset/interrupt when the Watchdog is enabled, and sets the WDTOF flag. The reset will be generated during the second PCLK following an incorrect access to a Watchdog register during a feed sequence.

It is good practise to disable interrupts around a feed sequence, if the application is such that some/any interrupt might result in rescheduling processor control away from the current task in the middle of the feed, and then lead to some other access to the WDT before control is returned to the interrupted task.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

Table 272. Watchdog Feed register (FEED - 0x4000 4008) bit description

Bit	Symbol	Description	Reset Value
7:0	FEED	Feed value should be 0xAA followed by 0x55.	NA
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.4 Watchdog Timer Value register

The WDTV register is used to read the current value of Watchdog timer counter.

When reading the value of the 24 bit counter, the lock and synchronization procedure takes up to 6 WDCLK cycles plus 6 PCLK cycles, so the value of WDTV is older than the actual value of the timer when it's being read by the CPU.

Table 273. Watchdog Timer Value register (TV - 0x4000 400C) bit description

Bit	Symbol	Description	Reset Value
23:0	COUNT	Counter timer value.	0x00 00FF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.5 Watchdog Clock Select register

Table 274. Watchdog Clock Select register (CLKSEL - 0x4000 4010) bit description

Bit	Symbol	Value	Description	Reset Value
0	CLKSEL		Selects source of WDT clock	0
		0	IRC	
		1	Watchdog oscillator (WDOSC)	
30:1	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31	LOCK		If this bit is set to one writing to this register does not affect bit 0. The clock source can only be changed by first clearing this bit, then writing the new value of bit 0.	0

15.8.6 Watchdog Timer Warning Interrupt register

The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter matches the value defined by WDWARNINT, an interrupt will be generated after the subsequent WDCLK.

A match of the watchdog timer counter to WDWARNINT occurs when the bottom 10 bits of the counter have the same value as the 10 bits of WARNINT, and the remaining upper bits of the counter are all 0. This gives a maximum time of 1,023 watchdog timer counts (4,096 watchdog clocks) for the interrupt to occur prior to a watchdog event. If WARNINT is 0, the interrupt will occur at the same time as the watchdog event.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

Table 275. Watchdog Timer Warning Interrupt register (WARNINT - 0x4000 4014) bit description

Bit	Symbol	Description	Reset Value
9:0	WARNINT	Watchdog warning interrupt compare value.	0
31:10	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

15.8.7 Watchdog Timer Window register

The WDWINDOW register determines the highest WDTV value allowed when a watchdog feed is performed. If a feed sequence occurs when WDTV is greater than the value in WDWINDOW, a watchdog event will occur.

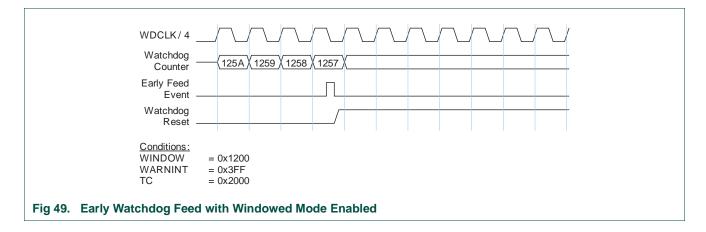
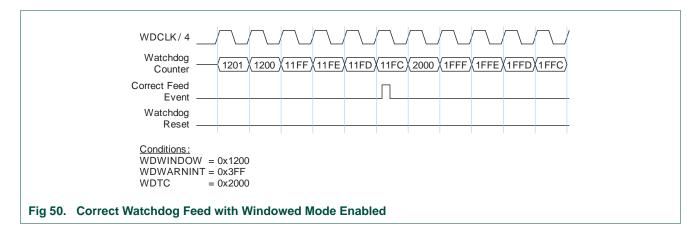
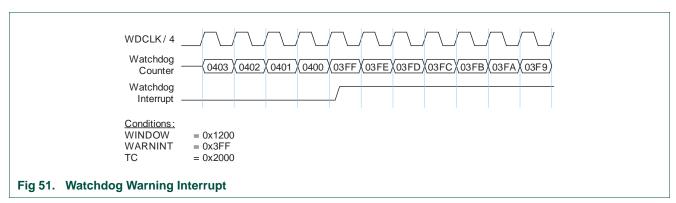

WDWINDOW resets to the maximum possible WDTV value, so windowing is not in effect.

Table 276. Watchdog Timer Window register (WINDOW - 0x4000 4018) bit description


Bit	Symbol	Description	Reset Value
23:0	WINDOW	Watchdog window value.	0xFF FFFF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA


15.9 Watchdog timing examples

The following figures illustrate several aspects of Watchdog Timer operation.

Chapter 15: LPC1315/16/17/45/46/47 Windowed Watchdog Timer

UM10462

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Rev. 4 — 12 March 2013

User manual

16.1 How to read this chapter

CT16B0/1 are available on all LPC1315/16/17/45/46/47 parts. The number of capture inputs depends on package size. See Chapter 8.

16.2 Basic configuration

The CT16B0/1 counter/timers are configured through the following registers:

- Pins: The CT16B0/1 pins must be configured in the IOCON register block.
- Power: In the SYSAHBCLKCTRL register, set bit 7 and 8 in Table 19.
- The peripheral clock is determined by the system clock (see Table 18).

Remark: The register offsets and bit offsets for capture channel 1 are different on timers CT16B0 and CT16B1. The affected registers are:

- Section 16.7.1 "Interrupt Register"
- Section 16.7.8 "Capture Control Register"
- Section 16.7.9 "Capture Registers"
- Section 16.7.11 "Count Control Register"

16.3 Features

- Two 16-bit counter/timers with a programmable 16-bit prescaler.
- Counter or timer operation
- Two 16-bit capture channels that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- The timer and prescaler may be configured to be cleared on a designated capture
 event. This feature permits easy pulse-width measurement by clearing the timer on
 the leading edge of an input pulse and capturing the timer value on the trailing edge.
- Four 16-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Two external outputs corresponding to match registers with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

 For each timer, up to four match registers can be configured as PWM allowing to use up to two match outputs as single edge controlled PWM outputs.

16.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- Free running timer
- Pulse Width Modulator via match outputs

16.5 General description

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, up to three match registers (up to two match registers for CT16B1) can be used to provide a single-edge controlled PWM output on the match output pins. It is recommended to use the match registers that are not pinned out to control the PWM cycle length.

16.6 Pin description

Table 277 gives a brief summary of each of the counter/timer related pins.

Table 277. Counter/timer pin description

Pin	Туре	Description
CT16B0_CAP[1:0] CT16B1_CAP[1:0]	Input	Capture Signal: A transition on a capture pin can be configured to load the Capture Register with the value in the counter/timer and optionally generate an interrupt.
		The Counter/Timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see Section 16.7.11.
CT16B0_MAT[2:0] CT16B1_MAT[1:0]	Output	External Match Outputs of CT16B0/1: When a match register of CT16B0/1 (MR1:0) equals the timer counter (TC), this output can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control Register (PWMCON) control the functionality of this output.

16.7 Register description

The 16-bit counter/timer0 contains the registers shown in <u>Table 278</u> and the 16-bit counter/timer1 contains the registers shown in <u>Table 279</u>. More detailed descriptions follow.

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 278. Register overview: 16-bit counter/timer 0 CT16B0 (base address 0x4000 C000)

Name	Access	Address offset	Description	Reset value[1]	Reference
IR	R/W	0x000	Interrupt Register. The IR can be written to clear interrupts. The IR can be read to identify which of eight possible interrupt sources are pending.	0	Table 280
TCR	R/W	0x004	Timer Control Register. The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0	Table 282
TC	R/W	0x008	Timer Counter. The 16-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0	Table 283
PR	R/W	0x00C	Prescale Register. When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0	Table 284
PC	R/W	0x010	Prescale Counter. The 16-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0	Table 285
MCR	R/W	0x014	Match Control Register. The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0	Table 286
MR0	R/W	0x018	Match Register 0. MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0	Table 287
MR1	R/W	0x01C	Match Register 1. See MR0 description.	0	Table 287
MR2	R/W	0x020	Match Register 2. See MR0 description.	0	Table 287
MR3	R/W	0x024	Match Register 3. See MR0 description.	0	Table 287
CCR	R/W	0x028	Capture Control Register. The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0	Table 288
CR0	RO	0x02C	Capture Register 0. CR0 is loaded with the value of TC when there is an event on the CT16B0_CAP0 input.	0	Table 290
-	-	0x030	Reserved.	-	-
CR1	RO	0x034	Capture Register 1. CR1 is loaded with the value of TC when there is an event on the CT16B0_CAP1 input.	-	Table 291
-	-	0x038	Reserved.	-	-
EMR	R/W	0x03C	External Match Register. The EMR controls the match function and the external match pins CT16B0_MAT[1:0] and CT16B1_MAT[1:0].	0	Table 293
-	-	0x040 - 0x06C	Reserved.	-	-
CTCR	R/W	0x070	Count Control Register. The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0	Table 296
PWMC	R/W	0x074	PWM Control Register. The PWMCON enables PWM mode for the external match pins CT16B0_MAT[1:0] and CT16B1_MAT[1:0].	0	<u>Table 297</u>

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 279. Register overview: 16-bit counter/timer 1 CT16B1 (base address 0x4001 0000)

			To-bit Counter/timer T C T Tob T (base address 0x400 T 0000)		
Name	Access	Address	Description	Reset value ^[1]	Reference
IR	R/W	0x000	Interrupt Register. The IR can be written to clear interrupts. The IR can be read to identify which of eight possible interrupt sources are pending.	0	Table 280
TCR	R/W	0x004	Timer Control Register. The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0	Table 282
TC	R/W	0x008	Timer Counter. The 16-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0	Table 283
PR	R/W	0x00C	Prescale Register. When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0	Table 284
PC	R/W	0x010	Prescale Counter. The 16-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0	Table 285
MCR	R/W	0x014	Match Control Register. The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0	Table 286
MR0	R/W	0x018	Match Register 0. MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0	Table 287
MR1	R/W	0x01C	Match Register 1. See MR0 description.	0	Table 287
MR2	R/W	0x020	Match Register 2. See MR0 description.	0	Table 287
MR3	R/W	0x024	Match Register 3. See MR0 description.	0	Table 287
CCR	R/W	0x028	Capture Control Register. The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0	Table 288
CR0	RO	0x02C	Capture Register 0. CR0 is loaded with the value of TC when there is an event on the CT16B1_CAP0 input.	0	Table 290
CR1	RO	0x030	Capture Register 1. CR1 is loaded with the value of TC when there is an event on the CT16B1_CAP1 input.	0	<u>Table 292</u>
-	-	0x034	Reserved.	-	-
-	-	0x038	Reserved.	-	-
EMR	R/W	0x03C	External Match Register. The EMR controls the match function and the external match pins CT16B0_MAT[2:0] and CT16B1_MAT[1:0].	0	Table 293
-	-	0x040 - 0x06C	Reserved.	-	-
CTCR	R/W	0x070	Count Control Register. The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0	Table 295
PWMC	R/W	0x074	PWM Control Register. The PWMCON enables PWM mode for the external match pins CT16B0_MAT[1:0] and CT16B1_MAT[1:0].	0	Table 297

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

16.7.1 Interrupt Register

The Interrupt Register consists of four bits for the match interrupts and two bits for the capture interrupts. If an interrupt is generated then the corresponding bit in the IR will be HIGH. Otherwise, the bit will be LOW. Writing a logic one to the corresponding IR bit will reset the interrupt. Writing a zero has no effect.

Remark: The bit positions for the CAP1 interrupts are different for counter/timer CT16B0 (CAP1 interrupt on bit 6, <u>Table 280</u>) and counter/timer CT16B1 (CAP1 interrupt on bit 5, <u>Table 281</u>).

Table 280. Interrupt Register (IR, address 0x4000 C000 (CT16B0)) bit description

Bit	Symbol	Description	Reset value
0	MR0INT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CR0INT	Interrupt flag for capture channel 0 event.	0
5	-	Reserved.	-
6	CR1INT	Interrupt flag for capture channel 1 event.	0
31:7	-	Reserved	-

Table 281. Interrupt Register (IR, address 0x4001 0000 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
0	MROINT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CR0INT	Interrupt flag for capture channel 0 event.	0
5	CR1INT	Interrupt flag for capture channel 1 event.	0
6	-	Reserved.	-
31:7	-	Reserved	-

16.7.2 Timer Control Register

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 282. Timer Control Register (TCR, address 0x4000 C004 (CT16B0) and 0x4001 0004 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	CEN	EN Co	Counter enable.	0
		0	The counters are disabled.	
		1	The Timer Counter and Prescale Counter are enabled for counting.	

314 of 416

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 282. Timer Control Register (TCR, address 0x4000 C004 (CT16B0) and 0x4001 0004 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
1	CRST		Counter reset.	0
		0	Do nothing.	
		1	The Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	
31: 2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

16.7.3 Timer Counter

The 16-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count. Unless it is reset before reaching its upper limit, the TC will count up to the value 0x0000 FFFF and then wrap back to the value 0x0000 0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

Table 283: Timer counter registers (TC, address 0x4000 C008 (CT16B0) and 0x4001 0008 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	TC	Timer counter value.	0
31:16	-	Reserved.	-

16.7.4 Prescale Register

The 16-bit Prescale Register specifies the maximum value for the Prescale Counter.

Table 284: Prescale registers (PR, address 0x4000 C00C (CT16B0) and 0x4001 000C (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	PCVAL	Prescale value.	0
31:16	-	Reserved.	-

16.7.5 Prescale Counter register

The 16-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, ...

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 285: Prescale counter registers (PC, address 0x4000 C010 (CT16B0) and 0x4001 0010 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	PC	Prescale counter value.	0
31:16	-	Reserved.	-

16.7.6 Match Control Register

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in <u>Table 286</u>.

Table 286. Match Control Register (MCR, address 0x4000 C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit description

Bit	Symbol	Value	Description	Rese
	-			value
0	MR0I		Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
1	MR0R		Reset on MR0: the TC will be reset if MR0 matches it.	0
		1	Enabled	
		0	Disabled	
2	MR0S		Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		1	Enabled	
		0	Disabled	
3	MR1I		Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
4	MR1R		Reset on MR1: the TC will be reset if MR1 matches it.	0
		1	Enabled	
		0	Disabled	
5	MR1S		Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		1	Enabled	
		0	Disabled	
6	MR2I		Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
7	MR2R		Reset on MR2: the TC will be reset if MR2 matches it.	0
		1	Enabled	
		0	Disabled	

UM10462 **NXP Semiconductors**

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 286. Match Control Register (MCR, address 0x4000 C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit description ...continued

		iniada		
Bit	Symbol	Value	Description	Rese value
8	MR2S		Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		1	Enabled	
		0	Disabled	
9	MR3I		Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
10	MR3R		Reset on MR3: the TC will be reset if MR3 matches it.	0
		1	Enabled	
		0	Disabled	
11	MR3S		Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		1	Enabled	
		0	Disabled	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

16.7.7 Match Registers

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

Table 287: Match registers (MR[0:3], addresses 0x4000 C018 (MR0) to 0x4000 C024 (MR3) (CT16B0) and 0x4001 0018 (MR0) to 0x4001 0024 (MR3) (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	MATCH	Timer counter match value.	0
31:16	-	Reserved.	-

16.7.8 Capture Control Register

The Capture Control Register is used to control whether the Capture Register is loaded with the value in the Counter/timer when the capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the description below, n represents the Timer number, 0 or 1.

Remark: The bit positions for the CAP1 channel control bits are different for counter/timers CT16B0 (bits 8:6, Table 288) and CT16B1 (bits 5:3, Table 289).

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 288. Capture Control Register (CCR, address 0x4000 C028 (CT16B0)) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE		Capture on CT16B0_CAP0 rising edge: a sequence of 0 then 1 on CT16B0_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
1	CAP0FE		Capture on CT16B0_CAP0 falling edge: a sequence of 1 then 0 on CT16B0_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
2	CAP0I		Interrupt on CT16B0_CAP0 event: a CR0 load due to a CT16B0_CAP0 event will generate an interrupt.	0
		1	Enabled.	
		0	Disabled.	
3	-		Reserved.	-
4	-		Reserved.	-
5	-		Reserved.	-
6	CAP1RE		Capture on CT16B0_CAP1 rising edge: a sequence of 0 then 1 on CT16B0_CAP1 will cause CR1 to be loaded with the contents of TC. This bit is reserved for 16-bit timer1 CT16B1.	0
		1	Enabled.	
		0	Disabled.	
7	CAP1FE		Capture on CT16B0_CAP1 falling edge: a sequence of 1 then 0 on CT16B0_CAP1 will cause CR1 to be loaded with the contents of TC. This bit is reserved for 16-bit timer1 CT16B1.	0
		1	Enabled.	
		0	Disabled.	
8	CAP1I		Interrupt on CT16B0_CAP1 event: a CR1 load due to a CT16B0_CAP1 event will generate an interrupt. This bit is reserved for 16-bit timer1 CT16B1.	0
		1	Enabled.	
		0	Disabled.	
31:9	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 289. Capture Control Register (CCR, address 0x4001 0028 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reservalue
0	CAP0RE		Capture on CT16B1_CAP0 rising edge: a sequence of 0 then 1 on CT16B1_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
1	CAP0FE		Capture on CT16B1_CAP0 falling edge: a sequence of 1 then 0 on CT16B1_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 289. Capture Control Register (CCR, address 0x4001 0028 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value	
2	CAP0I		Interrupt on CT16B1_CAP0 event: a CR0 load due to a CT16B1_CAP0 event will generate an interrupt.	0	
		1	Enabled.		
		0	Disabled.		
3	CAP1RE		Capture on CT16B1_CAP1 rising edge: a sequence of 0 then 1 on CT16B1_CAP1 will cause CR1 to be loaded with the contents of TC.	0	
		1	Enabled.		
		0	Disabled.		
4	CAP1FE		Capture on CT16B1_CAP1 falling edge: a sequence of 1 then 0 on CT16B1_CAP1 will cause CR1 to be loaded with the contents of TC.	0	
		1	Enabled.		
		0	Disabled.		
5	CAP1I		Interrupt on CT16B1_CAP1 event: a CR1 load due to a CT16B0_CAP1 event will generate an interrupt.	0	
		1	Enabled.		
		0	Disabled.		
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

16.7.9 Capture Registers

Each Capture register is associated with a device pin and may be loaded with the counter/timer value when a specified event occurs on that pin. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

Remark: The location of the CR1 register relative to the timer base address is different for CT16B0 (CR1 at +0x034, <u>Table 291</u>) and CT16B1 (CR1 at +0x030, <u>Table 292</u>).

Table 290: Capture register 0 (CR0, address 0x4000 C02C (CT16B0) and address 0x4001 002C (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	CAP	Timer counter capture value.	0
31:16	-	Reserved.	-

Table 291: Capture register 1 (CR1, address 0x4000 C034 (CT16B0)) bit description

Bit	Symbol	Description	Reset value
15:0	CAP	Timer counter capture value.	0
31:16	-	Reserved.	-

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 292: Capture register 1 (CR1, address 0x4001 0030 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	CAP	Timer counter capture value.	0
31:16	-	Reserved.	-

16.7.10 External Match Register

The External Match Register provides both control and status of the external match pins CT16Bn_MAT[1:0].

If the match outputs are configured as PWM output, the function of the external match registers is determined by the PWM rules (<u>Section 16.7.13 "Rules for single edge</u> controlled PWM outputs" on page 325).

Table 293. External Match Register (EMR, address 0x4000 C03C (CT16B0) and 0x4001 003C (CT16B1)) bit description

	description				
Bit	Symbol	Value	Description	Reset value	
0	ЕМО		External Match 0. This bit reflects the state of output CT16B0_MAT0/CT16B1_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT16B0_MAT0/CT16B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0	
1	EM1		External Match 1. This bit reflects the state of output CT16B0_MAT1/CT16B1_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT16B0_MAT0/CT16B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0	
2	EM2		External Match 2. This bit reflects the state of match channel 2. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output.	0	
3	EM3		External Match 3. This bit reflects the state of output of match channel 3. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output.	0	
5:4	EMC0		External Match Control 0. Determines the functionality of External Match 0. <u>Table 294</u> shows the encoding of these bits.	00	
		0x0	Do Nothing.		
		0x1	Clear the corresponding External Match bit/output to 0 (CT16Bn_MAT0 pin is LOW if pinned out).		
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bn_MAT0 pin is HIGH if pinned out).		
		0x3	Toggle the corresponding External Match bit/output.		

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 293. External Match Register (EMR, address 0x4000 C03C (CT16B0) and 0x4001 003C (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
7:6	EMC1		External Match Control 1. Determines the functionality of External Match 1.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT16Bn_MAT1 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bn_MAT1 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
9:8	EMC2		External Match Control 2. Determines the functionality of External Match 2.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT16Bn_MAT2 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bn_MAT2 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
11:	EMC3		External Match Control 3. Determines the functionality of External Match 3.	00
10		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT16Bn_MAT3 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bn_MAT3 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
31: 12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

Table 294. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
00	Do Nothing.
01	Clear the corresponding External Match bit/output to 0 (CT16Bn_MATm pin is LOW if pinned out).
10	Set the corresponding External Match bit/output to 1 (CT16Bn_MATm pin is HIGH if pinned out).
11	Toggle the corresponding External Match bit/output.

16.7.11 Count Control Register

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the pin and edges for counting.

When Counter Mode is chosen as a mode of operation, the CAP input (selected by the CTCR bits 3:2) is sampled on every rising edge of the PCLK clock. After comparing two consecutive samples of this CAP input, one of the following four events is recognized: rising edge, falling edge, either of edges or no changes in the level of the selected CAP input. Only if the identified event occurs, and the event corresponds to the one selected by bits 1:0 in the CTCR register, will the Timer Counter register be incremented.

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Effective processing of the externally supplied clock to the counter has some limitations. Since two successive rising edges of the PCLK clock are used to identify only one edge on the CAP selected input, the frequency of the CAP input cannot exceed one half of the PCLK clock. Consequently, the duration of the HIGH/LOW levels on the same CAP input in this case can not be shorter than 1/PCLK.

Bits 7:4 of this register are also used to enable and configure the capture-clears-timer feature. This feature allows for a designated edge on a particular CAP input to reset the timer to all zeros. Using this mechanism to clear the timer on the leading edge of an input pulse and performing a capture on the trailing edge, permits direct pulse-width measurement using a single capture input without the need to perform a subtraction operation in software.

Remark: The bit positions for the CAP1 channel count input select (CIS) and edge select bits (SELCC) are different for counter/timers CT16B0 (<u>Table 295</u>) and CT16B1 (<u>Table 296</u>).

Table 295. Count Control Register (CTCR, address 0x4000 C070 (CT16B0)) bit description

Bit	Symbol	Value	Description	Reset value
1:0	СТМ		Counter/Timer Mode. This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	0
			Remark: If Counter mode is selected in the CTCR, bits 2:0 in the Capture Control Register (CCR) must be programmed as 000.	
		0x0	Timer Mode: every rising PCLK edge	
		0x1	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.	
		0x2	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.	
		0x3	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.	
3:2	CIS		Count Input Select. In counter mode (when bits 1:0 in this register are not 00), these bits select which CAP pin or comparator output is sampled for clocking. Values 0x1 and 0x3 are reserved.	0
		0x0	CT16B0_CAP0.	
		0x1	Reserved.	
		0x2	CT16B0_CAP1.	
4	ENCC		Setting this bit to 1 enables clearing of the timer and the prescaler when the capture-edge event specified in bits 7:5 occurs.	0

322 of 416

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 295. Count Control Register (CTCR, address 0x4000 C070 (CT16B0)) bit description

Bit	Symbol	Value	Description	Reset value									
7:5	SELCC		Edge select. When bit 4 is 1, these bits select which capture input edge will cause the timer and prescaler to be cleared. These bits have no effect when bit 4 is low. Values 0x2 to 0x3 and 0x6 to 0x7 are reserved.	0									
		0x0	Rising Edge of CT16B0_CAP0 clears the timer (if bit 4 is set).										
											0x1	Falling Edge of CT16B0_CCAP0 clears the timer (if bit 4 is set).	
				0x2	Reserved.								
		0x3	Reserved.										
		0x4	Rising Edge of CT16B0_CAP1 clears the timer (if bit 4 is set).										
		0x5	Falling Edge of CT16B0_CAP1 clears the timer (if bit 4 is set).										
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-									

Table 296. Count Control Register (CTCR, address 0x4001 0070 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
1:0	CTM		Counter/Timer Mode. This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	0
			Remark: If Counter mode is selected in the CTCR, bits 2:0 in the Capture Control Register (CCR) must be programmed as 000.	value 0 or os 0 3
		0x0	Timer Mode: every rising PCLK edge	
		0x1	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.	
		0x2	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.	
		0x3	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.	
3:2	CIS		Count Input Select. In counter mode (when bits 1:0 in this register are not 00), these bits select which CAP pin or comparator output is sampled for clocking. Values 0x2 to 0x3 are reserved.	0
		0x0	CT16B1_CAP0.	
		0x1	CT16B1_CAP1.	
4	ENCC		Setting this bit to 1 enables clearing of the timer and the prescaler when the capture-edge event specified in bits 7:5 occurs.	0

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 296. Count Control Register (CTCR, address 0x4001 0070 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value	
7:5	SELCC		When bit 4 is a 1, these bits select which capture input edge will cause the timer and prescaler to be cleared. These bits have no effect when bit 4 is low. Values 0x6 to 0x7 are reserved.	0	
		0x0	Rising Edge of CT16B1_CAP0 clears the timer (if bit 4 is set).		
		0x1	Falling Edge of CT16B1_CAP0 clears the timer (if bit 4 is set).		
		0x2	Rising Edge of CT16B1_CAP1 clears the timer (if bit 4 is set).		
		0x3	Falling Edge of CT16B1_CAP1 clears the timer (if bit 4 is set).		
		0x4	Reserved.		
		0x5	Reserved.		
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-	

16.7.12 PWM Control register

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

For each timer, a maximum of three single edge controlled PWM outputs can be selected on the CT16Bn_MAT[1:0] outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Table 297. PWM Control Register (PWMC, address 0x4000 C074 (CT16B0) and 0x4001 0074 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	PWMEN0		PWM mode enable for channel0.	0
		0	CT16Bn_MAT0 is controlled by EM0.	
		1	PWM mode is enabled for CT16Bn_MAT0.	
1	PWMEN1		PWM mode enable for channel1.	0
		0	CT16Bn_MAT01 is controlled by EM1.	
		1	PWM mode is enabled for CT16Bn_MAT1.	
2	PWMEN2		PWM mode enable for channel2.	0
		0	CT16Bn_MAT2 is controlled by EM2.	
		1	PWM mode is enabled for CT16Bn_MAT2.	

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

Table 297.	PWM Control Register (PWMC, address 0x4000	C074 (CT16B0) and 0x4001 0074
	(CT16B1)) bit description	

	•	•	-	
Bit	Symbol	Value	Description	Reset value
3	PWMEN3		PWM mode enable for channel3.	0
		0	CT16Bn_MAT3 is controlled by EM3.	
		1	PWM mode is enabled for CT16Bn_MAT3.	
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

16.7.13 Rules for single edge controlled PWM outputs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared on the next start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick. Therefore, the PWM output will always consist of a one clock tick wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to perform as PWM outputs, the timer reset (MRnR) and timer stop (MRnS) bits in the Match Control Register MCR must be set to zero except for the match register setting the PWM cycle length. For this register, set the MRnR bit to one to enable the timer reset when the timer value matches the value of the corresponding match register.

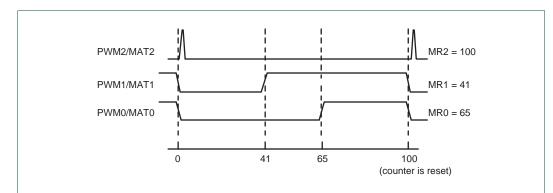
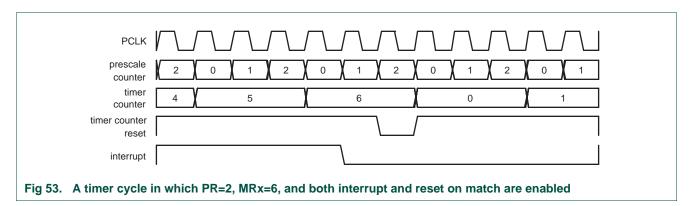
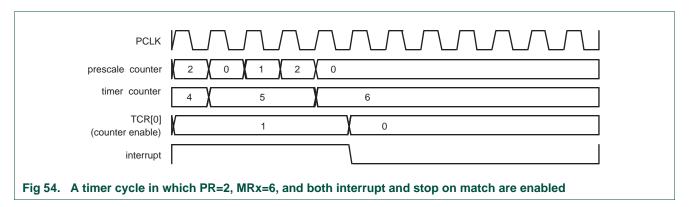


Fig 52. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR2) and MAT1:0 enabled as PWM outputs by the PWMC register.

User manual

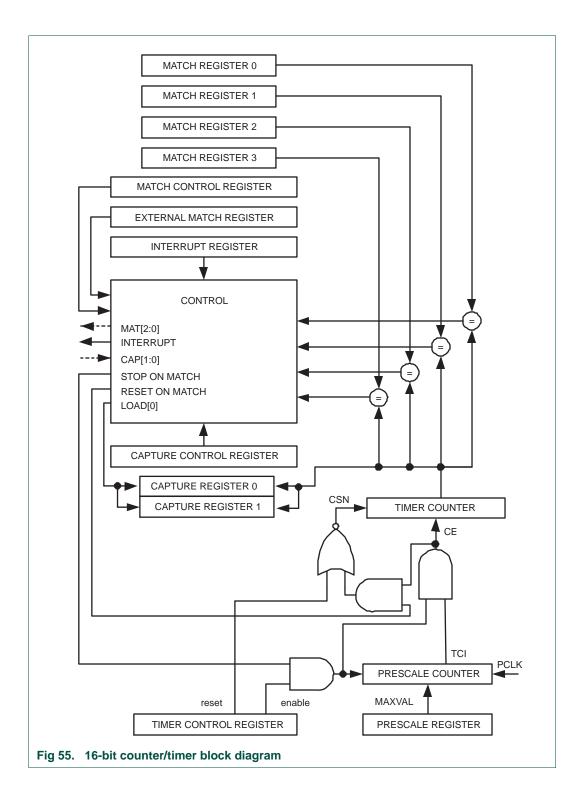

UM10462 **NXP Semiconductors**


Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

16.8 Example timer operation

Figure 53 shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

Figure 54 shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.



16.9 Architecture

The block diagram for counter/timer0 and counter/timer1 is shown in Figure 55.

UM10462 NXP Semiconductors

Chapter 16: LPC1315/16/17/45/46/47 16-bit counter/timers CT16B0/1

UM10462

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Rev. 4 — 12 March 2013

User manual

17.1 How to read this chapter

CT32B0/1 are available on all LPC1315/16/17/45/46/47 parts. The CT32B1_CAP1 input is only available on the TFBGA48 and LQFP64 packages. The CT32B0_CAP1 input is only available on LQFP48, TFBGA48, and LQFP64 packages. For all other packages, the registers controlling the CT32B1_CAP1 and CT32B0_CAP1 inputs are reserved.

17.2 Basic configuration

The CT32B0/1 counter/timers are configured through the following registers:

- Pins: The CT32B0/1 pins must be configured in the IOCON register block.
- Power: In the SYSAHBCLKCTRL register, set bit 9 and 10 in <u>Table 19</u>.
- The peripheral clock is determined by the system clock (see <u>Table 18</u>).

Remark: The register offsets and bit offsets for capture channel 1 are different on timers CT32B0 and CT32B1. The affected registers are:

- Section 17.7.1 "Interrupt Register"
- Section 17.7.8 "Capture Control Register"
- Section 17.7.9 "Capture Registers"
- Section 17.7.11 "Count Control Register"

17.3 Features

- Two 32-bit counter/timers with a programmable 32-bit prescaler.
- Counter or timer operation.
- Four 32-bit capture channels that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.
- Four 32-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Four external outputs corresponding to match registers with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

- Do nothing on match.
- For each timer, up to four match registers can be configured as PWM allowing to use up to three match outputs as single edge controlled PWM outputs.

17.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- · Free running timer
- Pulse Width Modulator via match outputs

17.5 General description

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, three match registers can be used to provide a single-edge controlled PWM output on the match output pins. One match register is used to control the PWM cycle length.

17.6 Pin description

Table 298 gives a brief summary of each of the counter/timer related pins.

Table 298. Counter/timer pin description

Pin	Туре	Description
CT32B0_CAP[1:0] CT32B1_CAP[1:0]	Input	Capture Signals: A transition on a capture pin can be configured to load one of the Capture Registers with the value in the Timer Counter and optionally generate an interrupt.
		The counter/timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see Section 17.7.11 "Count Control Register" on page 339.
CT32B0_MAT[3:0] CT32B1_MAT[3:0]	Output	External Match Output of CT32B0/1: When a match register MR3:0 equals the timer counter (TC), this output can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control register (PWMCON) control the functionality of this output.

17.7 Register description

32-bit counter/timer0 contains the registers shown in <u>Table 299</u> and 32-bit counter/timer1 contains the registers shown in <u>Table 300</u>. More detailed descriptions follow.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 299. Register overview: 32-bit counter/timer 0 CT32B0 (base address 0x4001 4000)

Name	Access	Address offset	Description	Reset value[1]	Reference
IR	R/W	0x000	Interrupt Register. The IR can be written to clear interrupts. The IR can be read to identify which of eight possible interrupt sources are pending.	0	Table 301
TCR	R/W	0x004	Timer Control Register. The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0	Table 303
TC	R/W	0x008	Timer Counter. The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0	Table 304
PR	R/W	0x00C	Prescale Register. When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0	Table 305
PC	R/W	0x010	Prescale Counter. The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0	Table 306
MCR	R/W	0x014	Match Control Register. The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0	Table 307
MR0	R/W	0x018	Match Register 0. MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0	Table 308
MR1	R/W	0x01C	Match Register 1. See MR0 description.	0	Table 308
MR2	R/W	0x020	Match Register 2. See MR0 description.	0	Table 308
MR3	R/W	0x024	Match Register 3. See MR0 description.	0	Table 308
CCR	R/W	0x028	Capture Control Register. The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0	Table 309
CR0	RO	0x02C	Capture Register 0. CR0 is loaded with the value of TC when there is an event on the CT32B0_CAP0 input.	0	Table 311
	-	0x030	Reserved	-	-
CR1	-	0x034	Capture Register 1. CR1 is loaded with the value of TC when there is an event on the CT32B0_CAP1 input.	-	Table 312
-	-	0x038	Reserved.	-	-
EMR	R/W	0x03C	External Match Register. The EMR controls the match function and the external match pins CT32Bn_MAT[3:0].	0	Table 314
-	-	0x040 - 0x06C	Reserved.	-	-
CTCR	R/W	0x070	Count Control Register. The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0	Table 316
PWMC	R/W	0x074	PWM Control Register. The PWMCON enables PWM mode for the external match pins CT32Bn_MAT[3:0].	0	Table 318

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 300. Register overview: 32-bit counter/timer 1 CT32B1 (base address 0x4001 8000)

Name	Access	Address offset	Description	Reset value[1]	Reference
IR	R/W	0x000	Interrupt Register. The IR can be written to clear interrupts. The IR can be read to identify which of eight possible interrupt sources are pending.	0	Table 302
TCR	R/W	0x004	Timer Control Register. The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0	Table 303
TC	R/W	0x008	Timer Counter. The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0	Table 304
PR	R/W	0x00C	Prescale Register. When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0	Table 305
PC	R/W	0x010	Prescale Counter. The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0	Table 306
MCR	R/W	0x014	Match Control Register. The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0	Table 307
MR0	R/W	0x018	Match Register 0. MR0 can be enabled through the MCR to reset the TC, stop both the TC and PC, and/or generate an interrupt every time MR0 matches the TC.	0	Table 308
MR1	R/W	0x01C	Match Register 1. See MR0 description.	0	Table 308
MR2	R/W	0x020	Match Register 2. See MR0 description.	0	Table 308
MR3	R/W	0x024	Match Register 3. See MR0 description.	0	Table 308
CCR	R/W	0x028	Capture Control Register. The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0	Table 310
CR0	RO	0x02C	Capture Register 0. CR0 is loaded with the value of TC when there is an event on the CT32B1_CAP0 input.	0	Table 311
CR1	RO	0x030	Capture Register 1. CR1 is loaded with the value of TC when there is an event on the CT32B1_CAP1 input.	0	Table 313
-	-	0x034	Reserved.	-	-
-	-	0x038	Reserved.	-	-
EMR	R/W	0x03C	External Match Register. The EMR controls the match function and the external match pins CT32Bn_MAT[3:0].	0	<u>Table 314</u>
-	-	0x040 - 0x06C	Reserved.	-	-
CTCR	R/W	0x070	Count Control Register. The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0	Table 317
PWMC	R/W	0x074	PWM Control Register. The PWMCON enables PWM mode for the external match pins CT32Bn_MAT[3:0].	0	Table 318

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

17.7.1 Interrupt Register

The Interrupt Register consists of four bits for the match interrupts and four bits for the capture interrupts. If an interrupt is generated then the corresponding bit in the IR will be HIGH. Otherwise, the bit will be LOW. Writing a logic one to the corresponding IR bit will reset the interrupt. Writing a zero has no effect.

Remark: The bit positions for the CAP1 interrupts are different for counter/timer CT32B0 (CAP1 interrupt on bit 6, <u>Table 301</u>) and counter/timer CT32B1 (CAP1 interrupt on bit 5, <u>Table 302</u>).

Table 301: Interrupt Register (IR, address 0x4001 4000 (CT32B0)) bit description

Bit	Symbol	Description	Reset value
0	MR0INT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CR0INT	Interrupt flag for capture channel 0 event.	0
5	-	Reserved,	-
6	CR1INT	Interrupt flag for capture channel 1 event.	0
31:7	-	Reserved	-

Table 302: Interrupt Register (IR, address 0x4001 8000 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
0	MR0INT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CROINT	Interrupt flag for capture channel 0 event.	0
5	CR1INT	Interrupt flag for capture channel 1 event.	0
31:6	-	Reserved	-

17.7.2 Timer Control Register

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 303: Timer Control Register (TCR, address 0x4001 4004 (CT32B0) and 0x4001 8004 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value	
0	CEN	CEN 0		Counter enable.	0
			0 The counters are disabled.	The counters are disabled.	
		1	The Timer Counter and Prescale Counter are enabled for counting.		

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 303: Timer Control Register (TCR, address 0x4001 4004 (CT32B0) and 0x4001 8004 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
1	CRST		Counter reset.	0
		0	Do nothing.	
		1	The Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	
31:2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

17.7.3 Timer Counter registers

The 32-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count. Unless it is reset before reaching its upper limit, the TC will count up through the value 0xFFFF FFFF and then wrap back to the value 0x0000 0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

Table 304: Timer counter registers (TC, address 0x4001 4008 (CT32B0) and 0x4001 8008 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	TC	Timer counter value.	0

17.7.4 Prescale Register

The 32-bit Prescale Register specifies the maximum value for the Prescale Counter.

Table 305: Prescale registers (PR, address 0x4001 400C (CT32B0) and 0x4001 800C (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	PCVAL	Prescaler value.	0

17.7.5 Prescale Counter Register

The 32-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

Table 306: Prescale registers (PC, address 0x4001 4010 (CT32B0) and 0x4001 8010 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	PC	Prescale counter value.	0

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

17.7.6 Match Control Register

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in Table 307.

Table 307: Match Control Register (MCR, address 0x4001 4014 (CT32B0) and 0x4001 8014 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	MR0I		Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
1	MR0R		Reset on MR0: the TC will be reset if MR0 matches it.	0
		1	Enabled	
		0	Disabled	
2	MR0S		Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		1	Enabled	
		0	Disabled	
3	MR1I		Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
4	MR1R		Reset on MR1: the TC will be reset if MR1 matches it.	0
		1	Enabled	
		0	Disabled	
5	MR1S		Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		1	Enabled	
		0	Disabled	
6	MR2I		Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
7	MR2R		Reset on MR2: the TC will be reset if MR2 matches it.	0
		1	Enabled	
		0	Disabled	
8	MR2S		Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		1	Enabled	
		0	Disabled	
9	MR3I		Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
10	MR3R		Reset on MR3: the TC will be reset if MR3 matches it.	0
		1	Enabled	
		0	Disabled	

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 307: Match Control Register (MCR, address 0x4001 4014 (CT32B0) and 0x4001 8014 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
11	MR3S		Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		1	Enabled	
		0	Disabled	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

17.7.7 Match Registers

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

Table 308: Match registers (MR[0:3], addresses 0x4001 4018 (MR0) to 0x4001 4024 (MR3) (CT32B0) and 0x4001 8018 (MR0) to 0x40018024 (MR3) (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	MATCH	Timer counter match value.	0

17.7.8 Capture Control Register

The Capture Control Register is used to control whether one of the four Capture Registers is loaded with the value in the Timer Counter when the capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the description below, "n" represents the Timer number, 0 or 1.

Remark: The bit positions for the CAP1 channel control bits are different for counter/timers CT32B0 (bits 8:6, Table 309) and CT32B1 (bits 5:3, Table 310).

Table 309: Capture Control Register (CCR, address 0x4001 4028 (CT32B0)) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE		Capture on CT32B0_CAP0 rising edge: a sequence of 0 then 1 on CT32B0_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
1	CAP0FE		Capture on CT32B0_CAP0 falling edge: a sequence of 1 then 0 on CT32B0_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
2	CAP0I		Interrupt on CT32B0_CAP0 event: a CR0 load due to a CT32B0_CAP0 event will generate an interrupt.	0
		1	Enabled.	
		0	Disabled.	
5:3	-		Reserved.	-

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 309: Capture Control Register (CCR, address 0x4001 4028 (CT32B0)) bit description

Bit	Symbol	Value	Description	Reset value
6	CAP1RE		Capture on CT32B0_CAP1 rising edge: a sequence of 0 then 1 on CT32B0_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
7	CAP1FE		Capture on CT32B0_CAP1 falling edge: a sequence of 1 then 0 on CT32B0_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
8	CAP1I		Interrupt on CT32B0_CAP1 event: a CR1 load due to a CT32B0_CAP1 event will generate an interrupt.	0
		1	Enabled.	
		0	Disabled.	
31:9	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 310: Capture Control Register (CCR, address 0x4001 8028 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE		Capture on CT32B1_CAP0 rising edge: a sequence of 0 then 1 on CT32B1_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
1	CAP0FE		Capture on CT32B1_CAP0 falling edge: a sequence of 1 then 0 on CT32B1_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
2	CAP0I		Interrupt on CT32B1_CAP0 event: a CR0 load due to a CT32B1_CAP0 event will generate an interrupt.	0
		1	Enabled.	
		0	Disabled.	
3	CAP1RE		Capture on CT32B1_CAP1 rising edge: a sequence of 0 then 1 on CT32B1_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	
4	CAP1FE		Capture on CT32B1_CAP1 falling edge: a sequence of 1 then 0 on CT32B1_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled.	
		0	Disabled.	

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 310: Capture Control Register (CCR, address 0x4001 8028 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
5	CAP1I		Interrupt on CT32B1_CAP1 event: a CR1 load due to a CT32B1_CAP1 event will generate an interrupt.	0
		1	Enabled.	
		0	Disabled.	
31:6	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

17.7.9 Capture Registers

Each Capture register is associated with a device pin and may be loaded with the Timer Counter value when a specified event occurs on that pin. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

Remark: The location of the CR1 register relative to the timer base address is different for CT32B0 (CR1 at +0x034, Table 312) and CT32B1 (CR1 at +0x030, Table 302).

Table 311: Capture registers (CR0, addresses 0x4001 402C (CT32B0) and 0x4001 802C (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	CAP	Timer counter capture value.	0

Table 312: Capture register (CR1, address 0x4001 4034 (CT32B0)) bit description

Bit	Symbol	Description	Reset value
31:0	CAP	Timer counter capture value.	0

Table 313: Capture register (CR1, address 0x4001 8030 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	CAP	Timer counter capture value.	0

17.7.10 External Match Register

The External Match Register provides both control and status of the external match pins CAP32Bn_MAT[3:0].

If the match outputs are configured as PWM output, the function of the external match registers is determined by the PWM rules (<u>Section 17.7.13 "Rules for single edge controlled PWM outputs" on page 342</u>).

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 314: External Match Register (EMR, address 0x4001 403C (CT32B0) and 0x4001 803C (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	EM0		External Match 0. This bit reflects the state of output CT32Bn_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT32B0_MAT0/CT32B1_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
1	EM1		External Match 1. This bit reflects the state of output CT32Bn_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT32B0_MAT1/CT32B1_MAT1 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
2	EM2		External Match 2. This bit reflects the state of output CT32Bn_MAT2, whether or not this output is connected to its pin. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output. This bit is driven to the CT32B0_MAT2/CT32B1_MAT2 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
3	EM3		External Match 3. This bit reflects the state of output CT32Bn_MAT3, whether or not this output is connected to its pin. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output. This bit is driven to the CT32B3_MAT0/CT32B1_MAT3 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
5:4	EMC0		External Match Control 0. Determines the functionality of External Match 0.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT0 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT0 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
7:6	EMC1		External Match Control 1. Determines the functionality of External Match 1.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT1 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT1 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
9:8	EMC2		External Match Control 2. Determines the functionality of External Match 2.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT2 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT2 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 314: External Match Register (EMR, address 0x4001 403C (CT32B0) and 0x4001 803C (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
11:10	EMC3		External Match Control 3. Determines the functionality of External Match 3.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT3 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT3 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 315. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
00	Do Nothing.
01	Clear the corresponding External Match bit/output to 0 (CT32Bn_MATm pin is LOW if pinned out).
10	Set the corresponding External Match bit/output to 1 (CT32Bn_MATm pin is HIGH if pinned out).
11	Toggle the corresponding External Match bit/output.

17.7.11 Count Control Register

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the pin and edges for counting.

When Counter Mode is chosen as a mode of operation, the CAP input (selected by the CTCR bits 3:2) is sampled on every rising edge of the PCLK clock. After comparing two consecutive samples of this CAP input, one of the following four events is recognized: rising edge, falling edge, either of edges or no changes in the level of the selected CAP input. Only if the identified event occurs, and the event corresponds to the one selected by bits 1:0 in the CTCR register, will the Timer Counter register be incremented.

Effective processing of the externally supplied clock to the counter has some limitations. Since two successive rising edges of the PCLK clock are used to identify only one edge on the CAP selected input, the frequency of the CAP input cannot exceed one half of the PCLK clock. Consequently, duration of the HIGH/LOW levels on the same CAP input in this case cannot be shorter than 1/PCLK.

Bits 7:4 of this register are also used to enable and configure the capture-clears-timer feature. This feature allows for a designated edge on a particular CAP input to reset the timer to all zeros. Using this mechanism to clear the timer on the leading edge of an input pulse and performing a capture on the trailing edge, permits direct pulse-width measurement using a single capture input without the need to perform a subtraction operation in software.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Remark: The bit positions for the CAP1 channel count input select (CIS) and edge select bits (SELCC) are different for counter/timers CT16B0 (<u>Table 316</u>) and CT16B1 (<u>Table 317</u>).

Table 316: Count Control Register (CTCR, address 0x4001 4070 (CT32B0)) bit description

Bit	Symbol	Value	Description	Reset value
1:0	СТМ		Counter/Timer Mode. This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	00
			Remark: If Counter mode is selected in the CTCR, bits 2:0 in the Capture Control Register (CCR) must be programmed as 000.	
		0x0	Timer Mode: every rising PCLK edge	
		0x1	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.	
		0x2	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.)
		0x3	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.	
3:2	CIS		Count Input Select. In counter mode (when bits 1:0 in this register are not 00), these bits select which CAP pin or comparator output is sampled for clocking.	00
			Remark: If Counter mode is selected in the CTCR, the 3 bits for that input in the Capture Control Register (CCR) must be programmed as 000. Values 0x1 and 0x3 are reserved.	
		0x0	CT32B0_CAP0	
		0x1	Reserved.	
		0x2	CT32B0_CAP1	
4	ENCC		Setting this bit to 1 enables clearing of the timer and the prescaler when the capture-edge event specified in bits 7:5 occurs.	0
7:5	SEICC		When bit 4 is a 1, these bits select which capture input edge will cause the timer and prescaler to be cleared. These bits have no effect when bit 4 is low. Values 0x2 to 0x3 and 0x6 to 0x7 are reserved.	
		0x0	Rising Edge of CT32B0_CAP0 clears the timer (if bit 4 is set)	
		0x1	Falling Edge of CT32B0_CAP0 clears the timer (if bit 4 is set)	
		0x2	Reserved,	
		0x3	Reserved.	
		0x4	Rising Edge of CT32B0_CAP1 clears the timer (if bit 4 is set)	
		0x5	Falling Edge of CT32B0_CAP1 clears the timer (if bit 4 is set)	
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Table 317: Count Control Register (CTCR, address 0x4001 8070 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
1:0	CTM		Counter/Timer Mode. This field selects which rising PCLK edges can increment Timer's Prescale Counter (PC), or clear PC and increment Timer Counter (TC).	00
			Remark: If Counter mode is selected in the CTCR, bits 2:0 in the Capture Control Register (CCR) must be programmed as 000.	
		0x0	Timer Mode: every rising PCLK edge	
		0x1	Counter Mode: TC is incremented on rising edges on the CAP input selected by bits 3:2.	
		0x2	Counter Mode: TC is incremented on falling edges on the CAP input selected by bits 3:2.	
		0x3	Counter Mode: TC is incremented on both edges on the CAP input selected by bits 3:2.	
3:2	CIS		Count Input Select. In counter mode (when bits 1:0 in this register are not 00), these bits select which CAP pin or comparator output is sampled for clocking.	00
			Remark: If Counter mode is selected in the CTCR, the 3 bits for that input in the Capture Control Register (CCR) must be programmed as 000. Values 0x2 to 0x3 are reserved.	
		0x0	CT32B1_CAP0	
		0x1	CT32B1_CAP1	
4	ENCC		Setting this bit to 1 enables clearing of the timer and the prescaler when the capture-edge event specified in bits 7:5 occurs.	0
7:5	SEICC		When bit 4 is a 1, these bits select which capture input edge will cause the timer and prescaler to be cleared. These bits have no effect when bit 4 is low. Values 0x3 to 0x7 are reserved.	
		0x0	Rising Edge of CT32B1_CAP0 clears the timer (if bit 4 is set)	
		0x1	Falling Edge of CT32B1_CAP0 clears the timer (if bit 4 is set)	
		0x2	Rising Edge of CT32B1_CAP1 clears the timer (if bit 4 is set)	
		0x3	Falling Edge of CT32B1_CAP1 clears the timer (if bit 4 is set)	
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

17.7.12 PWM Control Register

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

For each timer, a maximum of three single edge controlled PWM outputs can be selected on the MATn.2:0 outputs. One additional match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set to

UM10462 **NXP Semiconductors**

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, all currently HIGH match outputs configured as PWM outputs are cleared.

Table 318: PWM Control Register (PWMC, 0x4001 4074 (CT32B0) and 0x4001 8074 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	PWMEN0		PWM mode enable for channel0.	0
		0	CT32Bn_MAT0 is controlled by EM0.	
		1	PWM mode is enabled for CT32Bn_MAT0.	
1	PWMEN1		PWM mode enable for channel1.	0
	0	0	CT32Bn_MAT01 is controlled by EM1.	
		1	PWM mode is enabled for CT32Bn_MAT1.	
2	2 PWMEN2		PWM mode enable for channel2.	0
		0	CT32Bn_MAT2 is controlled by EM2.	
		1	PWM mode is enabled for CT32Bn_MAT2.	
3	3 PWMEN3		PWM mode enable for channel3. Note: It is recommended to use match channel 3 to set the PWM cycle.	0
		0	CT32Bn_MAT3 is controlled by EM3.	
		1	PWM mode is enabled for CT132Bn_MAT3.	
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

17.7.13 Rules for single edge controlled PWM outputs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- 2. Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- 3. If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared with the start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick after the timer reaches the match value. Therefore, the PWM output will always consist of a one clock tick wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

Note: When the match outputs are selected to perform as PWM outputs, the timer reset (MRnR) and timer stop (MRnS) bits in the Match Control Register MCR must be set to zero except for the match register setting the PWM cycle length. For this register, set the MRnR bit to one to enable the timer reset when the timer value matches the value of the corresponding match register.

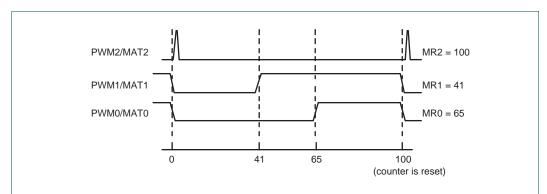
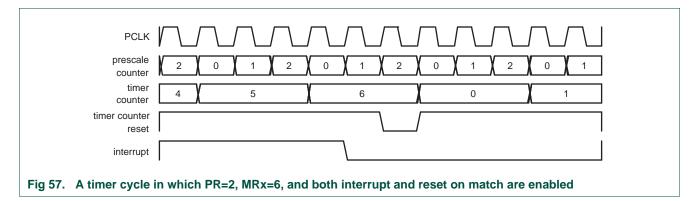
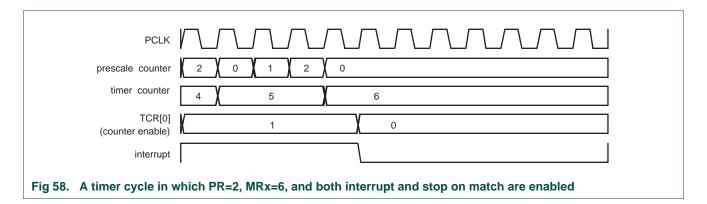



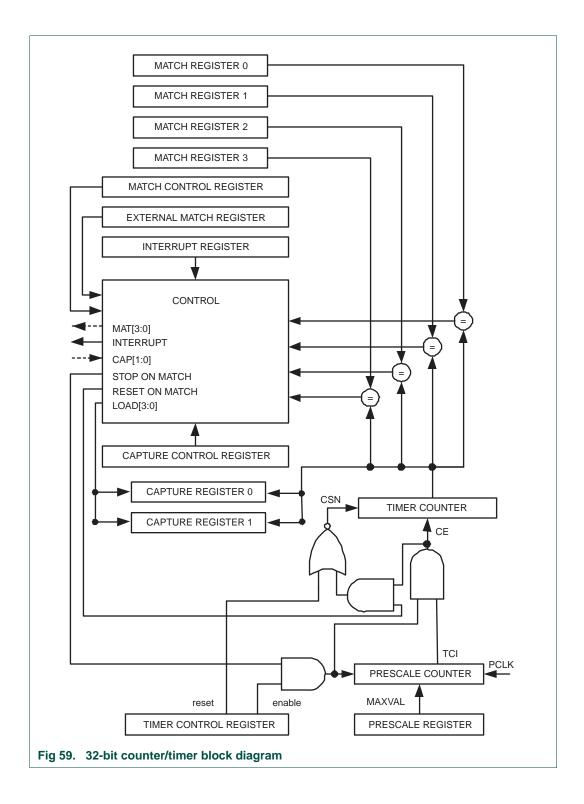
Fig 56. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR2) and MAT1:0 enabled as PWM outputs by the PWMC register.

17.8 Example timer operation


<u>Figure 57</u> shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

<u>Figure 58</u> shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.

UM10462 NXP Semiconductors


Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

17.9 Architecture

The block diagram for 32-bit counter/timer0 and 32-bit counter/timer1 is shown in Figure 59.

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

UM10524

Chapter 18: LPC1315/16/17/45/46/47 System tick timer

Rev. 4 — 12 March 2013

User manual

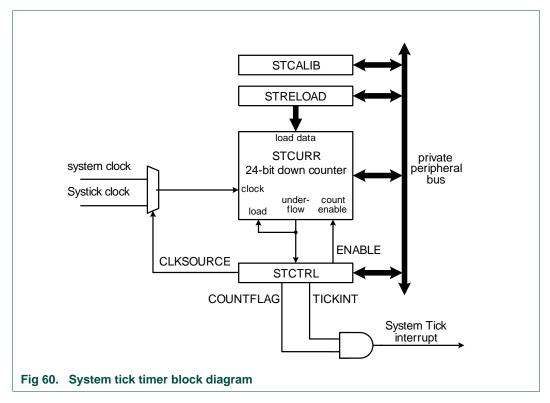
18.1 How to read this chapter

The system tick timer (SysTick timer) is part of the ARM Cortex-M3 core and is identical for all LPC1315/16/17/45/46/47 parts.

18.2 Basic configuration

The system tick timer is configured using the following registers:

- 1. Pins: The system tick timer uses no external pins.
- Power: The system tick timer is enabled through the SysTick control register in the ARM Cortex-M3. The system tick timer clock is fixed to half the frequency of the system clock.
- 3. Enable the clock source for the SysTick timer in the SYST_CSR register.


18.3 Features

- Simple 24-bit timer.
- Uses dedicated exception vector.
- Clocked internally by the system clock or the SYSTICKCLK.

18.4 General description

The block diagram of the SysTick timer is shown below in the Figure 60.

Chapter 18: LPC1315/16/17/45/46/47 System tick timer

The SysTick timer is an integral part of the Cortex-M3. The SysTick timer is intended to generate a fixed 10 millisecond interrupt for use by an operating system or other system management software.

Since the SysTick timer is a part of the Cortex-M3, it facilitates porting of software by providing a standard timer that is available on Cortex-M3 based devices. The SysTick timer can be used for:

- An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the core clock.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Refer to the Cortex-M3 User Guide for details.

18.5 Register description

The systick timer registers are located on the ARM Cortex-M3 private peripheral bus (see Figure 2), and are part of the ARM Cortex-M3 core peripherals. For details, see Section 21.5.4.

Chapter 18: LPC1315/16/17/45/46/47 System tick timer

Table 319. Register overview: SysTick timer (base address 0xE000 E000)

Name	Access	Address offset	Description	Reset value[1]	Reference
SYST_CSR	R/W	0x010	System Timer Control and status register	0x000 0000	<u>Table 320</u>
SYST_RVR	R/W	0x014	System Timer Reload value register	0	<u>Table 321</u>
SYST_CVR	R/W	0x018	System Timer Current value register	0	Table 322
SYST_CALIB	R/W	0x01C	System Timer Calibration value register	0x4	Table 323

^[1] Reset Value reflects the data stored in used bits only. It does not include content of reserved bits.

18.5.1 System Timer Control and status register

The SYST_CSR register contains control information for the SysTick timer and provides a status flag. This register is part of the ARM Cortex-M3 core system timer register block. For a bit description of this register, see Section 21.5.4.

This register determines the clock source for the system tick timer.

Table 320. SysTick Timer Control and status register (SYST_CSR - 0xE000 E010) bit description

Bit	Symbol	Description	Reset value
0	ENABLE	System Tick counter enable. When 1, the counter is enabled. When 0, the counter is disabled.	0
1	TICKINT	System Tick interrupt enable. When 1, the System Tick interrupt is enabled. When 0, the System Tick interrupt is disabled. When enabled, the interrupt is generated when the System Tick counter counts down to 0.	0
2	CLKSOURCE	System Tick clock source selection. When 1, the system clock (CPU) clock is selected. When 0, the output clock from the system tick clock divider (SYSTICKDIV) is selected as the reference clock. In this case, the core clock must be at least 2.5 times faster than the reference clock otherwise the count values are unpredictable.	0
15:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
16	COUNTFLAG	Returns 1 if the SysTick timer counted to 0 since the last read of this register.	0
31:17	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

18.5.2 System Timer Reload value register

The SYST_RVR register is set to the value that will be loaded into the SysTick timer whenever it counts down to zero. This register is loaded by software as part of timer initialization. The SYST_CALIB register may be read and used as the value for SYST_RVR register if the CPU is running at the frequency intended for use with the SYST_CALIB value.

Chapter 18: LPC1315/16/17/45/46/47 System tick timer

Table 321. System Timer Reload value register (SYST_RVR - 0xE000 E014) bit description

Bit	Symbol	Description	Reset value
23:0	RELOAD	This is the value that is loaded into the System Tick counter when it counts down to $0. \\$	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

18.5.3 System Timer Current value register

The SYST_CVR register returns the current count from the System Tick counter when it is read by software.

Table 322. System Timer Current value register (SYST_CVR - 0xE000 E018) bit description

Bit	Symbol	Description	Reset value
23:0	CURRENT	Reading this register returns the current value of the System Tick counter. Writing any value clears the System Tick counter and the COUNTFLAG bit in STCTRL.	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

18.5.4 System Timer Calibration value register (SYST_CALIB - 0xE000 E01C)

The value of the SYST_CALIB register is driven by the value of the SYSTCKCAL register in the system configuration block (see <u>Table 24</u>).

Table 323. System Timer Calibration value register (SYST_CALIB - 0xE000 E01C) bit description

Bit	Symbol	Value	Description	Reset value
23:0	TENMS		See <u>Table 367</u> .	0x4
29:24	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
30	SKEW		See <u>Table 367</u> .	0
31	NOREF		See <u>Table 367</u> .	0

18.6 Functional description

The SysTick timer is a 24-bit timer that counts down to zero and generates an interrupt. The intent is to provide a fixed 10 millisecond time interval between interrupts. The SysTick timer is clocked from the CPU clock (the system clock, see Figure 2) or from the reference clock, which is fixed to half the frequency of the CPU clock. In order to generate recurring interrupts at a specific interval, the SYST_RVR register must be initialized with the correct value for the desired interval. A default value is provided in the SYST_CALIB register and may be changed by software. The default value gives a 10 millisecond interrupt rate if the CPU clock is set to 50 MHz.

Chapter 18: LPC1315/16/17/45/46/47 System tick timer

18.7 Example timer calculations

To use the system tick timer, do the following:

- Program the LOAD register with the reload value RELOAD to obtain the desired time interval.
- 2. Clear the VAL register by writing to it. This ensures that the timer will count from the LOAD value rather than an arbitrary value when the timer is enabled.

The following examples illustrate selecting SysTick timer reload values for different system configurations. All of the examples calculate an interrupt interval of 10 milliseconds, as the SysTick timer is intended to be used, and there are no rounding errors.

System clock = 72 MHz

Program the CTRL register with the value 0x7 which selects the system clock as the clock source and enables the SysTick timer and the SysTick timer interrupt.

RELOAD = (system clock frequency \times 10 ms) -1 = (72 MHz \times 10 ms) -1 = 720000 -1 = 719999 = 0x000A FC7F

System tick timer clock = 24 MHz

Program the CTRL register with the value 0x3 which selects the clock from the system tick clock divider (use DIV = 3) as the clock source and enables the SysTick timer and the SysTick timer interrupt.

RELOAD = (system tick timer clock frequency \times 10 ms) -1 = (24 MHz \times 10 ms) -1 = 240000 -1 = 239999 = 0x0003A97F

System clock = 12 MHz

Program the CTRL register with the value 0x7 which selects the system clock as the clock source and enables the SysTick timer and the SysTick timer interrupt.

In this case the system clock is derived from the IRC clock.

RELOAD = (system clock frequency \times 10 ms) -1 = (12 MHz \times 10 ms) -1 = 120000 -1 = 119999 = 0x0001 D4BF

UM10524

Chapter 19: LPC1315/16/17/45/46/47 Repetitive Interrupt Timer (RI timer)

Rev. 4 — 12 March 2013

User manual

19.1 How to read this chapter

The RI timer is available on all LPC1315/16/17/45/46/47 parts.

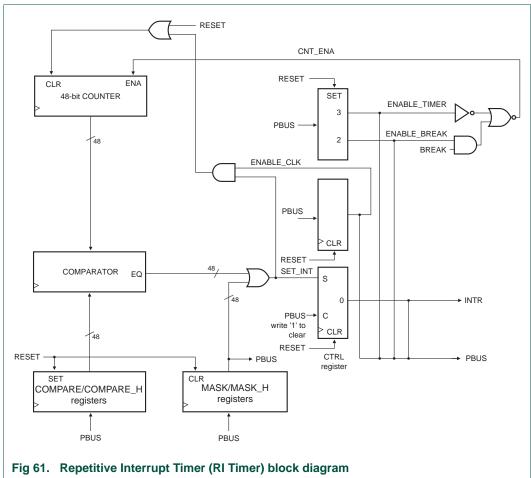
19.2 Basic configuration

The RI timer is always running.

19.3 Features

- 48-bit counter running from the main clock. Counter can be free-running or be reset by a generated interrupt.
- 48-bit compare value.
- 48-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This allows for combinations not possible with a simple compare.

19.4 General description


The Repetitive Interrupt Timer (RIT) provides a versatile means of generating interrupts at specified time intervals, without using a standard timer. It is intended for repeating interrupts that aren't related to Operating System interrupts. The RIT could also be used as an alternative to the Cortex-M3 System Tick Timer if there are different system requirements.

The RI timer can be used in conjunction with the Embedded Trace Macrocell (ETM) of the ARM Cortex-M3; v. r2p1) for ETM timestamping. The RI timer allows periodic insertion of a time value based on specific events (exceptions, return from exceptions, trace FIFO flush) into the trace data stream of the ETM. With the ETM timestamping feature, multiple trace data streams can be correlated to obtain a rough measure of code performance.

351 of 416

UM10524 **NXP Semiconductors**

Chapter 19: LPC1315/16/17/45/46/47 Repetitive Interrupt Timer (RI

19.5 Register description

Table 324. Register overview: Repetitive Interrupt Timer (RIT) (base address 0x4006 4000)

Name	Access	Address	Description	Reset value[1]	Reference
COMPVAL	R/W	0x000	Compare value LSB register. Holds the 32 LSBs of the compare value.	0xFFFF FFFF	<u>Table 325</u>
MASK	R/W	0x004	Mask LSB register. This register holds the 32 LSB s of the mask value. A '1' written to any bit will force a compare on the corresponding bit of the counter and compare register.	0	Table 326
CTRL	R/W	0x008	Control register.	0xC	Table 327
COUNTER	R/W	0x00C	Counter LSB register. 32 LSBs of the counter.	0	Table 328
COMPVAL_H	R/W	0x010	Compare value MSB register. Holds the 16 MSBs of the compare value.	0x0000 FFFF	Table 325
MASK_H	R/W	0x014	Mask MSB register. This register holds the 16 MSBs of the mask value. A '1' written to any bit will force a compare on the corresponding bit of the counter and compare register.	0	Table 326
COUNTER_H	R/W	0x01C	Counter MSB register. 16 MSBs of the counter.	0	Table 328

^[1] Reset Value reflects the data stored in used bits only. It does not include content of reserved bits.

UM10524 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Chapter 19: LPC1315/16/17/45/46/47 Repetitive Interrupt Timer (RI

19.5.1 RI Compare Value LSB register

Table 325. RI Compare Value LSB register (COMPVAL - address 0x4006 4000) bit description

Bit	Symbol	Description	Reset value
31:0	RICOMP	Compare register. Holds the 32 LSBs of the compare value which is compared to the counter.	0xFFFF FFFF

19.5.2 RI Mask LSB register

Table 326. RI Mask LSB register (MASK - address 0x4006 4004) bit description

Bit	Symbol	Description	Reset value
31:0	RIMASK	Mask register. This register holds the 32 LSBs of the mask value. A one written to any bit overrides the result of the comparison for the corresponding bit of the counter and compare register (causes the comparison of the register bits to be always true).	0

19.5.3 RI Control register

Table 327. RI Control register (CTRL - address 0x4006 4008) bit description

Bit	Symbol	Value	Description	Reset value	
0	RITINT		Interrupt flag	0	
		1	This bit is set to 1 by hardware whenever the counter value equals the masked compare value specified by the contents of RICOMPVAL and RIMASK registers.		
			Writing a 1 to this bit will clear it to 0. Writing a 0 has no effect.		
		0	The counter value does not equal the masked compare value.		
1	RITENCLR		Timer enable clear		
		1	The timer will be cleared to 0 whenever the counter value equals the masked compare value specified by the contents of COMPVAL/COMPVAL_H and MASK/MASK_H registers. This will occur on the same clock that sets the interrupt flag.	0	
		0	The timer will not be cleared to 0.		
2	RITENBR	RITENBR		Timer enable for debug	1
		1	The timer is halted when the processor is halted for debugging.		
		0	Debug has no effect on the timer operation.		
3	RITEN		Timer enable.	1	
		1	Timer enabled.		
			Remark: This can be overruled by a debug halt if enabled in bit 2.		
		0	Timer disabled.		
31:4	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

353 of 416

Chapter 19: LPC1315/16/17/45/46/47 Repetitive Interrupt Timer (RI

19.5.4 RI Counter LSB register

Table 328. RI Counter register (COUNTER - address 0x4006 400C) bit description

Bit	Symbol	Description	Reset value
31:0	RICOUNTER	32 LSBs of the up counter. Counts continuously unless RITEN bit in CTRL register is cleared or debug mode is entered (if enabled by the RITNEBR bit in RICTRL). Can be loaded to any value in software.	0

19.5.5 RI Compare Value MSB register

Table 329. RI Compare Value MSB register (COMPVAL_H - address 0x4006 4010) bit description

Bit	Symbol	Description	Reset value
15:0	RICOMP	Compare value MSB register. Holds the 16 MSBs of the compare value which is compared to the counter.	0x0000 FFFF
31:16	-	Reserved.	-

19.5.6 RI Mask MSB register

Table 330. RI Mask MSB register (MASK_H - address 0x4006 4014) bit description

Bit	Symbol	Description	Reset value
15:0	RIMASK	Mask register. This register holds the 16 MSBs of the mask value. A one written to any bit overrides the result of the comparison for the corresponding bit of the counter and compare register (causes the comparison of the register bits to be always true).	0
31:16	-	Reserved.	-

19.5.7 RI Counter MSB register

Table 331. RI Counter MSB register (COUNTER_H - address 0x4006 401C) bit description

Bit	Symbol	Description	Reset value
15:0	RICOUNTER	16 LSBs of the up counter. Counts continuously unless RITEN bit in RICTRL register is cleared or debug mode is entered (if enabled by the RITNEBR bit in RICTRL). Can be loaded to any value in software.	0
31:16	-	Reserved.	-

Chapter 19: LPC1315/16/17/45/46/47 Repetitive Interrupt Timer (RI

19.6 RI timer operation

Following reset, the counter begins counting up from 0. Whenever the counter value equals the 48-bit value programmed into the COMPVAL and COMPVAL_H registers, the interrupt flag will be set. Any bit or combination of bits can be removed from this comparison (i.e. forced to compare) by writing a 1 to the corresponding bit(s) in the MASK and MASK_H registers. If the RITENCLR bit is low (default state), a valid comparison ONLY causes the interrupt flag to be set. It has no effect on the count sequence. Counting continues as usual. When the counter reaches 0xFFFF FFFF it rolls-over to 0 on the next clock and continues counting. If the RITENCLR bit is set to 1 a valid comparison will also cause the counter to be reset to zero. Counting will resume from there on the next clock edge.

Counting can be halted in software by writing a '0' to the RITEN bit. Counting will also be halted when the processor is halted for debugging provided the RITENBR bit is set. Both the RITEN and RITENBR bits are set on reset.

The interrupt flag can be cleared in software by writing a 1 to the RITINT bit.

Software must stop the counter before reloading it with a new value.

The counter (COUNTER/COUNTER_H), COMPVAL/COMPVAL_H registers, MASK/MASK_H registers, and the CTRL register can all be read by software at any time.

UM10524

Chapter 20: LPC1315/16/17/45/46/47 ADC

Rev. 4 — 12 March 2013

User manual

20.1 How to read this chapter

The ADC block is identical for all LPC1315/16/17/45/46/47 parts.

For better immunity to noise, the VREFN/P and V_{DDA}/V_{SSA} are pinned out on the LQFP64 package. For the LQFP48 and HVQFN33 pin packages, use V_{DD} and V_{SS} for the ADC reference pins.

20.2 Basic configuration

The ADC is configured using the following registers:

- 1. Pins: The ADC pin functions are configured in the IOCON register block (Table 55).
- 2. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 13 (Table 19). Power to the ADC is controlled through the PDRUNCFG register (Table 42).

Remark: Basic clocking for the A/D converters is provided by the APB clock. A programmable divider is included in each converter to scale this clock to the clock (maximum 15.5 MHz in 12-bit mode or 31 MHz in 10-bit mode (BURST bit = 0)) needed by the successive approximation process. A fully accurate conversion requires 31 of these clocks.

20.3 Features

- 12-bit successive approximation Analog-to-Digital Converter (ADC).
- · Input multiplexing among 8 pins.
- Power-down mode (see PDRUNCFG register in the SYSCON block (Table 42).
- Low power mode.
- Measurement range VREFN to VREFP (or 0 V to VDD for pin packages without VREFP and VREFN pins). Do not exceed the V_{DD} voltage level.
- 12-bit conversion rate of 500 kSamples/s.
- 10-bit, double conversion rate mode (up to 1 Msamples/s).
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition on input pin or Timer Match signal.

20.4 Pin description

Table 332 gives a brief summary of the ADC related pins.

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 332. ADC pin description

Pin	Туре	Description
AD[7:0]	Input	Analog Inputs. The A/D converter cell can measure the voltage on any of these input signals.
		Remark: While the pins are 5 V tolerant in digital mode, the maximum input voltage must not exceed V_{DD} when the pins are configured as analog inputs.
VREFP, VREFN	Reference	Voltage References. These pins provide a voltage reference level for the ADC. Note: VREFP should be tied to VDD(3V3) and VREFN should be tied to VSS if the ADC is not used.
V_{DD} , V_{DDA}	Power	Analog Power and Ground. These should typically be the same voltages as VDD and VSS, but should be isolated to minimize noise and error. Note: V_{DDA} should be tied to VDD and VSSA should be tied to VSS if the ADC is not used.

The ADC function must be selected via the IOCON registers in order to get accurate voltage readings on the monitored pin. For a pin hosting an ADC input, it is not possible to have a have a digital function selected and yet get valid ADC readings. An inside circuit disconnects ADC hardware from the associated pin whenever a digital function is selected on that pin.

20.5 Register description

The ADC contains registers organized as shown in <u>Table 333</u>.

Table 333. Register overview: ADC (base address 0x4001 C000)

Name	Access	Address offset	Description	Reset Value ^[1]	Reference
CR	R/W	0x000	A/D Control Register. The CR register must be written to select the operating mode before A/D conversion can occur.	0x0000 0000	Table 334
GDR	R/W	0x004	A/D Global Data Register. Contains the result of the most recent A/D conversion.	NA	Table 335
-	-	800x0	Reserved.	-	-
INTEN	R/W	0x00C	A/D Interrupt Enable Register. This register contains enable bits that allow the DONE flag of each A/D channel to be included or excluded from contributing to the generation of an A/D interrupt.	0x0000 0100	Table 336
DR0	R/W	0x010	A/D Channel 0 Data Register. This register contains the result of the most recent conversion completed on channel 0	NA	Table 337
DR1	R/W	0x014	A/D Channel 1 Data Register. This register contains the result of the most recent conversion completed on channel 1.	NA	Table 337
DR2	R/W	0x018	A/D Channel 2 Data Register. This register contains the result of the most recent conversion completed on channel 2.	NA	Table 337
DR3	R/W	0x01C	A/D Channel 3 Data Register. This register contains the result of the most recent conversion completed on channel 3.	NA	Table 337
DR4	R/W	0x020	A/D Channel 4 Data Register. This register contains the result of the most recent conversion completed on channel 4.	NA	Table 337
DR5	R/W	0x024	A/D Channel 5 Data Register. This register contains the result of the most recent conversion completed on channel 5.	NA	Table 337

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 333. Register overview: ADC (base address 0x4001 C000)

Name	Access	Address offset	Description	Reset Value ^[1]	Reference
DR6	R/W	0x028	A/D Channel 6 Data Register. This register contains the result of the most recent conversion completed on channel 6.	NA	Table 337
DR7	R/W	0x02C	A/D Channel 7 Data Register. This register contains the result of the most recent conversion completed on channel 7.	NA	Table 337
STAT	RO	0x030	A/D Status Register. This register contains DONE and OVERRUN flags for all of the A/D channels, as well as the A/D interrupt flag.	0	Table 338
TRM	R/W	0x034	A/D trim register	0xF00	Table 339

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

20.5.1 A/D Control Register (CR)

The A/D Control Register provides bits to select A/D channels to be converted, A/D timing, A/D modes, and the A/D start trigger.

Table 334. A/D Control Register (CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Reset Value	
7:0	SEL		Selects which of the AD7:0 pins is (are) to be sampled and converted. Bit 0 selects Pin AD0, bit 1 selects pin AD1,, and bit 7 selects pin AD7. In software-controlled mode (BURST = 0), only one channel can be selected, i.e. only one of these bits should be 1. In hardware scan mode (BURST = 1), any numbers of channels can be selected, i.e any or all bits can be set to 1. If all bits are set to 0, channel 0 is selected automatically (SEL = 0x01).	0x00	
15:8	CLKDIV		The main clock (PCLK_ADC) is divided by (this value plus one) to produce the clock for the A/D converter. The clock should be less than or equal to 15.5 MHz (12-bit mode) or 31 MHz (10-bit mode) in software-controlled mode (BURST bit = 0). Typically, software should program the smallest value in this field that yields a clock of 15.5 MHz or slightly less, but in certain cases (such as a high-impedance analog source) a slower clock may be desirable.	0	
16	BURST		Burst mode	0	
			Remark: If BURST is set to 1, the ADGINTEN bit in the INTEN register (<u>Table 336</u>) must be set to 0.		
		0	Software-controlled mode: Conversions are software-controlled and require 31 clocks.		
		1	Hardware scan mode: The AD converter does repeated conversions at the rate selected by the CLKS field, scanning (if necessary) through the pins selected by ones in the SEL field. The first conversion after the start corresponds to the least-significant bit set to 1 in the SEL field, then the next higher bits (pins) set to one are scanned if applicable. Repeated conversions can be terminated by clearing this bit, but the conversion in progress when this bit is cleared will be completed.		
			Important: START bits must be 000 when BURST = 1, or conversions will not start.		
20:17	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-	
21	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-	

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 334. A/D Control Register (CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Rese Value
22	LPWRMODE		Low-power mode	0 0
		0	Disable the low-power ADC mode. The analog circuitry remains activated when no conversions are requested.	
		1	Enable the low-power ADC mode. The analog circuitry is automatically powered-down when no conversions are taking place. When any (hardware or software) triggering event is detected, the analog circuitry is enabled. After the required start-up time, the requested conversion will be launched. Once the conversion completes, the analog-circuitry will again be powered-down provided no further conversions are pending. Remark: This mode will NOT power-up the A/D if the ADC is powered down (ADC_PD bit in the PDRUNCFG register is HIGH) or if the part is in Deep-sleep, Power-down, or Deep power-down mode.	
23	MODE10BIT		10-bit conversion rate mode	
		0	Disable the 10-bit conversion rate mode.	
		is reduced to 10 bits (the two LSB of the conversion result will be forced to 0	Enable the 10-bit conversion rate mode with high conversion rate. The A/D resolution is reduced to 10 bits (the two LSB of the conversion result will be forced to 0). The clock rate (set via the CLKDIV field) can be doubled to up to 31 MHz to achieve a conversion rate of up to one million samples per second.	
26:24	START		When the BURST bit is 0, these bits control whether and when an A/D conversion is started:	0
		0x0	No start (this value should be used when clearing PDN to 0).	0
		0x1	Start conversion now.	
		0x2	Start conversion when the edge selected by bit 27 occurs on capture channel 0 of the 16-bit counter/timer0 (CT16B0_CAP0, independently of the pinout).	0
		0x3	Start conversion when the edge selected by bit 27 occurs on capture channel 0 of the 32-bit counter/timer0 (CT32B0_CAP0, independently of the pinout).	
		0x4	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT0[1].	
		0x5	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT1[1].	
		0x6	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT0[1].	
		0x7	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT1[1].	
27	EDGE		Edge control. This bit is significant only when the START field contains 010-111.	0
		0	Start conversion on a rising edge on the selected CAP/MAT signal.	
		1	Start conversion on a falling edge on the selected CAP/MAT signal.	
31:28	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

^[1] Note that this does not require that the timer match function appear on a device pin.

20.5.2 A/D Global Data Register (GDR)

The A/D Global Data Register contains the result of the most recent A/D conversion. This includes the data, DONE, and Overrun flags, and the number of the A/D channel to which the data relates.

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 335. A/D Global Data Register (GDR - address 0x4001 C004) bit description

Bit	Symbol	Description	Reset Value
3:0	-	Reserved. These bits always read as zeros.	0
15:4	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin selected by the SEL field, divided by the voltage on the V_{DD} pin or as it falls within the range of VREFP to VREFN. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on $V_{SS}/VREFN$, while 0xFFF indicates that the voltage on ADn was close to, equal to, or greater than that on $V_{DD}/VREFP$.	X
23:16	-	Reserved. These bits always read as zeros.	0
26:24	CHN	These bits contain the channel from which the result bits V_VREF were converted.	X
29:27	-	Reserved. These bits always read as zeros.	0
30	OVERRUN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the V_VREF bits.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read and when the ADCR is written. If the ADCR is written while a conversion is still in progress, this bit is set and a new conversion is started.	0

20.5.3 A/D Interrupt Enable Register (INTEN)

This register allows control over which A/D channels generate an interrupt when a conversion is complete. For example, it may be desirable to use some A/D channels to monitor sensors by continuously performing conversions on them. The most recent results are read by the application program whenever they are needed. In this case, an interrupt is not desirable at the end of each conversion for some A/D channels.

Table 336. A/D Interrupt Enable Register (INTEN - address 0x4001 C00C) bit description

Bit	Symbol	Description	Reset Value
7:0	ADINTEN	These bits allow control over which A/D channels generate interrupts for conversion completion. When bit 0 is one, completion of a conversion on A/D channel 0 will generate an interrupt, when bit 1 is one, completion of a conversion on A/D channel 1 will generate an interrupt, etc.	0x00
8	ADGINTEN	When 1, enables the global DONE flag in ADDR to generate an interrupt. When 0, only the individual A/D channels enabled by ADINTEN 7:0 will generate interrupts.	1
		Remark: This bit must be set to 0 in burst mode (BURST = 1 in the CR register).	
31:9	-	Reserved. Unused, always 0.	0

20.5.4 A/D Data Registers (DR0 to DR7)

The A/D Data Register hold the result when an A/D conversion is complete, and also include the flags that indicate when a conversion has been completed and when a conversion overrun has occurred.

360 of 416

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 337. A/D Data registers (DR0 to DR7 - addresses 0x4001 C010 to 0x4001 C02C) bit description

Bit	Symbol	Description	Reset Value
3:0	-	Reserved.	0
15:4	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin as it falls within the range of VREFP to VREFN. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on VREFN/V $_{\rm SS}$, while 0xFFF indicates that the voltage on AD input was close to, equal to, or greater than that on VREFP/VDD.	NA
29:16	-	Reserved.	0
30	OVERRUN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the V_VREF bits. This bit is cleared by reading this register.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read.	0

20.5.5 A/D Status Register (STAT)

The A/D Status register allows checking the status of all A/D channels simultaneously. The DONE and OVERRUN flags appearing in the DRn register for each A/D channel are mirrored in ADSTAT. The interrupt flag (the logical OR of all DONE flags) is also found in ADSTAT.

Table 338. A/D Status Register (STAT - address 0x4001 C030) bit description

Bit	Symbol	Description	Reset Value
7:0	DONE	These bits mirror the DONE status flags that appear in the result register for each A/D channel n.	0
15:8	OVERRUN	These bits mirror the OVERRRUN status flags that appear in the result register for each A/D channel n. Reading ADSTAT allows checking the status of all A/D channels simultaneously.	0
16	ADINT	This bit is the A/D interrupt flag. It is one when any of the individual A/D channel Done flags is asserted and enabled to contribute to the A/D interrupt via the ADINTEN register.	0
31:17	-	Reserved. Unused, always 0.	0

20.5.6 A/D Trim register (TRM)

This register will be set by the boot code on start-up. It contains the trim values for the DAC and the ADC. The offset trim values for the ADC can be overwritten by the user. All 12 bits are visible when this register is read.

Chapter 20: LPC1315/16/17/45/46/47 ADC

Table 339. A/D Trim register (TRM - address 0x4001 C034) bit description
--

Bit	Symbol	Description	Reset value
3:0	-	Reserved.	NA
7:4	ADCOFFS	Offset trim bits for ADC operation. Initialized by the boot code. Can be overwritten by the user.	0
11:8	TRIM	Written-to by boot code. Can not be overwritten by the user. These bits are locked after boot code write.	1111
31:12	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	-

20.6 Operation

20.6.1 Hardware-triggered conversion

If the BURST bit in the ADCR0 is 0 and the START field contains 010-111, the A/D converter will start a conversion when a transition occurs on a selected pin or timer match signal.

20.6.2 Interrupts

An interrupt is requested to the interrupt controller when the ADINT bit in the ADSTAT register is one. The ADINT bit is one when any of the DONE bits of A/D channels that are enabled for interrupts (via the ADINTEN register) are one. Software can use the Interrupt Enable bit in the interrupt controller that corresponds to the ADC to control whether this results in an interrupt. The result register for an A/D channel that is generating an interrupt must be read in order to clear the corresponding DONE flag.

20.6.3 Accuracy vs. digital receiver

While the A/D converter can be used to measure the voltage on any ADC input pin, regardless of the pin's setting in the IOCON block, selecting the ADC in the IOCON registers function improves the conversion accuracy by disabling the pin's digital receiver (see also Section 7.3.7).

20.6.4 Optional operating modes

There are two optional modes of A/D operation which may be selected in the CR register:

- The 10-bit mode. In this mode two bits of ADC accuracy are sacrificed in order to double the conversion rate. The maximum ADC clock rate when this mode is selected is increased to 31 MHz (BURST bit = 0). The two LSB of the conversion result will be forced to 00 when this mode is enabled.
- 2. The low-power mode. When this mode is selected, the analog portions of the ADC are automatically shut down when no conversions are in progress. The ADC is automatically restarted whenever any hardware or software triggering event occurs (provided the ADC is not powered down in the PDRUNCFG register or the part is in Deep-sleep, Power-down, or Deep power-down mode). When the requested conversion completes, the analog ADC circuitry will be returned to its power-down state unless a new conversion is pending. Setting the BURST bit will override low-power mode and prevent the ADC from being automatically powered down.

Chapter 20: LPC1315/16/17/45/46/47 ADC

Low power mode can save an appreciable amount of power when the ADC is not in continuous use at the expense of a delay between the trigger event and the onset of sampling and conversion.

These two optional modes are not mutually exclusive.

UM10524

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming firmware

Rev. 4 — 12 March 2013

User manual

21.1 How to read this chapter

See <u>Table 340</u> for different flash configurations.

Table 340. LPC1315/16/17/45/46/47 flash configurations

10010 040. El 01010/10/11/40/40/41		.9		
Type number	Flash	EEPROM	ISP via UART	ISP via USB
LPC1345FHN33	32	2	yes	yes
LPC1345FBD48	32	2	yes	yes
LPC1346FHN33	48	4	yes	yes
LPC1346FBD48	48	4	yes	yes
LPC1347FHN33	64	4	yes	yes
LPC1347FBD48	64	4	yes	yes
LPC1347FBD64	64	4	yes	yes
LPC1315FHN33	32	2	yes	no
LPC1315FBD48	32	2	yes	no
LPC1316FHN33	48	4	yes	no
LPC1316FBD48	48	4	yes	no
LPC1317FHN33	64	4	yes	no
LPC1317FBD48	64	4	yes	no
LPC1317FBD64	64	4	yes	no

Remark: In addition to the ISP and IAP commands, a register can be accessed in the flash controller block to configure flash memory access times, see Section 21.16.1.

21.2 Bootloader

The bootloader controls initial operation after reset and also provides the means to program the flash memory. This could be initial programming of a blank device, erasure and re-programming of a previously programmed device, or programming of the flash memory by the application program in a running system.

The bootloader version can be read by ISP/IAP calls (see <u>Section 21.13.12</u> or <u>Section 21.14.6</u>).

21.3 Features

- In-System Programming: In-System programming (ISP) is programming or reprogramming the on-chip flash memory, using the bootloader software and the UART serial port. This can be done when the part resides in the end-user board.
- In Application Programming: In-Application (IAP) programming is performing erase and write operation on the on-chip flash memory, as directed by the end-user application code.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

- Small size (256 B) page erase programming.
- Flash access times can be configured through a register in the flash controller block.
- Erase time for one sector is 100 ms \pm 5%. Programming time for one block of 256 bytes is 1 ms \pm 5%.

21.4 Description

The bootloader code is executed every time the part is powered on or reset (see Figure 62). The loader can execute the ISP command handler or the user application code. A LOW level during reset at the PIO0_1 pin is considered an external hardware request to start the ISP command handler (or, on the LPC1345/46/47, the USB device handler if pin PIO0_3 is HIGH) without checking for a valid user code first.

Assuming that power supply pins are at their nominal levels when the rising edge on RESET pin is generated, it may take up to 3 ms before PIOO_1 is sampled and the decision whether to continue with user code or ISP handler is made. If PIOO_1 is sampled LOW and the watchdog overflow flag is set, the external hardware request to start the ISP command handler is ignored. If there is no request for the ISP command handler execution (PIOO_1 is sampled HIGH after reset), a search is made for a valid user program. If a valid user program is found then the execution control is transferred to it. If a valid user program is not found, the auto-baud routine is invoked.

For the LPC1345/46/47 parts, the state of PIO0_3 determines whether the UART or USB interface will be used:

- If PIOO_3 is sampled HIGH, the bootloader connects the LPC1345/46/47 as a MSC USB device to a PC host. The LPC1345/46/47 flash memory space is represented as a drive in the host's operating system.
- If PIO0_3 is sampled LOW, the bootloader configures the UART serial port using pins PIO0_18 and PIO0_19 for RXD and TXD and calls the ISP command handler.

Remark: The sampling of pin PIOO_1 can be disabled through programming flash location 0x0000 02FC (see Section 21.12.1).

21.5 Memory map after any reset

The boot block is 16 kB in size and is located in the memory region starting from the address 0x1FFF 0000. The bootloader is designed to run from this memory area, but both the ISP and IAP software use parts of the on-chip RAM. The RAM usage is described later in this chapter. The interrupt vectors residing in the boot block of the on-chip flash memory also become active after reset, i.e., the bottom 512 bytes of the boot block are also visible in the memory region starting from the address 0x0000 0000.

21.6 Flash content protection mechanism

The LPC1315/16/17/45/46/47 is equipped with the Error Correction Code (ECC) capable Flash memory. The purpose of an error correction module is twofold. Firstly, it decodes data words read from the memory into output data words. Secondly, it encodes data words to be written to the memory. The error correction capability consists of single bit error correction with Hamming code.

UM10524

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

The operation of ECC is transparent to the running application. The ECC content itself is stored in a flash memory not accessible by user's code to either read from it or write into it on its own. A byte of ECC corresponds to every consecutive 128 bits of the user accessible Flash. Consequently, Flash bytes from 0x0000 0000 to 0x0000 000F are protected by the first ECC byte, Flash bytes from 0x0000 0010 to 0x0000 001F are protected by the second ECC byte, etc.

Whenever the CPU requests a read from user's Flash, both 128 bits of raw data containing the specified memory location and the matching ECC byte are evaluated. If the ECC mechanism detects a single error in the fetched data, a correction will be applied before data are provided to the CPU. When a write request into the user's Flash is made, write of user specified content is accompanied by a matching ECC value calculated and stored in the ECC memory.

When a sector of Flash memory is erased, the corresponding ECC bytes are also erased. Once an ECC byte is written, it can not be updated unless it is erased first. Therefore, for the implemented ECC mechanism to perform properly, data must be written into the flash memory in groups of 16 bytes (or multiples of 16), aligned as described above.

21.7 Criterion for Valid User Code

The reserved ARM Cortex-M3 exception vector location 7 (offset 0x0000 001C in the vector table) should contain the 2's complement of the check-sum of table entries 0 through 6. This causes the checksum of the first 8 table entries to be 0. The bootloader code checksums the first 8 locations in sector 0 of the flash. If the result is 0, then execution control is transferred to the user code.

If the signature is not valid, the auto-baud routine synchronizes with the host via the serial port (UART).

If the UART is selected, the host should send a '?' (0x3F) as a synchronization character and wait for a response. The host side serial port settings should be 8 data bits, 1 stop bit and no parity. The auto-baud routine measures the bit time of the received synchronization character in terms of its own frequency and programs the baud rate generator of the serial port. It also sends an ASCII string ("Synchronized<CR><LF>") to the host. In response to this host should send the same string ("Synchronized<CR><LF>"). The auto-baud routine looks at the received characters to verify synchronization. If synchronization is verified then "OK<CR><LF>" string is sent to the host. Host should respond by sending the crystal frequency (in kHz) at which the part is running. For example, if the part is running at 10 MHz, the response from the host should be "10000<CR><LF>". "OK<CR><LF>" string is sent to the host after receiving the crystal frequency. If synchronization is not verified then the auto-baud routine waits again for a synchronization character. For auto-baud to work correctly in case of user invoked ISP, the CCLK frequency should be greater than or equal to 10 MHz. In USART ISP mode, the LPC1315/16/17/45/46/47 is clocked by the IRC and the crystal frequency is ignored.

Once the crystal frequency is received the part is initialized and the ISP command handler is invoked. For safety reasons an "Unlock" command is required before executing the commands resulting in flash erase/write operations and the "Go" command. The rest of

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

the commands can be executed without the unlock command. The Unlock command is required to be executed once per ISP session. The Unlock command is explained in Section 21.13 "ISP commands" on page 374.

21.8 ISP/IAP communication protocol

All ISP commands should be sent as single ASCII strings. Strings should be terminated with Carriage Return (CR) and/or Line Feed (LF) control characters. Extra <CR> and <LF> characters are ignored. All ISP responses are sent as <CR><LF> terminated ASCII strings. Data is sent and received in UU-encoded format.

21.8.1 ISP command format

"Command Parameter_0 Parameter_1 ... Parameter_n<CR><LF>" "Data" (Data only for Write commands).

21.8.2 ISP response format

"Return_Code<CR><LF>Response_0<CR><LF>Response_1<CR><LF>...
Response_n<CR><LF>"Data" (Data only for Read commands).

21.8.3 ISP data format

The data stream is in UU-encoded format. The UU-encode algorithm converts 3 bytes of binary data in to 4 bytes of printable ASCII character set. It is more efficient than Hex format which converts 1 byte of binary data in to 2 bytes of ASCII hex. The sender should send the check-sum after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. The receiver should compare it with the check-sum of the received bytes. If the check-sum matches then the receiver should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match the receiver should respond with "RESEND<CR><LF>". In response the sender should retransmit the bytes.

21.8.4 ISP flow control

A software XON/XOFF flow control scheme is used to prevent data loss due to buffer overrun. When the data arrives rapidly, the ASCII control character DC3 (stop) is sent to stop the flow of data. Data flow is resumed by sending the ASCII control character DC1 (start). The host should also support the same flow control scheme.

21.8.5 ISP command abort

Commands can be aborted by sending the ASCII control character "ESC". This feature is not documented as a command under "ISP Commands" section. Once the escape code is received the ISP command handler waits for a new command.

21.8.6 Interrupts during ISP

The boot block interrupt vectors located in the boot block of the flash are active after any reset.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.8.7 Interrupts during IAP

The on-chip flash memory is not accessible during erase/write operations. When the user application code starts executing, the interrupt vectors from the user flash area are active. Before making any IAP call, either disable the interrupts or ensure that the user interrupt vectors are active in RAM and that the interrupt handlers reside in RAM. The IAP code does not use or disable interrupts.

21.8.8 RAM used by ISP command handler

ISP commands use on-chip RAM from $0x1000\ 017C$ to $0x1000\ 025B$. The user could use this area, but the contents may be lost upon reset. Flash programming commands use the top 32 bytes of on-chip RAM. The stack is located at RAM top - 32 bytes. The maximum stack usage is 256 bytes and grows downwards.

21.8.9 RAM used by IAP command handler

Flash programming commands use the top 32 bytes of on-chip RAM. The maximum stack usage in the user allocated stack space is 128 bytes and grows downwards.

21.9 USB communication protocol

The LPC1345/46/47 is enumerated as a Mass Storage Class (MSC) device to a PC or another embedded system. In order to connect via the USB interface, the part must use the external crystal at a frequency of 12 MHz. The MSC device presents an easy integration with the PC's operating system. The flash memory space is represented as a drive in the host file system. The entire available user flash is mapped to a file of the size of the LPC1345/46/47 flash in the host's folder with the default name 'firmware.bin'. The 'firmware.bin' file can be deleted and a new file can be copied into the directory, thereby updating the user code in flash. Note that the filename of the new flash image file is not important. After a reset or a power cycle, the new file is visible in the host's file system under it's default name 'firmware.bin'.

The code read protection (CRP, see <u>Table 341</u>) level determines how the flash is reprogrammed:

If CRP1 or CRP2 is enabled, the user flash is erased when the file is deleted.

If CRP1 is enabled or no CRP is selected, the user flash is erased and reprogrammed when the new file is copied. However, only the area occupied by the new file is erased and reprogrammed.

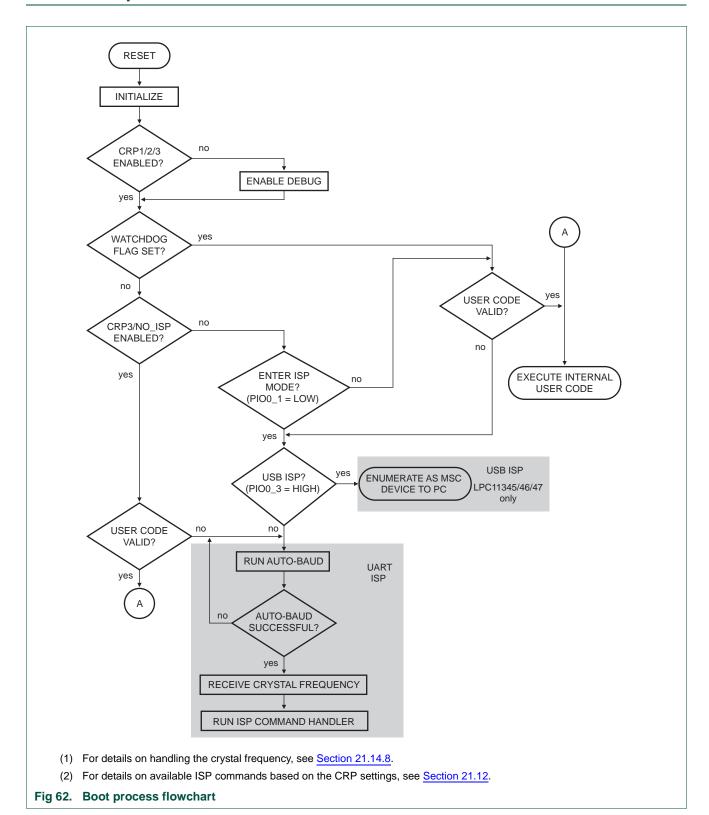
Remark: The only commands supported for the LPC1345/46/47 flash image folder are copy and delete.

Three Code Read Protection (CRP) levels can be enabled for flash images updated through USB (see <u>Section 21.12</u> for details). The volume label on the MSCD indicates the CRP status.

368 of 416

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 341. CRP levels for USB boot images


CRP status	Volume label	Description
No CRP	CRP DISABLD	The user flash can be read or written.
CRP1	CRP1 ENABLD	The user flash content cannot be read but can be updated. The flash memory sectors are updated depending on the new firmware image.
CRP2	CRP2 ENABLD	The user flash content cannot be read but can be updated. The entire user flash memory is erased before writing the new firmware image.
CRP3	CRP3 ENABLD	The user flash content cannot be read or updated. The bootloader always executes the user application if valid.

21.9.1 Usage note

When programming flash images via Flash Magic or Serial Wire Debugger (SWD), the user code valid signature is automatically inserted by the programming utility. When using USB ISP, the user code valid signature must be either part of the vector table, or the axf or binary file must be post-processed to insert the checksum.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.10 Boot process flowchart

UM10524

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.11 Sector numbers

Some IAP and ISP commands operate on sectors and specify sector numbers. In addition, the LPCLPC1315/16/17/45/46/47 support a page erase command. The following table shows the correspondence between page numbers, sector numbers, and memory addresses for LPC1315/16/17/45/46/47 devices.

The size of a sector is 4 kB, the size of a page is 256 Byte. One sector contains 16 pages.

Table 342. LPC1315/16/17/45/46/47 flash sectors

Sector number	Sector size [kB]	Page number	Address range	LPC1345/ LPC1315	LPC1346/ LPC1316	LPC1347/ LPC1317
0	4	0 -15	0x0000 0000 - 0x0000 0FFF	yes	yes	yes
1	4	16 - 31	0x0000 1000 - 0x0000 1FFF	yes	yes	yes
2	4	32 - 47	0x0000 2000 - 0x0000 2FFF	yes	yes	yes
3	4	48 - 63	0x0000 3000 - 0x0000 3FFF	yes	yes	yes
4	4	64 - 79	0x0000 4000 - 0x0000 4FFF	yes	yes	yes
5	4	80 - 95	0x0000 5000 - 0x0000 5FFF	yes	yes	yes
6	4	96 - 111	0x0000 6000 - 0x0000 6FFF	yes	yes	yes
7	4	112 - 127	0x0000 7000 - 0x0000 7FFF	yes	yes	yes
8	4	128 - 143	0x0000 8000 - 0x0000 8FFF	no	yes	yes
9	4	144 - 159	0x0000 9000 - 0x0000 9FFF	no	yes	yes
10	4	160 - 175	0x0000 A000 - 0x0000 AFFF	no	yes	yes
11	4	176 - 191	0x0000 B000 - 0x0000 BFFF	no	yes	yes
12	4	192 - 207	0x0000 C000 - 0x0000 CFFF	no	no	yes
13	4	208 - 223	0x0000 D000 - 0x0000 DFFF	no	no	yes
14	4	224 - 239	0x0000 E000 - 0x0000 EFFF	no	no	yes
15	4	240 - 255	0x0000 F000 - 0x0000 FFFF	no	no	yes

21.12 Code Read Protection (CRP)

Code Read Protection is a mechanism that allows the user to enable different levels of security in the system so that access to the on-chip flash and use of the ISP can be restricted. When needed, CRP is invoked by programming a specific pattern in flash location at 0x0000 02FC. IAP commands are not affected by the code read protection.

Important: any CRP change becomes effective only after the device has gone through a power cycle.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 343. Code Read Protection (CRP) options

Name	Pattern programmed in 0x0000 02FC	Description
NO_ISP	0x4E69 7370	Prevents sampling of pin PIO0_1 for entering ISP mode. PIO0_1 is available for other uses.
CRP1	0x12345678	Access to chip via the SWD pins is disabled. This mode allows partial flash update using the following ISP commands and restrictions:
		 Write to RAM command cannot access RAM below 0x1000 0300.
		 Copy RAM to flash command can not write to Sector 0.
		 Erase command can erase Sector 0 only when all sectors are selected for erase.
		Compare command is disabled.
		 Read Memory command is disabled.
		This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. Since compare command is disabled in case of partial updates the secondary loader should implement checksum mechanism to verify the integrity of the flash.
CRP2	0x87654321	Access to chip via the SWD pins is disabled. The following ISP commands are disabled:
		Read Memory
		Write to RAM
		• Go
		 Copy RAM to flash
		Compare
		When CRP2 is enabled the ISP erase command only allows erasure of all user sectors.
CRP3	0x43218765	Access to chip via the SWD pins is disabled. ISP entry by pulling PIO0_1 LOW is disabled if a valid user code is present in flash sector 0.
		This mode effectively disables ISP override using PIO0_1 pin. It is up to the user's application to provide a flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.
		Caution: If CRP3 is selected, no future factory testing can be performed on the device.

Table 344. Code Read Protection hardware/software interaction

CRP option	User Code Valid	PIO0_1 pin at reset	SWD enabled	LPC1315/16/1 7/45/46/47 enters ISP mode	partial flash Update in ISP mode
None	No	x	Yes	Yes	Yes
None	Yes	High	Yes	No	NA
None	Yes	Low	Yes	Yes	Yes
CRP1	Yes	High	No	No	NA
CRP1	Yes	Low	No	Yes	Yes

UM10524

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 344. Code Read Protection hardware/software interaction ...continued

CRP option	User Code Valid	PIO0_1 pin at reset	SWD enabled	LPC1315/16/1 7/45/46/47 enters ISP mode	partial flash Update in ISP mode
CRP2	Yes	High	No	No	NA
CRP2	Yes	Low	No	Yes	No
CRP3	Yes	х	No	No	NA
CRP1	No	Х	No	Yes	Yes
CRP2	No	Х	No	Yes	No
CRP3	No	Х	No	Yes	No

Table 345. ISP commands allowed for different CRP levels

ISP command	CRP1	CRP2	CRP3 (no entry in ISP mode allowed)
Unlock	yes	yes	n/a
Set Baud Rate	yes	yes	n/a
Echo	yes	yes	n/a
Write to RAM	yes; above 0x1000 0300 only	no	n/a
Read Memory	no	no	n/a
Prepare sector(s) for write operation	yes	yes	n/a
Copy RAM to flash	yes; not to sector 0	no	n/a
Go	no	no	n/a
Erase sector(s)	yes; sector 0 can only be erased when all sectors are erased.	yes; all sectors only	n/a
Blank check sector(s)	no	no	n/a
Read Part ID	yes	yes	n/a
Read Boot code version	yes	yes	n/a
Compare	no	no	n/a
ReadUID	yes	yes	n/a

In case a CRP mode is enabled and access to the chip is allowed via the ISP, an unsupported or restricted ISP command will be terminated with return code CODE_READ_PROTECTION_ENABLED.

21.12.1 ISP entry protection

In addition to the three CRP modes, the user can prevent the sampling of pin PIO0_1 for entering ISP mode and thereby release pin PIO0_1 for other uses. This is called the NO_ISP mode. The NO_ISP mode can be entered by programming the pattern 0x4E69 7370 at location 0x0000 02FC.

The NO_ISP mode is identical to the CRP3 mode except for SWD access, which is allowed in NO_ISP mode but disabled in CRP3 mode. The NO_ISP mode does not offer any code protection.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.13 ISP commands

The following commands are accepted by the ISP command handler. Detailed status codes are supported for each command. The command handler sends the return code INVALID_COMMAND when an undefined command is received. Commands and return codes are in ASCII format.

CMD_SUCCESS is sent by ISP command handler only when received ISP command has been completely executed and the new ISP command can be given by the host. Exceptions from this rule are "Set Baud Rate", "Write to RAM", "Read Memory", and "Go" commands.

Table 346. ISP command summary

ISP Command	Usage	Described in
Unlock	U <unlock code=""></unlock>	Table 347
Set Baud Rate	B <baud rate=""> <stop bit=""></stop></baud>	Table 348
Echo	A <setting></setting>	Table 349
Write to RAM	W <start address=""> <number bytes="" of=""></number></start>	Table 350
Read Memory	R <address> <number bytes="" of=""></number></address>	Table 351
Prepare sector(s) for write operation	P <start number="" sector=""> <end number="" sector=""></end></start>	<u>Table 352</u>
Copy RAM to flash	C <flash address=""> <ram address=""> <number bytes="" of=""></number></ram></flash>	Table 353
Go	G <address> <mode></mode></address>	Table 354
Erase sector(s)	E <start number="" sector=""> <end number="" sector=""></end></start>	Table 355
Blank check sector(s)	I <start number="" sector=""> <end number="" sector=""></end></start>	Table 356
Read Part ID	J	Table 357
Read Boot code version	К	Table 359
Compare	M <address1> <address2> <number bytes="" of=""></number></address2></address1>	Table 360
ReadUID	N	Table 361

21.13.1 Unlock < Unlock code>

Table 347. ISP Unlock command

Command	U	
Input	Unlock code: 23130 ₁₀	
Return Code	CMD_SUCCESS	
	INVALID_CODE	
	PARAM_ERROR	
Description	This command is used to unlock Flash Write, Erase, and Go commands.	
Example	"U 23130 <cr><lf>" unlocks the Flash Write/Erase & Go commands.</lf></cr>	

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.13.2 Set Baud Rate <Baud Rate> <stop bit>

Table 348. ISP Set Baud Rate command

Command	В	
Input	Baud Rate: 9600 19200 38400 57600 115200	
	Stop bit: 1 2	
Return Code	CMD_SUCCESS	
	INVALID_BAUD_RATE	
	INVALID_STOP_BIT	
	PARAM_ERROR	
Description	This command is used to change the baud rate. The new baud rate is effective after the command handler sends the CMD_SUCCESS return code.	
Example	"B 57600 1 <cr><lf>" sets the serial port to baud rate 57600 bps and 1 stop bit.</lf></cr>	

21.13.3 Echo <setting>

Table 349. ISP Echo command

Command	A	
Input	Setting: ON = 1 OFF = 0	
Return Code	CMD_SUCCESS	
	PARAM_ERROR	
Description	The default setting for echo command is ON. When ON the ISP command handler sends the received serial data back to the host.	
Example	"A 0 <cr><lf>" turns echo off.</lf></cr>	

21.13.4 Write to RAM <start address> <number of bytes>

The host should send the data only after receiving the CMD_SUCCESS return code. The host should send the check-sum after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less than 20 UU-encoded lines then the check-sum should be of the actual number of bytes sent. The ISP command handler compares it with the check-sum of the received bytes. If the check-sum matches, the ISP command handler responds with "OK<CR><LF>" to continue further transmission. If the check-sum does not match, the ISP command handler responds with "RESEND<CR><LF>". In response the host should retransmit the bytes.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 350. ISP Write to RAM command

Command	W	
Input	Start Address: RAM address where data bytes are to be written. This address should be a word boundary.	
	Number of Bytes: Number of bytes to be written. Count should be a multiple of 4	
Return Code	CMD_SUCCESS	
	ADDR_ERROR (Address not on word boundary)	
	ADDR_NOT_MAPPED	
	COUNT_ERROR (Byte count is not multiple of 4)	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to download data to RAM. Data should be in UU-encoded format. This command is blocked when code read protection is enabled.	
Example	"W 268436224 4 <cr><lf>" writes 4 bytes of data to address 0x1000 0300.</lf></cr>	

21.13.5 Read Memory <address> <no. of bytes>

The data stream is followed by the command success return code. The check-sum is sent after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less than 20 UU-encoded lines then the check-sum is of actual number of bytes sent. The host should compare it with the checksum of the received bytes. If the check-sum matches then the host should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match then the host should respond with "RESEND<CR><LF>". In response the ISP command handler sends the data again.

Table 351. ISP Read Memory command

Table 331. ISI	Table 331. 13F Read Methory Command	
Command	R	
Input	Start Address: Address from where data bytes are to be read. This address should be a word boundary.	
	Number of Bytes: Number of bytes to be read. Count should be a multiple of 4.	
Return Code	CMD_SUCCESS followed by <actual (uu-encoded)="" data=""> </actual>	
	ADDR_ERROR (Address not on word boundary)	
	ADDR_NOT_MAPPED	
	COUNT_ERROR (Byte count is not a multiple of 4)	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to read data from RAM or flash memory. This command is blocked when code read protection is enabled.	
Example	"R 268435456 4 <cr><lf>" reads 4 bytes of data from address 0x1000 0000.</lf></cr>	

21.13.6 Prepare sector(s) for write operation <start sector number> <end sector number>

This command makes flash write/erase operation a two step process.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 352. ISP Prepare sector(s) for write operation command

	_	
Command	P	
Input	Start Sector Number	
	End Sector Number: Should be greater than or equal to start sector number.	
Return Code	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	PARAM_ERROR	
Description	This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot block can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.	
Example	"P 0 0 <cr><lf>" prepares the flash sector 0.</lf></cr>	

21.13.7 Copy RAM to flash <Flash address> <RAM address> <no of bytes>

When writing to the flash, the following limitations apply:

- 1. The smallest amount of data that can be written to flash by the copy RAM to flash command is 256 byte (equal to one page).
- 2. One page consists of 16 flash words (lines), and the smallest amount that can be modified per flash write is one flash word (one line). This limitation follows from the application of ECC to the flash write operation, see Section 21.6.
- 3. To avoid write disturbance (a mechanism intrinsic to flash memories), an erase should be performed after following 16 consecutive writes inside the same page. Note that the erase operation then erases the entire sector.

Remark: Once a page has been written to 16 times, it is still possible to write to other pages within the same sector without performing a sector erase (assuming that those pages have been erased previously).

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 353. ISP Copy command

Command	С
Input	Flash Address(DST): Destination flash address where data bytes are to be written. The destination address should be a 256 byte boundary.
	RAM Address(SRC): Source RAM address from where data bytes are to be read.
	Number of Bytes: Number of bytes to be written. Should be 256 512 1024 4096.
Return Code	CMD_SUCCESS
	SRC_ADDR_ERROR (Address not on word boundary)
	DST_ADDR_ERROR (Address not on correct boundary)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR WRITE_OPERATION
	BUSY
	CMD_LOCKED
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to program the flash memory. The "Prepare Sector(s) for Write Operation" command should precede this command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot block cannot be written by this command. This command is blocked when code read protection is enabled. Also see Section 21.6 for the number of bytes that can be written.
Example	"C 0 268467504 512 <cr><lf>" copies 512 bytes from the RAM address 0x1000 0800 to the flash address 0.</lf></cr>

21.13.8 Go <address> <mode>

Table 354. ISP Go command

Command	G	
Input	Address: Flash or RAM address from which the code execution is to be started. This address should be on a word boundary.	
	Mode: T (Execute program in Thumb Mode) A (Execute program in ARM mode).	
Return Code	CMD_SUCCESS	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
	CMD_LOCKED	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to execute a program residing in RAM or flash memory. It may not be possible to return to the ISP command handler once this command is successfully executed. This command is blocked when code read protection is enabled.	
Example	"G 0 A <cr><lf>" branches to address 0x0000 0000 in ARM mode.</lf></cr>	

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.13.9 Erase sector(s) <start sector number> <end sector number>

Table 355. ISP Erase sector command

Command	E	
Input	Start Sector Number	
	End Sector Number: Should be greater than or equal to start sector number.	
Return Code	CMD_SUCCESS	
	BUSY	
	INVALID_SECTOR	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	CMD_LOCKED	
	PARAM_ERROR	
	CODE_READ_PROTECTION_ENABLED	
Description	This command is used to erase one or more sector(s) of on-chip flash memory. The boot block can not be erased using this command. This command only allows erasure of all user sectors when the code read protection is enabled.	
Example	"E 2 3 <cr><lf>" erases the flash sectors 2 and 3.</lf></cr>	

21.13.10 Blank check sector(s) < sector number> < end sector number>

Table 356. ISP Blank check sector command

Command	I	
Input	Start Sector Number:	
	End Sector Number: Should be greater than or equal to start sector number.	
Return Code	CMD_SUCCESS	
	SECTOR_NOT_BLANK (followed by <offset blank="" first="" location="" non="" of="" the="" word=""> <contents blank="" location="" non="" of="" word="">) </contents></offset>	
	INVALID_SECTOR	
	PARAM_ERROR	
Description	This command is used to blank check one or more sectors of on-chip flash memory.	
	Blank check on sector 0 always fails as first 64 bytes are re-mapped to flash boot block.	
	When CRP is enabled, the blank check command returns 0 for the offset and value of sectors which are not blank. Blank sectors are correctly reported irrespective of the CRP setting.	
Example	"I 2 3 <cr><lf>" blank checks the flash sectors 2 and 3.</lf></cr>	

21.13.11 Read Part Identification number

Table 357. ISP Read Part Identification command

Command	J	
Input	None.	
Return Code	CMD_SUCCESS followed by part identification number in ASCII (see <u>Table 358</u> <u>"LPC1315/16/17/45/46/47 device identification numbers"</u>).	
Description	This command is used to read the part identification number.	

User manual

379 of 416

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 358. LPC1315/16/17/45/46/47 device identification numbers

Device	Hex coding
LPC1345FHN33	0x2801 0541
LPC1345FBD48	0x2801 0541
LPC1346FHN33	0x0801 8542
LPC1346FBD48	0x0801 8542
LPC1347FHN33	0x0802 0543
LPC1347FBD48	0x0802 0543
LPC1347FBD64	0x0802 0543
LPC1315FHN33	0x3A01 0523
LPC1315FBD48	0x3A01 0523
LPC1316FHN33	0x1A01 8524
LPC1316FBD48	0x1A01 8524
LPC1317FHN33	0x1A02 0525
LPC1317FBD48	0x1A02 0525
LPC1317FBD64	0x1A02 0525

21.13.12 Read Boot code version number

Table 359. ISP Read Boot Code version number command

Command	К	
Input	None	
Return Code	e CMD_SUCCESS followed by 2 bytes of boot code version number in ASCII format. It is to be interpreted as <byte1(major)>.<byte0(minor)>.</byte0(minor)></byte1(major)>	
Description	This command is used to read the boot code version number.	

21.13.13 Compare <address1> <address2> <no of bytes>

Table 360. ISP Compare command

Command	M
Input	Address1 (DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.
	Address2 (SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.
	Number of Bytes: Number of bytes to be compared; should be a multiple of 4.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 360. ISP Compare command

Command	M	
Return Code	CMD_SUCCESS (Source and destination data are equal)	
	COMPARE_ERROR (Followed by the offset of first mismatch)	
	COUNT_ERROR (Byte count is not a multiple of 4)	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
	PARAM_ERROR	
Description	This command is used to compare the memory contents at two locations.	
	Compare result may not be correct when source or destination address contains any of the first 512 bytes starting from address zero. First 512 bytes are re-mapped to boot ROM	
Example	"M 8192 268468224 4 <cr><lf>" compares 4 bytes from the RAM address 0x1000 8000 to the 4 bytes from the flash address 0x2000.</lf></cr>	

21.13.14 ReadUID

Table 361. ReadUID command

Command	N	
Input	None	
Return Code	code CMD_SUCCESS followed by four 32-bit words of a unique serial number in ASCII format. The word sent at the lowest address is sent first.	
Description	This command is used to read the unique ID.	

21.13.15 ISP Return Codes

Table 362. ISP Return Codes Summary

Return Code	Mnemonic	Description	
0	CMD_SUCCESS	Command is executed successfully. Sent by ISP handler only when command given by the host has been completely and successfully executed.	
1	INVALID_COMMAND	Invalid command.	
2	SRC_ADDR_ERROR	Source address is not on word boundary.	
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.	
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.	
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.	
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.	
7	INVALID_SECTOR	Sector number is invalid or end sector number is greater than start sector number.	
8	SECTOR_NOT_BLANK	Sector is not blank.	
9	SECTOR_NOT_PREPARED_FOR_ WRITE_OPERATION	Command to prepare sector for write operation was not executed.	

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 362. ISP Return Codes Summary

Return Code	Mnemonic	Description
10	COMPARE_ERROR	Source and destination data not equal.
11	BUSY	Flash programming hardware interface is busy.
12	PARAM_ERROR	Insufficient number of parameters or invalid parameter.
13	ADDR_ERROR	Address is not on word boundary.
14	ADDR_NOT_MAPPED	Address is not mapped in the memory map. Count value is taken in to consideration where applicable.
15	CMD_LOCKED	Command is locked.
16	INVALID_CODE	Unlock code is invalid.
17	INVALID_BAUD_RATE	Invalid baud rate setting.
18	INVALID_STOP_BIT	Invalid stop bit setting.
19	CODE_READ_PROTECTION_ ENABLED	Code read protection enabled.

21.14 IAP commands

For in application programming the IAP routine should be called with a word pointer in register r0 pointing to memory (RAM) containing command code and parameters. Result of the IAP command is returned in the result table pointed to by register r1. The user can reuse the command table for result by passing the same pointer in registers r0 and r1. The parameter table should be big enough to hold all the results in case the number of results are more than number of parameters. Parameter passing is illustrated in the Figure 63. The number of parameters and results vary according to the IAP command. The maximum number of parameters is 5, passed to the "Copy RAM to FLASH" command. The maximum number of results is 4, returned by the "ReadUID" command. The command handler sends the status code INVALID_COMMAND when an undefined command is received. The IAP routine resides at 0x1FFF 1FF0 location and it is thumb code.

The IAP function could be called in the following way using C.

Define the IAP location entry point. Since the 0th bit of the IAP location is set there will be a change to Thumb instruction set when the program counter branches to this address.

```
#define IAP_LOCATION 0x1fff1ff1
```

Define data structure or pointers to pass IAP command table and result table to the IAP function:

```
unsigned long command[5];
unsigned long result[4];

or

unsigned long * command;
unsigned long * result;
command=(unsigned long *) 0x...
result= (unsigned long *) 0x...
```

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Define pointer to function type, which takes two parameters and returns void. Note the IAP returns the result with the base address of the table residing in R1.

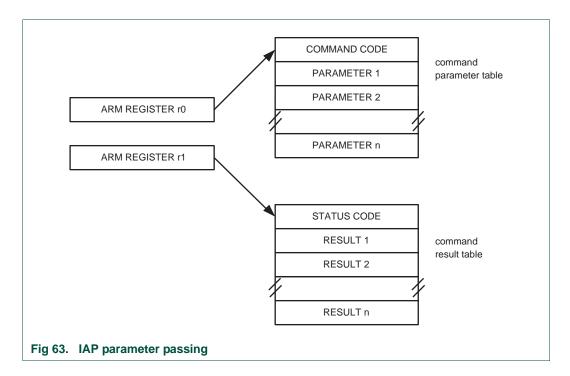
```
typedef void (*IAP)(unsigned int [],unsigned int[]);
IAP iap_entry;
```

Setting function pointer:

```
iap_entry=(IAP) IAP_LOCATION;
```

Whenever you wish to call IAP you could use the following statement.

```
iap_entry (command, result);
```


As per the ARM specification (The ARM Thumb Procedure Call Standard SWS ESPC 0002 A-05) up to 4 parameters can be passed in the r0, r1, r2 and r3 registers respectively. Additional parameters are passed on the stack. Up to 4 parameters can be returned in the r0, r1, r2 and r3 registers respectively. Additional parameters are returned indirectly via memory. Some of the IAP calls require more than 4 parameters. If the ARM suggested scheme is used for the parameter passing/returning then it might create problems due to difference in the C compiler implementation from different vendors. The suggested parameter passing scheme reduces such risk.

The flash memory is not accessible during a write or erase operation. IAP commands, which results in a flash write/erase operation, use 32 bytes of space in the top portion of the on-chip RAM for execution. The user program should not be use this space if IAP flash programming is permitted in the application.

Table 363. IAP Command Summary

IAP Command	Command Code	Described in
Prepare sector(s) for write operation	50 (decimal)	<u>Table 364</u>
Copy RAM to flash	51 (decimal)	Table 365
Erase sector(s)	52 (decimal)	Table 366
Blank check sector(s)	53 (decimal)	Table 367
Read Part ID	54 (decimal)	Table 368
Read Boot code version	55 (decimal)	Table 369
Compare	56 (decimal)	Table 370
Reinvoke ISP	57 (decimal)	Table 371
Read UID	58 (decimal)	Table 372
Erase page	59 (decimal)	Table 373
EEPROM Write	61(decimal)	Table 374
EEPROM Read	62(decimal)	Table 375

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.14.1 Prepare sector(s) for write operation

This command makes flash write/erase operation a two step process.

Table 364. IAP Prepare sector(s) for write operation command

Prepare sector(s) for write operation	
Command code: 50 (decimal)	
Param0: Start Sector Number	
Param1: End Sector Number (should be greater than or equal to start sector number).	
CMD_SUCCESS	
BUSY	
INVALID_SECTOR	
None	
This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot sector can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.	

21.14.2 Copy RAM to flash

See Section 21.13.7 for limitations on the write-to-flash process.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 365. IAP Copy RAM to flash command

Command	Copy RAM to flash
Input	Command code: 51 (decimal)
	Param0(DST): Destination flash address where data bytes are to be written. This address should be a 256 byte boundary.
	Param1(SRC): Source RAM address from which data bytes are to be read. This address should be a word boundary.
	Param2: Number of bytes to be written. Should be 256 512 1024 4096.
	Param3: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS
	SRC_ADDR_ERROR (Address not a word boundary)
	DST_ADDR_ERROR (Address not on correct boundary)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	BUSY
Result	None
Description	This command is used to program the flash memory. The affected sectors should be prepared first by calling "Prepare Sector for Write Operation" command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot sector can not be written by this command. Also see Section 21.6 for the number of bytes that can be written.

21.14.3 Erase Sector(s)

Table 366. IAP Erase Sector(s) command

Erase Sector(s)	
Command code: 52 (decimal)	
Param0: Start Sector Number	
Param1: End Sector Number (should be greater than or equal to start sector number).	
Param2: System Clock Frequency (CCLK) in kHz.	
CMD_SUCCESS	
BUSY	
SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
INVALID_SECTOR	
None	
This command is used to erase a sector or multiple sectors of on-chip flash memory. The boot sector can not be erased by this command. To erase a single sector use the same "Start" and "End" sector numbers.	

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.14.4 Blank check sector(s)

Table 367. IAP Blank check sector(s) command

Command	Blank check sector(s)	
Input	Command code: 53 (decimal)	
	Param0: Start Sector Number	
	Param1: End Sector Number (should be greater than or equal to start sector number).	
Return Code	CMD_SUCCESS	
	BUSY	
	SECTOR_NOT_BLANK	
	INVALID_SECTOR	
Result	Result0: Offset of the first non blank word location if the Status Code is SECTOR_NOT_BLANK.	
	Result1: Contents of non blank word location.	
Description	This command is used to blank check a sector or multiple sectors of on-chip flash memory. To blank check a single sector use the same "Start" and "End" sector numbers.	

21.14.5 Read Part Identification number

Table 368. IAP Read Part Identification command

Read part identification number	
Command code: 54 (decimal)	
Parameters: None	
CMD_SUCCESS	
Result0: Part Identification Number.	
This command is used to read the part identification number.	

21.14.6 Read Boot code version number

Table 369. IAP Read Boot Code version number command

Command	Read boot code version number
Input	Command code: 55 (decimal)
	Parameters: None
Return Code	CMD_SUCCESS
Result	Result0: 2 bytes of boot code version number. Read as byte1(Major)>. byte0(Minor)>
Description	This command is used to read the boot code version number.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.14.7 Compare <address1> <address2> <no of bytes>

Table 370. IAP Compare command

Command	Compare		
Input	Command code: 56 (decimal)		
	Param0(DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.		
	Param1(SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.		
	Param2: Number of bytes to be compared; should be a multiple of 4.		
Return Code	CMD_SUCCESS		
	COMPARE_ERROR		
	COUNT_ERROR (Byte count is not a multiple of 4)		
	ADDR_ERROR		
	ADDR_NOT_MAPPED		
Result	Result0: Offset of the first mismatch if the Status Code is COMPARE_ERROR.		
Description	This command is used to compare the memory contents at two locations.		
	The result may not be correct when the source or destination includes any of the first 512 bytes starting from address zero. The first 512 bytes can be re-mapped to RAM.		

21.14.8 Reinvoke ISP

Table 371. Reinvoke ISP

Command	Compare
Input	Command code: 57 (decimal)
Return Code	None
Result	None.
Description	This command is used to invoke the bootloader in ISP mode. It maps boot vectors, sets PCLK = CCLK, configures UART pins RXD and TXD, resets counter/timer CT32B1 and resets the FDR register (see <u>Table 221</u>). This command may be used when a valid user program is present in the internal flash memory and the PIOO_1 pin is not accessible to force the ISP mode.

21.14.9 ReadUID

Table 372. IAP ReadUID command

Command	Compare			
Input	Command code: 58 (decimal)			
Return Code	CMD_SUCCESS			
Result	Result0: The first 32-bit word (at the lowest address). Result1: The second 32-bit word. Result2: The third 32-bit word. Result3: The fourth 32-bit word.			
Description	This command is used to read the unique ID.			

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.14.10 Erase page

Table 373. IAP Erase page command

Command	Erase page		
Input	Command code: 59 (decimal)		
	Param0: Start page number.		
	Param1: End page number (should be greater than or equal to start page)		
	Param2: System Clock Frequency (CCLK) in kHz.		
Return Code	CMD_SUCCESS		
	BUSY		
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION		
	INVALID_SECTOR		
Result	None		
Description	This command is used to erase a page or multiple pages of on-chip flash memory. To erase a single page use the same "start" and "end" page numbers.		

21.14.11 Write EEPROM

Table 374. IAP Write EEPROM command

Command	Compare
Input	Command code: 61 (decimal) Param0: EEPROM address. Param1: RAM address. Param2: Number of bytes to be written. Param3: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS SRC_ADDR_NOT_MAPPED DST_ADDR_NOT_MAPPED
Result	None
Description	Data is copied from the RAM address to the EEPROM address.
	Remark: The top 64 bytes of the EEPROM memory are reserved and cannot be written to.

21.14.12 Read EEPROM

Table 375. IAP Read EEPROM command

Command	Compare
Input	Command code: 62 (decimal) Param0: EEPROM address. Param1: RAM address. Param2: Number of bytes to be read. Param3: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS SRC_ADDR_NOT_MAPPED DST_ADDR_NOT_MAPPED
Result	None
Description	Data is copied from the EEPROM address to the RAM address.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.14.13 IAP Status Codes

Table 376. IAP Status Codes Summary

Status Code	Mnemonic	Description
0	CMD_SUCCESS	Command is executed successfully.
1	INVALID_COMMAND	Invalid command.
2	SRC_ADDR_ERROR	Source address is not on a word boundary.
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.
7	INVALID_SECTOR	Sector number is invalid.
8	SECTOR_NOT_BLANK	Sector is not blank.
9	SECTOR_NOT_PREPARED_ FOR_WRITE_OPERATION	Command to prepare sector for write operation was not executed.
10	COMPARE_ERROR	Source and destination data is not same.
11	BUSY	flash programming hardware interface is busy.

21.15 Debug notes

21.15.1 Comparing flash images

Depending on the debugger used and the IDE debug settings, the memory that is visible when the debugger connects might be the boot ROM, the internal SRAM, or the flash. To help determine which memory is present in the current debug environment, check the value contained at flash address 0x0000 0004. This address contains the entry point to the code in the ARM Cortex-M3 vector table, which is the bottom of the boot ROM, the internal SRAM, or the flash memory respectively.

Table 377. Memory mapping in debug mode

Memory mapping mode	Memory start address visible at 0x0000 0004		
Bootloader mode	0x1FFF 0000		
User flash mode	0x0000 0000		
User SRAM mode	0x1000 0000		

21.15.2 Serial Wire Debug (SWD) flash programming interface

Debug tools can write parts of the flash image to RAM and then execute the IAP call "Copy RAM to flash" repeatedly with proper offset.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

21.16 Flash controller registers

Table 378. Register overview: FMC (base address 0x4003 C000)

	_				
Name	Access	Address offset	Description	Reset value	Reference
FLASHCFG	R/W	0x010	Flash memory access time configuration register	-	<u>Table 379</u>
FMSSTART	R/W	0x020	Signature start address register	0	Table 380
FMSSTOP	R/W	0x024	Signature stop-address register	0	Table 381
FMSW0	R	0x02C	Word 0 [31:0]	-	Table 382
FMSW1	R	0x030	Word 1 [63:32]	-	Table 383
FMSW2	R	0x034	Word 2 [95:64]	-	Table 384
FMSW3	R	0x038	Word 3 [127:96]	-	Table 385
FMSTAT	R	0xFE0	Signature generation status register	0	Section 21. 16.5
FMSTATCLR	W	0xFE8	Signature generation status clear register	-	Section 21. 16.6

21.16.1 Flash memory access register

Depending on the system clock frequency, access to the flash memory can be configured with various access times by writing to the FLASHCFG register.

Remark: Improper setting of this register may result in incorrect operation of the LPC1315/16/17/45/46/47 flash memory. Do not change the flash access time when using the power profiles in efficiency, performance, or low-current modes.

Table 379. Flash configuration register (FLASHCFG, address 0x4003 C010) bit description

Bit	Symbol	Value	Description	Reset value
1:0	FLASHTIM		Flash memory access time. FLASHTIM +1 is equal to the number of system clocks used for flash access.	0x2
		0x0	1 system clock flash access time (for system clock frequencies of up to 25 MHz).	
		0x1	2 system clocks flash access time (for system clock frequencies of up to 55 MHz).	
		0x2	3 system clocks flash access time (for system clock frequencies of up to 72 MHz).	
		0x3	Reserved.	
31:2	-	-	Reserved. User software must not change the value of these bits. Bits 31:2 must be written back exactly as read.	-

21.16.2 Flash signature generation

The flash module contains a built-in signature generator. This generator can produce a 128-bit signature from a range of flash memory. A typical usage is to verify the flashed contents against a calculated signature (e.g. during programming).

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

The address range for generating a signature must be aligned on flash-word boundaries, i.e. 128-bit boundaries. Once started, signature generation completes independently. While signature generation is in progress, the flash memory cannot be accessed for other purposes, and an attempted read will cause a wait state to be asserted until signature generation is complete. Code outside of the flash (e.g. internal RAM) can be executed during signature generation. This can include interrupt services, if the interrupt vector table is re-mapped to memory other than the flash memory. The code that initiates signature generation should also be placed outside of the flash memory.

21.16.3 Signature generation address and control registers

These registers control automatic signature generation. A signature can be generated for any part of the flash memory contents. The address range to be used for generation is defined by writing the start address to the signature start address register (FMSSTART) and the stop address to the signature stop address register (FMSSTOP). The start and stop addresses must be aligned to 128-bit boundaries and can be derived by dividing the byte address by 16.

Signature generation is started by setting the SIG_START bit in the FMSSTOP register. Setting the SIG_START bit is typically combined with the signature stop address in a single write.

<u>Table 380</u> and <u>Table 381</u> show the bit assignments in the FMSSTART and FMSSTOP registers respectively.

Table 380. Flash module signature start register (FMSSTART - 0x4003 C020) bit description

Bit	Symbol	Description	Reset value
16:0	START	Signature generation start address (corresponds to AHB byte address bits[20:4]).	0
31:17	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 381. Flash module signature stop register (FMSSTOP - 0x4003 C024) bit description

Bit	Symbol	Value	Description	Reset value
16:0	STOP		BIST stop address divided by 16 (corresponds to AHB byte address [20:4]).	0
17	SIG_START		Start control bit for signature generation.	0
		0	Signature generation is stopped	
		1	Initiate signature generation	
31:18	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

21.16.4 Signature generation result registers

The signature generation result registers return the flash signature produced by the embedded signature generator. The 128-bit signature is reflected by the four registers FMSW0, FMSW1, FMSW2 and FMSW3.

391 of 416

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

The generated flash signature can be used to verify the flash memory contents. The generated signature can be compared with an expected signature and thus makes saves time and code space. The method for generating the signature is described in Section 21.16.2.

<u>Table 385</u> show bit assignment of the FMSW0 and FMSW1, FMSW2, FMSW3 registers respectively.

Table 382. FMSW0 register (FMSW0, address: 0x4003 C02C) bit description

Bit	Symbol	Description	Reset value
31:0	SW0[31:0]	Word 0 of 128-bit signature (bits 31 to 0).	-

Table 383. FMSW1 register (FMSW1, address: 0x4003 C030) bit description

Bit	Symbol	Description	Reset value
31:0	SW1[63:32]	Word 1 of 128-bit signature (bits 63 to 32).	-

Table 384. FMSW2 register (FMSW2, address: 0x4003 C034) bit description

Bit	Symbol	Description	Reset value
31:0	SW2[95:64]	Word 2 of 128-bit signature (bits 95 to 64).	-

Table 385. FMSW3 register (FMSW3, address: 0x4003 40C8) bit description

Bit	Symbol	Description	Reset value
31:0	SW3[127:96]	Word 3 of 128-bit signature (bits 127 to 96).	-

21.16.5 Flash module status register

The read-only FMSTAT register provides a means of determining when signature generation has completed. Completion of signature generation can be checked by polling the SIG_DONE bit in FMSTAT register. SIG_DONE should be cleared via the FMSTATCLR register before starting a signature generation operation, otherwise the status might indicate completion of a previous operation.

Table 386. Flash module status register (FMSTAT - 0x4003 CFE0) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	SIG_DONE	When 1, a previously started signature generation has completed. See FMSTATCLR register description for clearing this flag.	0
31:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

21.16.6 Flash module status clear register

The FMSTATCLR register is used to clear the signature generation completion flag.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

Table 387. Flash module status clear register (FMSTATCLR - 0x0x4003 CFE8) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	SIG_DONE_CLR	Writing a 1 to this bits clears the signature generation completion flag (SIG_DONE) in the FMSTAT register.	0
31:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

21.16.7 Algorithm and procedure for signature generation

Signature generation

A signature can be generated for any part of the flash contents. The address range to be used for signature generation is defined by writing the start address to the FMSSTART register, and the stop address to the FMSSTOP register.

The signature generation is started by writing a '1' to the SIG_START bit in the FMSSTOP register. Starting the signature generation is typically combined with defining the stop address, which is done in the STOP bits of the same register.

The time that the signature generation takes is proportional to the address range for which the signature is generated. Reading of the flash memory for signature generation uses a self-timed read mechanism and does not depend on any configurable timing settings for the flash. A safe estimation for the duration of the signature generation is:

When signature generation is triggered via software, the duration is in AHB clock cycles, and tcy is the time in ns for one AHB clock. The SIG_DONE bit in FMSTAT can be polled by software to determine when signature generation is complete.

After signature generation, a 128-bit signature can be read from the FMSW0 to FMSW3 registers. The 128-bit signature reflects the corrected data read from the flash. The 128-bit signature reflects flash parity bits and check bit values.

Content verification

The signature as it is read from the FMSW0 to FMSW3 registers must be equal to the reference signature. The algorithms to derive the reference signature is given in Figure 64.

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming

UM10524

Chapter 22: LPC1315/16/17/45/46/47 Serial Wire Debugger (SWD)

Rev. 4 — 12 March 2013

User manual

22.1 How to read this chapter

The debug functionality is identical for all LPC1315/16/17/45/46/47 parts.

22.2 Features

- Supports ARM Serial Wire Debug mode.
- Trace port provides CPU instruction trace capability. Output via a Serial Wire Viewer.
- Direct debug access to all memories, registers, and peripherals.
- No target resources are required for the debugging session.
- Four breakpoints. Four instruction breakpoints that can also be used to remap instruction addresses for code patches. Two data comparators that can be used to remap addresses for patches to literal values.
- Two data watchpoints that can also be used as triggers.
- Supports JTAG boundary scan.
- Instrumentation Trace Macrocell allows additional software controlled trace.

22.3 Introduction

Debug functions are integrated into the ARM Cortex-M3. Serial wire debug functions are supported. The ARM Cortex-M3 is configured to support up to four breakpoints and two watchpoints.

22.4 Description

Debugging with the LPC1315/16/17/45/46/47 uses the Serial Wire Debug mode. Support for boundary scan is available.

Trace is supported via the Serial Wire Output.

22.5 Pin description

The tables below indicate the various pin functions related to debug. Some of these functions share pins with other functions which therefore may not be used at the same time. Trace using the Serial Wire Output has limited bandwidth.

Chapter 22: LPC1315/16/17/45/46/47 Serial Wire Debugger (SWD)

Table 388. Serial Wire Debug pin description

Pin Name	Туре	Description
SWCLK	Input	Serial Wire Clock. This pin is the clock for SWD debug logic when in the Serial Wire Debug mode (SWD). This pin is pulled up internally.
SWDIO	Input / Output	Serial wire debug data input/output. The SWDIO pin is used by an external debug tool to communicate with and control the LPC1315/16/17/45/46/47. This pin is pulled up internally.
SWO	Output	Serial Wire Output. The SWO pin optionally provides data from the ITM and/or the ETM for an external debug tool to evaluate.

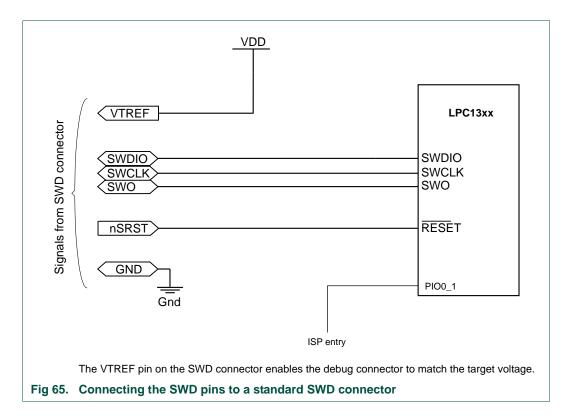
Table 389. JTAG boundary scan pin description

Pin Name	Туре	Description
TCK	Input	JTAG Test Clock . This pin is the clock for JTAG boundary scan when the RESET pin is LOW.
TMS	Input	JTAG Test Mode Select. The TMS pin selects the next state in the TAP state machine. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.
TDI	Input	JTAG Test Data In. This is the serial data input for the shift register. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.
TDO	Output	JTAG Test Data Output. This is the serial data output from the shift register. Data is shifted out of the device on the negative edge of the TCK signal. This pin is used for JTAG boundary scan when the RESET pin is LOW.
TRST	Input	JTAG Test Reset. The TRST pin can be used to reset the test logic within the debug logic. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.

22.6 Functional description

22.6.1 Debug limitations

Important: Due to limitations of the ARM Cortex-M3 integration, the LPC1315/16/17/45/46/47 cannot wake up in the usual manner from Deep-sleep mode. It is recommended not to use this mode during debug.


Another issue is that debug mode changes the way in which reduced power modes work internal to the ARM Cortex-M3 CPU, and this ripples through the entire system. These differences mean that power measurements should not be made while debugging, the results will be higher than during normal operation in an application.

During a debugging session, the System Tick Timer is automatically stopped whenever the CPU is stopped. Other peripherals are not affected.

22.6.2 Debug connections for SWD

For debugging purposes, it is useful to provide access to the ISP entry pin PIO0_1. This pin can be used to recover the part from configurations which would disable the SWD port such as improper PLL configuration, reconfiguration of SWD pins as ADC inputs, entry into Deep power-down mode out of reset, etc. This pin can be used for other functions such as GPIO, but it should not be held LOW on power-up or reset.

Chapter 22: LPC1315/16/17/45/46/47 Serial Wire Debugger (SWD)

22.6.3 Boundary scan

The RESET pin selects between the test TAP controller for JTAG boundary scan (RESET = LOW) and the ARM SWD debug port TAP controller (RESET = HIGH). The ARM SWD debug port is disabled while the LPC1315/16/17/45/46/47 is in reset. A LOW on the TRST pin resets the test TAP controller.

Remark: Boundary scan operations should not be started until 250 μ s after POR. The test TAP must be reset after the boundary scan and left in either TLR or RTO state. Boundary scan is not affected by Code Read Protection.

Remark: POR, BOD reset, or a LOW on the TRST pin puts the test TAP controller in the Test-Logic Reset state. The first TCK clock while RESET = HIGH places the test TAP in Run-Test Idle mode.

UM10524

Chapter 23: Supplementary information Rev. 4 — 12 March 2013

User manual

23.1 Abbreviations

Table 390. Abbreviations

Acronym	Description
A/D	Analog-to-Digital
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
GPIO	General Purpose Input/Output
JTAG	Joint Test Action Group
PLL	Phase-Locked Loop
RC	Resistor-Capacitor
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
SSP	Synchronous Serial Port
TAP	Test Access Port
UART	Universal Asynchronous Receiver/Transmitter
USART	Universal Synchronous Asynchronous Receiver/Transmitter

Chapter 23: Supplementary information

23.2 Legal information

23.2.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

23.2.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

23.2.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I2C-bus - logo is a trademark of NXP B.V.

Chapter 23: Supplementary information

23.3 Tables

Table 1.	Ordering information5	Table 30.	POR captured PIO status 1 (PIOPORCAP1,
Table 2.	Ordering options6		address 0x4004 8104) bit description 25
Table 3.	LPC1315/16/17/45/46/47 memory configuration 8	Table 31.	Brown-Out Detect (BODCTRL, address 0x4004
Table 4.	Pin summary11		8150) bit description
Table 5.	Register overview: SYSCON (base address:	Table 32.	System tick counter calibration (SYSTCKCAL,
	0x4004 8000)		address 0x4004 8154) bit description 26
Table 6.	System memory remap (SYSMEMREMAP,	Table 33.	IQR delay (IRQLATENCY, address 0x4004 8170)
	address 0x4004 8000) bit description14		bit description27
Table 7.	Peripheral reset control (PRESETCTRL, address	Table 34.	NMI Source Control (NMISRC, address 0x4004
	0x4004 0004) bit description		8174) bit description
Table 8.	System PLL control (SYSPLLCTRL, address	Table 35.	GPIO Pin Interrupt Select register (PINTSEL0 to
	0x4004 8008) bit description		7, address 0x4004 8178 (PINTSEL0) to 0x4004
Table 9.	System PLL status (SYSPLLSTAT, address		8194 (PINTSEL7)) bit description 28
	0x4004 800C) bit description	Table 36.	USB clock control (USBCLKCTRL, address
Table 10.	USB PLL control (USBPLLCTRL, address 0x4004		0x4004 8198) bit description 28
	8010) bit description	Table 37.	USB clock status (USBCLKST, address 0x4004
Table 11.	USB PLL status (USBPLLSTAT, address 0x4004		819C) bit description
	8014) bit description	Table 38.	Start logic 0 interrupt wake-up enable register 0
Table 12.	System oscillator control (SYSOSCCTRL,		(STARTERP0, address 0x4004 8204) bit
	address 0x4004 8020) bit description17		description
Table 13.	Watchdog oscillator control register	Table 39.	Start logic 1 interrupt wake-up enable register
	(WDTOSCCTRL, address 0x4004 8024) bit		(STARTERP1, address 0x4004 8214) bit
	description		description
Table 14.	System reset status register (SYSRSTSTAT,	Table 40.	Deep-sleep mode configuration register
	address 0x4004 8030) bit description 18		(PDSLEEPCFG, address 0x4004 8230) bit
Table 15.	System PLL clock source select		description
	(SYSPLLCLKSEL, address 0x4004 8040) bit	Table 41.	Wake-up configuration (PDAWAKECFG, address
	description19		0x4004 8234) bit description
Table 16.	USB PLL clock source select (USBPLLCLKSEL,	Table 42.	Power configuration register (PDRUNCFG,
	address 0x4004 8048) bit description 19		address 0x4004 8238) bit description 32
Table 17.	Main clock source select (MAINCLKSEL, address	Table 43.	Device ID (DEVICE_ID, address 0x4004 83F8) bit
	0x4004 8070) bit description20		description
Table 18.	System clock divider (SYSAHBCLKDIV, address	Table 44.	Peripheral configuration in reduced power
	0x4004 8078) bit description20		modes
Table 19.	System clock control (SYSAHBCLKCTRL,		PLL frequency parameters44
	address 0x4004 8080) bit description 20		PLL configuration examples
Table 20.	SSP0 clock divider (SSP0CLKDIV, address	Table 47.	Register overview: PMU (base address 0x4003
	0x4004 8094) bit description22		8000)
Table 21.	UART clock divider (UARTCLKDIV, address	Table 48.	Power control register (PCON, address 0x4003
	0x4004 8098) bit description		8000) bit description
Table 22.	SSP1 clock divider (SSP1CLKDIV, address	Table 49.	General purpose registers 0 to 3 (GPREG0 -
	0x4004 809C) bit description		GPREG3, address 0x4003 8004 to 0x4003 8010)
Table 23.	ARM trace clock divider (TRACECLKDIV, address		bit description
	0x4004 80AC) bit description	Table 50.	General purpose register 4 (GPREG4, address
Table 24.	SYSTICK clock divider (SYSTICKCLKDIV,		0x4003 8014) bit description
	address 0x4004 80B0) bit description 23		set_pll routine50
Table 25.	USB clock source select (USBCLKSEL, address		set_power routine
T	0x4004 80C0) bit description	Table 53.	Connection of interrupt sources to the Vectored
Table 26.	USB clock source divider (USBCLKDIV, address	T	Interrupt Controller
T	0x4004 80C8) bit description		IOCON registers available 60
rable 27.	CLKOUT clock source select (CLKOUTSEL,	rable 55.	Register overview: IOCON (base address:
T 00	address 0x4004 80E0) bit description	T	0x4004 4000)
rable 28.	CLKOUT clock divider (CLKOUTDIV, address	Table 56.	I/O configuration for pin RESET/PIOO_0
T-1-1-00	0x4004 80E8) bit description		(RESET_PIO0_0, address 0x4004 4000) bit
rable 29.	POR captured PIO status 0 (PIOPORCAPO,	T-1: 57	description
	address 0x4004 8100) bit description 25	iable 57.	I/O configuration for pin

	PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGL E (PIO0_1, address 0x4004 4004) bit	Table 75.	address 0x4004 4048) bit description $\dots \dots 80$ I/O configuration for pin
	description66		PIO0_19/TXD/CT32B0_MAT1 (PIO0_19, address
Table 58.	I/O configuration for pin		0x4004 404C) bit description 81
	PIO0_2/SSEL0/CT16B0_CAP0 (PIO0_2,	Table 76.	I/O configuration for pin PIO0_20/CT16B1_CAP0
	address 0x4004 4008) bit description 67		(PIO0_20, address 0x4004 4050) bit
Table 59.	I/O configuration for pin PIO0_3/USB_VBUS		description
	(PIO0_3, address 0x4004 400C) bit	Table 77.	I/O configuration for pin
	description		PIO0_21/CT16B1_MAT0/MOSI1 (PIO0_21,
Table 60	I/O configuration for pin PIO0_4/SCL (PIO0_4,		address 0x4004 4054) bit description 82
Table co.	address 0x4004 4010) bit description68	Tahla 78	I/O configuration for pin
Table 61	I/O configuration for pin PIO0_5/SDA (PIO0_5,	Table 70.	PIO0_22/AD6/CT16B1_MAT1/MISO1 (PIO0_22,
Table 01.			address 0x4004 4058) bit description 83
Table 62	address 0x4004 4014) bit description69	Toble 70	· · · · · · · · · · · · · · · · · · ·
Table 62.	I/O configuration for pin	Table 79.	I/O configuration for pin PIO0_23/AD7 (PIO0_23,
	PIO0_6/USB_CONNECT/SCK0 (PIO0_6,	Table 00	address 0x4004 405C) bit description 84
T-1-1- 00	address 0x4004 4018) bit description	rable 80.	I/O configuration for pin PIO1_0/CT32B1_MAT0
Table 63.	I/O configuration for pin PIO0_7/CTS (PIO0_7,	T 11 04	(PIO1_0, address 0x4004 4060) bit description85
T	address 0x4004 401C) bit description 70	Table 81.	I/O configuration for pin PIO1_1/CT32B1_MAT1
Table 64.	I/O configuration for pin	T	(PIO1_1, address 0x4004 4064) bit description86
	PIOO_8/MISOO/CT16B0_MAT0/ARM_TRACE_C	Table 82.	I/O configuration for pin PIO1_2/CT32B1_MAT2
	LK (PIO0_8, address 0x4004 4020) bit		(PIO1_2, address 0x4004 4068) bit description86
	description	Table 83.	I/O configuration for pin PIO1_3/CT32B1_MAT3
Table 65.	I/O configuration for pin		(PIO1_3, address 0x4004 406C) bit
	PIO0_9/MOSI0/CT16B0_MAT1/ARM_TRACE_S		description
	WV (PIO0_9, address 0x4004 4024) bit	Table 84.	I/O configuration for pin PIO1_4/CT32B1_CAP0
	description72		(PIO1_4, address 0x4004 4070) bit description88
Table 66.	I/O configuration for pin SWCLK/PIO0_10/	Table 85.	I/O configuration for pin PIO1_5/CT32B1_CAP1
	SCK0/CT16B0_MAT2 (SWCLK_PIO0_10,		(PIO1_5, address 0x4004 4074) bit description89
	address 0x4004 4028) bit description	Table 86.	I/O configuration for pin PIO1_7 (PIO1_7, address
Table 67.	I/O configuration for pin		0x4004 407C) bit description 89
	TDI/PIO0_11/AD0/CT32B0_MAT3	Table 87.	I/O configuration for pin PIO1_8 (PIO1_8, address
	(TDI_PIO0_11, address 0x4004 402C) bit		0x4004 4080) bit description 90
	description	Table 88.	I/O configuration for pin PIO1_10 (PIO1_10,
Table 68.	I/O configuration for pin		address 0x4004 4088) bit description 91
	TMS/PIO0_12/AD1/CT32B1_CAP0	Table 89.	I/O configuration for pin PIO1_11 (PIO1_11,
	(TMS_PIO0_12, address 0x4004 4030) bit		address 0x4004 408C) bit description 91
	description	Table 90.	I/O configuration for
Table 69.	I/O configuration for pin		PIO1_13/DTR/CT16B0_MAT0/TXD (PIO1_13,
	TDO/PIO0_13/AD2/CT32B1_MAT0		address 0x4004 4094) bit description 92
	(TDO_PIO0_13, address 0x4004 4034) bit	Table 91.	I/O configuration for
	description		PIO1_14/DSR/CT16B0_MAT1/RXD (PIO1_14,
Table 70.	I/O configuration for pin		address 0x4004 4098) bit description 93
	TRST/PIO0_14/AD3/CT32B1_MAT1	Table 92.	I/O configuration for pin PIO1_15/DCD/
	(TRST_PIO0_14, address 0x4004 4038) bit		CT16B0_MAT2/SCK1 (PIO1_15, address 0x4004
	description		409C) bit description
Table 71.	I/O configuration for pin	Table 93.	I/O configuration for pin
	SWDIO/PIO0_15/AD4/CT32B1_MAT2		PIO1_16/RI/CT16B0_CAP0 (PIO1_16, address
	(SWDIO_PIO0_15, address 0x4004 403C) bit		0x4004 40A0) bit description 94
	description	Table 94.	I/O configuration for
Table 72.	I/O configuration for pin		PIO1_17/CT16B0_CAP1/RXD (PIO1_17,
	PIO0_16/AD5/CT32B1_MAT3/ WAKEUP		address 0x4004 40A4) bit description 95
	(PIO0_16, address 0x4004 4040) bit	Table 95.	I/O configuration for
	description		PIO1_18/CT16B1_CAP1/TXD (PIO1_18,
Table 73.	I/O configuration for pin		address 0x4004 40A8) bit description 96
	PIO0_17/RTS/CT32B0_CAP0/SCLK (PIO0_17,	Table 96.	I/O configuration for pin PIO1_19/DTR/SSEL1
	address 0x4004 4044) bit description79		(PIO1_19, address 0x4004 40AC) bit
Table 74.	I/O configuration for pin		description
	PIO0_18/RXD/CT32B0_MAT0 (PIO0_18,	Table 97.	I/O configuration for pin PIO1_20/DSR/SCK1

	(PIO1_20, address 0x4004 40B0) bit	description
	description	Table 121. Pin interrupt active level (falling edge) interrupt
Table	I/O configuration for pin PIO1_21/DCD/MISO1	clear register (CIENF, address 0x4004 C018) bit
	(PIO1_21, address 0x4004 40B4) bit	description
	description98	Table 122. Pin interrupt rising edge register (RISE, address
Table	I/O configuration for pin PIO1_22/RI/MOSI1	0x4004 C01C) bit description 125
	(PIO1_22, address 0x4004 40B8) bit	Table 123. Pin interrupt falling edge register (FALL, address
	description99	0x4004 C020) bit description 125
Table	I/O configuration for pin	Table 124. Pin interrupt status register (IST address 0x4004
	PIO1_23/CT16B1_MAT1/SSEL1 (PIO1_23,	C024) bit description
	address 0x4004 40BC) bit description 99	Table 125. GPIO grouped interrupt control register (CTRL,
Table	I/O configuration for pin PIO1_24/ CT32B0_MAT0	addresses 0x4005 C000 (GROUP0 INT) and
	(PIO1_24, address 0x4004 40C0) bit	0x4006 0000 (GROUP1 INT)) bit description 126
	description	Table 126. GPIO grouped interrupt port 0 polarity registers
Table	I/O configuration for pin PIO1_25/CT32B0_MAT1	(PORT_POL0, addresses 0x4005 C020
	(PIO1_25, address 0x4004 40C4) bit	(GROUP0 INT) and 0x4006 0020 (GROUP1 INT))
	description101	bit description127
Table	I/O configuration for pin	Table 127. GPIO grouped interrupt port 1 polarity registers
	PIO1_26/CT32B0_MAT2/ RXD (PIO1_26,	(PORT_POL1, addresses 0x4005 C024
	address 0x4004 40C8) bit description 102	(GROUP0 INT) and 0x4006 0024 (GROUP1 INT))
Table	I/O configuration for pin	bit description127
	PIO1_27/CT32B0_MAT3/ TXD (PIO1_27,	Table 128. GPIO grouped interrupt port 0 enable registers
	address 0x4004 40CC) bit description 102	(PORT_ENA0, addresses 0x4005 C040
Table	I/O configuration for pin	(GROUP0 INT) and 0x4006 0040 (GROUP1 INT))
	PIO1_28/CT32B0_CAP0/ SCLK (PIO1_28,	bit description
	address 0x4004 40D0) bit description 103	Table 129. GPIO grouped interrupt port 1 enable registers
lable	I/O configuration for pin PIO1_29/SCK0/	(PORT_ENA1, addresses 0x4005 C044
	CT32B0_CAP1 (PIO1_29, address 0x4004 40D4)	(GROUP0 INT) and 0x4006 0044 (GROUP1 INT))
-	bit description	bit description
lable	I/O configuration for pin PIO1_31 (PIO1_31,	Table 130. GPIO port 0 byte pin registers (B0 to B23,
Tabla	address 0x4004 40DC) bit description 105	addresses 0x5000 0000 to 0x5000 0018) bit
	Pin description (LPC1315/16/17 - no USB)106	description
	Pin description (LPC1345/46/47 - with USB) . 112	Table 131. GPIO port 1 byte pin registers (B32 to B63,
	GPIO pins available	addresses 0x5000 0020 to 0x5000 002F) bit
rable	Register overview: GPIO pin interrupts (base	description
Toblo	address: 0x4004 C000)120	Table 132. GPIO port 0 word pin registers (W0 to W23, addresses 0x5000 1000 to 0x5000 1060) bit
rable	Register overview: GPIO GROUP0 interrupt (base address 0x4005 C000)120	•
Toblo	·	description
Table	Register overview: GPIO GROUP1 interrupt	Table 133. GPIO port 1 word pin registers (W32 to W63,
Tabla	(base address 0x4006 0000)	addresses 0x5000 1080 to 0x5000 10FC) bit
Iable	Register overview: GPIO port (base address 0x5000 0000)	description
Tabla	Pin interrupt mode register (ISEL, address	0x5000 2000) bit description
Table	0x4004 C000) bit description	Table 135. GPIO direction port 1 register (DIR1, address
Tahla	Pin interrupt level (rising edge) interrupt enable	0x5000 2004) bit description
Table	register (IENR, address 0x4004 C004) bit	Table 136. GPIO mask port 0 register (MASK0, address
	description	0x5000 2080) bit description
Tahle	Pin interrupt level (rising edge) interrupt set	Table 137. GPIO mask port 1 register (MASK1, address
iabio	register (SIENR, address 0x4004 C008) bit	0x5000 2084) bit description
	description122	Table 138. GPIO port 0 pin register (PIN0, address 0x5000
Table	Pin interrupt level (rising edge interrupt) clear	2100) bit description
	register (CIENR, address 0x4004 C00C) bit	Table 139. GPIO port 1 pin register (PIN1, address 0x5000
	description123	2104) bit description
Table	Pin interrupt active level (falling edge) interrupt	Table 140. GPIO masked port 0 pin register (MPIN0, address
	enable register (IENF, address 0x4004 C010) bit	0x5000 2180) bit description
	description123	Table 141. GPIO masked port 1 pin register (MPIN1, address
Table	Pin interrupt active level (falling edge interrupt)	0x5000 2184) bit description
	set register (SIENF, address 0x4004 C014) bit	Table 142. GPIO set port 0 register (SET0, address 0x5000
	- , , , , , , , , , , , , , , , , , , ,	

Chapter 23: Supplementary information

	2200) bit description	Table 173CDC_UNION_DESCRIPTOR class
Table 143.	. GPIO set port 1 register (SET1, address 0x5000	structure160
	2204) bit description	Table 174DFU_STATUS class structure 160
Table 144.	. GPIO clear port 0 register (CLR0, address	Table 175HID_DESCRIPTOR class structure 161
	0x5000 2280) bit description	Table 176.
	. GPIO clear port 1 register (CLR1, address	_HID_DESCRIPTOR::_HID_DESCRIPTOR_LIS
	0x5000 2284) bit description	T class structure161
	. GPIO toggle port 0 register (NOT0, address	Table 177HID_REPORT_T class structure 161
	0x5000 2300) bit description	Table 178MSC_CBW class structure 162
	. GPIO toggle port 1 register (NOT1, address	Table 179MSC_CSW class structure 162
	0x5000 2304) bit description	Table 180REQUEST_TYPE class structure 162
	. Pin interrupt registers for edge- and	Table 181USB_COMMON_DESCRIPTOR class
	level-sensitive pins	structure
	Fixed endpoint configuration	Table 182USB_CORE_DESCS_T class structure 163
	. USB device pin description	Table 183USB_DEVICE_QUALIFIER_DESCRIPTOR
Table 151.	. Register overview: USB (base address: 0x4008	class structure
T-1-1- 450	0000)	Table 184USB_DFU_FUNC_DESCRIPTOR class
	. USB Device Command/Status register	structure
	(DEVCMDSTAT, address 0x4008 0000) bit	Table 185USB_INTERFACE_DESCRIPTOR class
	description	structure
Table 155.	. USB Info register (INFO, address 0x4008 0004) bit description	class structure
Table 154	. USB EP Command/Status List start address	Table 187USB_SETUP_PACKET class structure 165
Table 134	(EPLISTSTART, address 0x4008 0008) bit	Table 188USB_STRING_DESCRIPTOR class
	description143	structure
	. USB Data buffer start address (DATABUFSTART,	Table 189WB_T class structure
Table 100.	address 0x4008 000C) bit description	Table 190. USBD_API class structure
Table 156	Link Power Management register (LPM, address	Table 191. USBD_API_INIT_PARAM class structure167
	0x4008 0010) bit description	Table 192. USBD_CDC_API class structure 169
	. USB Endpoint skip (EPSKIP, address 0x4008	Table 193. USBD_CDC_INIT_PARAM class structure 171
	0014) bit description	Table 194. USBD_CORE_API class structure 179
	. USB Endpoint Buffer in use (EPINUSE, address	Table 195. USBD_DFU_API class structure 183
	0x4008 0018) bit description	Table 196. USBD_DFU_INIT_PARAM class structure 184
	. USB Endpoint Buffer Configuration (EPBUFCFG,	Table 197. USBD_HID_API class structure
	address 0x4008 001C) bit description 144	Table 198. USBD_HID_INIT_PARAM class structure 188
Table 160.	. USB interrupt status register (INTSTAT, address	Table 199. USBD_HW_API class structure 194
	0x4008 0020) bit description	Table 200. USBD_MSC_API class structure 203
	. USB interrupt enable register (INTEN, address	Table 201. USBD_MSC_INIT_PARAM class structure 204
	0x4008 0024) bit description	Table 202. USART pin description 208
Table 162.	. USB set interrupt status register (INTSETSTAT,	Table 203. Register overview: USART (base address:
	address 0x4008 0028) bit description 147	0x4000 8000)209
Table 163.	. USB interrupt routing register (INTROUTING,	Table 204. USART Receiver Buffer Register when
	address 0x4008 002C) bit description 147	DLAB = 0, Read Only (RBR - address
Table 164.	. USB Endpoint toggle (EPTOGGLE, address	0x4000 8000) bit description 210
	0x4008 0034) bit description	Table 205. USART Transmitter Holding Register when
	. Endpoint commands	DLAB = 0, Write Only (THR - address
Table 166.	WORD_BYTE class structure	0x4000 8000) bit description 210
Table 167.	BM_T class structure	Table 206. USART Divisor Latch LSB Register when
Table 168.		DLAB = 1 (DLL - address 0x4000 8000) bit
	_CDC_ABSTRACT_CONTROL_MANAGEMENT	description
	_DESCRIPTOR class structure	Table 207. USART Divisor Latch MSB Register when
	CDC_CALL_MANAGEMENT_DESCRIPTOR	DLAB = 1 (DLM - address 0x4000 8004) bit
	class structure159	description
Table 170.	CDC_HEADER_DESCRIPTOR class	Table 208. USART Interrupt Enable Register when
	structure	DLAB = 0 (IER - address 0x4000 8004) bit
	CDC_LINE_CODING class structure 160	description
Table 172.	CDC_UNION_1SLAVE_DESCRIPTOR class	Table 209. USART Interrupt Identification Register Read
	structure	only (IIR - address 0x4004 8008) bit

403 of 416

	description212	bit description247
Table 210.	USART Interrupt Handling	Table 238. SSP/SPI Clock Prescale Register (CPSR -
Table 211.	USART FIFO Control Register Write only (FCR -	address 0x4004 0010 (SSP0) and 0x4005 8010
	address 0x4000 8008) bit description 215	(SSP1)) bit description 247
Table 212.	USART Line Control Register (LCR - address	Table 239. SSP/SPI Interrupt Mask Set/Clear register (IMSC
	0x4000 800C) bit description215	- address 0x4004 0014 (SSP0) and 0x4005 8014
	USART Modem Control Register (MCR - address	(SSP1)) bit description
	0x4000 8010) bit description	Table 240. SSP/SPI Raw Interrupt Status register (RIS -
	Modem status interrupt generation	address 0x4004 0018 (SSP0) and 0x4005 8018
	USART Line Status Register Read only (LSR -	(SSP1)) bit description
	address 0x4000 8014) bit description219	Table 241. SSP/SPI Masked Interrupt Status register (MIS -
	USART Modem Status Register (MSR - address	
	0x4000 8018) bit description221	address 0x4004 001C (SSP0) and 0x4005 801C (SSP1)) bit description
		• • • • • • • • • • • • • • • • • • • •
	USART Scratch Pad Register (SCR - address	Table 242. SSP/SPI interrupt Clear Register (ICR - address
	0x4000 801C) bit description	0x4004 0020 (SSP0) and 0x4005 8020 (SSP1))
	USART Auto-baud Control Register (ACR -	bit description
	address 0x4000 8020) bit description 222	Table 243. I ² C-bus pin description
	USART IrDA Control Register (ICR -	Table 244. Register overview: I ² C (base address 0x4000
	0x4000 8024) bit description	0000)259
	IrDA Pulse Width	Table 245. I ² C Control Set register (CONSET - address
	USART Fractional Divider Register (FDR -	0x4000 0000) bit description 260
	address 0x4000 8028) bit description 226	Table 246. I ² C Status register (STAT - 0x4000 0004) bit
Table 222.	Fractional Divider setting look-up table 229	description
Table 223.	USART Oversampling Register (OSR - address	Table 247. I ² C Data register (DAT - 0x4000 0008) bit
	0x4000 802C) bit description	description
Table 224.	USART Transmit Enable Register (TER - address	Table 248. I ² C Slave Address register 0 (ADR0-
	0x4000 8030) bit description	0x4000 000C) bit description 263
Table 225.	USART Half duplex enable register (HDEN -	Table 249. I ² C SCL HIGH Duty Cycle register (SCLH -
	addresses 0x4000 8040) bit description231	address 0x4000 0010) bit description 263
Table 226.	USART Smart Card Interface Control register	Table 250. I ² C SCL Low duty cycle register (SCLL -
	(SCICTRL - address 0x4000 8048) bit	0x4000 0014) bit description 263
	description	Table 251. SCLL + SCLH values for selected I ² C clock
Table 227.	USART RS485 Control register (RS485CTRL -	values264
	address 0x4000 804C) bit description232	Table 252. I ² C Control Clear register (CONCLR -
Table 228.	USART RS-485 Address Match register	0x4000 0018) bit description 264
	(RS485ADRMATCH - address 0x4000 8050) bit	Table 253. I ² C Monitor mode control register (MMCTRL -
	description	0x4000 001C) bit description 265
	USART RS-485 Delay value register (RS485DLY	Table 254. I ² C Slave Address registers (ADR[1, 2, 3]-
	- address 0x4000 8054) bit description 234	0x4000 00[20, 24, 28]) bit description 266
	USART Synchronous mode control register	Table 255. I ² C Data buffer register (DATA_BUFFER -
	(SYNCCTRL - address 0x4000 8058) bit	0x4000 002C) bit description 267
	description	Table 256. I ² C Mask registers (MASK[0, 1, 2, 3] -
Table 231.	SSP/SPI pin descriptions243	0x4000 00[30, 34, 38, 3C]) bit description 267
	Register overview: SSP/SPI0 (base address	Table 257. CONSET used to configure Master mode 268
	0x4004 0000)	Table 258. CONSET used to configure Slave mode 269
	Register overview: SSP/SPI1 (base address	Table 259. Abbreviations used to describe an I ² C
	0x4005 8000)	operation
	SSP/SPI Control Register 0 (CR0 - address	Table 260. CONSET used to initialize Master Transmitter
	0x4004 0000 (SSP0) and 0x4005 8000 (SSP1))	mode
	bit description	Table 261. Master Transmitter mode
	SSP/SPI Control Register 1 (CR1 - address	Table 262. Master Receiver mode
	0x4004 0004 (SSP0) and 0x4005 8004 (SSP1))	Table 263. ADR usage in Slave Receiver mode282
		Table 264. CONSET used to initialize Slave Receiver
	bit description	mode
	0x4004 0008 (SSP0) and 0x4005 8008 (SSP1))	Table 265. Slave Receiver mode
		Table 266. Slave Transmitter mode
	bit description	Table 267. Miscellaneous States
	SSP/SPI Status Register (SR - address	
	0x4004 000C (SSP0) and 0x4005 800C (SSP1))	Table 268. Register overview: Watchdog timer (base

address 0x4000 4000)	description
Table 269. Watchdog mode register (MOD - 0x4000 4000)	Table 294. External match control
bit description	Table 295. Count Control Register (CTCR, address 0x4000
Table 270. Watchdog operating modes selection 306	C070 (CT16B0)) bit description 322
Table 271. Watchdog Timer Constant register (TC - 0x4000	Table 296. Count Control Register (CTCR, address
4004) bit description	0x4001 0070 (CT16B1)) bit description 323
Table 272. Watchdog Feed register (FEED - 0x4000 4008)	Table 297. PWM Control Register (PWMC, address 0x4000
bit description	C074 (CT16B0) and 0x4001 0074 (CT16B1)) bit
Table 273. Watchdog Timer Value register (TV - 0x4000	
	description
400C) bit description	Table 298. Counter/timer pin description
Table 274. Watchdog Clock Select register (CLKSEL -	Table 299. Register overview: 32-bit counter/timer 0 CT32B0
0x4000 4010) bit description	(base address 0x4001 4000)
Table 275. Watchdog Timer Warning Interrupt register	Table 300. Register overview: 32-bit counter/timer 1 CT32B1
(WARNINT - 0x4000 4014) bit description 308	(base address 0x4001 8000)
Table 276. Watchdog Timer Window register (WINDOW -	Table 301: Interrupt Register (IR, address 0x4001 4000
0x4000 4018) bit description308	(CT32B0)) bit description
Table 277. Counter/timer pin description311	Table 302: Interrupt Register (IR, address 0x4001 8000
Table 278. Register overview: 16-bit counter/timer 0 CT16B0	(CT32B1)) bit description
(base address 0x4000 C000)312	Table 303: Timer Control Register (TCR, address
Table 279. Register overview: 16-bit counter/timer 1 CT16B1	0x4001 4004 (CT32B0) and 0x4001 8004
(base address 0x4001 0000)313	(CT32B1)) bit description
Table 280. Interrupt Register (IR, address 0x4000 C000	Table 304: Timer counter registers (TC, address
(CT16B0)) bit description	0x4001 4008 (CT32B0) and 0x4001 8008
Table 281. Interrupt Register (IR, address 0x4001 0000	(CT32B1)) bit description
(CT16B1)) bit description	Table 305: Prescale registers (PR, address 0x4001 400C
Table 282. Timer Control Register (TCR, address 0x4000	(CT32B0) and 0x4001 800C (CT32B1)) bit
C004 (CT16B0) and 0x4001 0004 (CT16B1)) bit	description
description	Table 306: Prescale registers (PC, address 0x4001 4010
Table 283: Timer counter registers (TC, address	(CT32B0) and 0x4001 8010 (CT32B1)) bit
0x4000 C008 (CT16B0) and 0x4001 0008	description
(CT16B1)) bit description	Table 307: Match Control Register (MCR, address
Table 284: Prescale registers (PR, address 0x4000 C00C	0x4001 4014 (CT32B0) and 0x4001 8014
(CT16B0) and 0x4001 000C (CT16B1)) bit	(CT32B1)) bit description
description	Table 308: Match registers (MR[0:3], addresses
Table 285: Prescale counter registers (PC, address	0x4001 4018 (MR0) to 0x4001 4024 (MR3)
0x4000 C010 (CT16B0) and 0x4001 0010	(CT32B0) and 0x4001 8018 (MR0) to
(CT16B1)) bit description	0x40018024 (MR3) (CT32B1)) bit description 335
Table 286. Match Control Register (MCR, address 0x4000	
	Table 309: Capture Control Register (CCR, address
C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit	0x4001 4028 (CT32B0)) bit description 335
description316 Table 287: Match registers (MR[0:3], addresses	Table 310: Capture Control Register (CCR, address
	0x4001 8028 (CT32B1)) bit description 336
0x4000 C018 (MR0) to 0x4000 C024 (MR3)	Table 311: Capture registers (CR0, addresses 0x4001 402C
(CT16B0) and 0x4001 0018 (MR0) to	(CT32B0) and 0x4001 802C (CT32B1)) bit
0x4001 0024 (MR3) (CT16B1)) bit	description
description	Table 312: Capture register (CR1, address 0x4001 4034
Table 288. Capture Control Register (CCR, address 0x4000	(CT32B0)) bit description
C028 (CT16B0)) bit description	Table 313: Capture register (CR1, address 0x4001 8030
Table 289. Capture Control Register (CCR, address	(CT32B1)) bit description
0x4001 0028 (CT16B1)) bit description 318	Table 314: External Match Register (EMR, address
Table 290: Capture register 0 (CR0, address 0x4000 C02C	0x4001 403C (CT32B0) and 0x4001 803C
(CT16B0) and address 0x4001 002C (CT16B1))	(CT32B1)) bit description
bit description	Table 315. External match control
Table 291: Capture register 1 (CR1, address 0x4000 C034	Table 316: Count Control Register (CTCR, address
(CT16B0)) bit description	0x4001 4070 (CT32B0)) bit description 340
Table 292: Capture register 1 (CR1, address 0x4001 0030	Table 317: Count Control Register (CTCR, address
(CT16B1)) bit description	0x4001 8070 (CT32B1)) bit description 341
Table 293. External Match Register (EMR, address 0x4000	Table 318: PWM Control Register (PWMC, 0x4001 4074
C03C (CT16B0) and 0x4001 003C (CT16B1)) bit	(CT32B0) and 0x4001 8074 (CT32B1)) bit

	description	Table 351. ISP Read Memory command 376
Table 319	. Register overview: SysTick timer (base address	Table 352. ISP Prepare sector(s) for write operation
	0xE000 E000)348	command377
Table 320	. SysTick Timer Control and status register	Table 353. ISP Copy command 378
	(SYST_CSR - 0xE000 E010) bit description .348	Table 354. ISP Go command
Table 321	. System Timer Reload value register (SYST_RVR	Table 355. ISP Erase sector command
	- 0xE000 E014) bit description	Table 356. ISP Blank check sector command379
Table 322	. System Timer Current value register (SYST_CVR	Table 357. ISP Read Part Identification command 379
	- 0xE000 E018) bit description	Table 358. LPC1315/16/17/45/46/47 device identification
Table 323	System Timer Calibration value register	numbers380
	(SYST_CALIB - 0xE000 E01C) bit	Table 359. ISP Read Boot Code version number
	description	command
Table 324	. Register overview: Repetitive Interrupt Timer	Table 360. ISP Compare command
	(RIT) (base address 0x4006 4000)352	Table 361. ReadUID command
Table 325	. RI Compare Value LSB register (COMPVAL -	Table 362. ISP Return Codes Summary381
	address 0x4006 4000) bit description 353	Table 363. IAP Command Summary
Table 326	RI Mask LSB register (MASK - address 0x4006	Table 364. IAP Prepare sector(s) for write operation
10010 020	4004) bit description	command
Table 327	7. RI Control register (CTRL - address 0x4006	Table 365. IAP Copy RAM to flash command 385
10010 027	4008) bit description	Table 366. IAP Erase Sector(s) command
Tahla 328	RI Counter register (COUNTER - address 0x4006	Table 367. IAP Blank check sector(s) command 386
10010 020	400C) bit description	Table 368. IAP Read Part Identification command 386
Tahle 320	RI Compare Value MSB register (COMPVAL_H -	Table 369. IAP Read Boot Code version number
10010 020	address 0x4006 4010) bit description354	command
Table 330	RI Mask MSB register (MASK_H - address	Table 370. IAP Compare command
Table 550	0x4006 4014) bit description	Table 371. Reinvoke ISP
Tahla 331	. RI Counter MSB register (COUNTER_H -	Table 372. IAP ReadUID command
Table 33 I	address 0x4006 401C) bit description 354	Table 373. IAP Erase page command
Table 222	ADC pin description	Table 374. IAP Write EEPROM command
Table 333	Register overview: ADC (base address 0x4001	Table 375. IAP Read EEPROM command
Table 224	C000)	Table 376. IAP Status Codes Summary
Table 334	. A/D Control Register (CR - address	Table 377. Memory mapping in debug mode
Table 225	0x4001 C000) bit description	Table 378. Register overview: FMC (base address 0x4003
Table 333	6. A/D Global Data Register (GDR - address	C000)
T-bl- 220	0x4001 C004) bit description	Table 379. Flash configuration register (FLASHCFG,
Table 336	6. A/D Interrupt Enable Register (INTEN - address	address 0x4003 C010) bit description 390
T-bl- 227	0x4001 C00C) bit description	Table 380. Flash module signature start register
Table 337	7. A/D Data registers (DR0 to DR7 - addresses	(FMSSTART - 0x4003 C020) bit description . 391
	0x4001 C010 to 0x4001 C02C) bit	Table 381. Flash module signature stop register (FMSSTOP
T-1-1-000	description	- 0x4003 C024) bit description
Table 338	S. A/D Status Register (STAT - address	Table 382. FMSW0 register (FMSW0, address: 0x4003
T	0x4001 C030) bit description	C02C) bit description
Table 339	. A/D Trim register (TRM - address 0x4001 C034)	Table 383. FMSW1 register (FMSW1, address: 0x4003
T	bit description	C030) bit description
Table 340	. LPC1315/16/17/45/46/47 flash	Table 384. FMSW2 register (FMSW2, address: 0x4003
.	configurations	C034) bit description
	. CRP levels for USB boot images369	Table 385. FMSW3 register (FMSW3, address: 0x4003
	. LPC1315/16/17/45/46/47 flash sectors 371	40C8) bit description
	Code Read Protection (CRP) options 372	Table 386. Flash module status register (FMSTAT - 0x4003
rable 344	. Code Read Protection hardware/software	CFE0) bit description
	interaction	Table 387. Flash module status clear register (FMSTATCLR
Table 345	. ISP commands allowed for different CRP	- 0x0x4003 CFE8) bit description 393
	levels	Table 388. Serial Wire Debug pin description396
	i. ISP command summary	Table 389. JTAG boundary scan pin description 396
	ISP Unlock command374	Table 390. Abbreviations
	ISP Set Baud Rate command	
	. ISP Echo command	
Table 350	. ISP Write to RAM command	

Chapter 23: Supplementary information

23.4 Figures

Fig 1.	Block diagram
Fig 2.	LPC1315/16/17/45/46/47 memory map
Fig 3.	LPC1315/16/17/45/46/47 CGU block diagram12
Fig 4.	Start-up timing
Fig 5.	System PLL block diagram
Fig 6.	Power profiles pointer structure
Fig 7.	LPC13Uxx clock configuration for power API use49
Fig 8.	Power profiles usage
Fig 9.	Standard I/O pin configuration
Fig 10.	Reset pad configuration63
Fig 11.	USB block diagram
Fig 12.	USB software interface
Fig 13.	Endpoint command/status list (see also
9	<u>Table 165</u>)
Fig 14.	Flowchart of control endpoint 0 - OUT direction 151
Fig 15.	Flowchart of control endpoint 0 - IN direction152
Fig 16.	USB device driver pointer structure
Fig 17.	Auto-RTS Functional Timing
Fig 18.	Auto-CTS Functional Timing
Fig 19.	
•	Auto-baud a) mode 0 and b) mode 1 waveform 224 Algorithm for setting USART dividers228
Fig 20.	
Fig 21.	Typical smart card application
Fig 22.	Smart card T = 0 waveform
Fig 23.	USART block diagram
Fig 24.	Texas Instruments Synchronous Serial Frame
	Format: a) Single and b) Continuous/back-to-back
	Two Frames Transfer250
Fig 25.	SPI frame format with CPOL=0 and CPHA=0 (a)
	Single and b) Continuous Transfer)251
Fig 26.	SPI frame format with CPOL=0 and CPHA=1252
Fig 27.	SPI frame format with CPOL = 1 and CPHA = 0 (a)
	Single and b) Continuous Transfer)253
Fig 28.	SPI Frame Format with CPOL = 1 and
	CPHA = 1254
Fig 29.	Microwire frame format (single transfer) 255
Fig 30.	Microwire frame format (continuous transfers) .255
Fig 31.	Microwire frame format setup and hold details .256
Fig 32.	I ² C-bus configuration
Fig 33.	Format in the Master Transmitter mode 268
Fig 34.	Format of Master Receiver mode
Fig 35.	A Master Receiver switches to Master Transmitter
3	after sending Repeated START269
Fig 36.	Format of Slave Receiver mode
Fig 37.	Format of Slave Transmitter mode
Fig 38.	I ² C serial interface block diagram
Fig 39.	Arbitration procedure
Fig 40.	Serial clock synchronization
Fig 41.	Format and states in the Master Transmitter
ı ıg - ı.	mode
Fig 42.	Format and states in the Master Receiver
riy 42.	
Fig. 42	mode
Fig 43.	
Fig 44.	
Eig 45	mode
Fig 45.	Simultaneous Repeated START conditions from two
	masters

Fig 46.	Forced access to a busy I ² C-bus	290
Fig 47.		
	LOW level on SDA	291
Fig 48.		
Fig 49.	Early Watchdog Feed with Windowed Mode	
-	Enabled	308
Fig 50.	Correct Watchdog Feed with Windowed Mode	
	Enabled	309
Fig 51.	Watchdog Warning Interrupt	309
Fig 52.	Sample PWM waveforms with a PWM cycle len	gth
	of 100 (selected by MR3) and MAT2:0 enabled	as
	PWM outputs by the PWMC register	325
Fig 53.	A timer cycle in which PR=2, MRx=6, and both	
	interrupt and reset on match are enabled	326
Fig 54.		
	interrupt and stop on match are enabled	
Fig 55.	5	
Fig 56.	Sample PWM waveforms with a PWM cycle len	•
	of 100 (selected by MR3) and MAT2:0 enabled	
	PWM outputs by the PWMC register	343
Fig 57.	A timer cycle in which PR=2, MRx=6, and both	
	interrupt and reset on match are enabled	343
Fig 58.	A timer cycle in which PR=2, MRx=6, and both	
	interrupt and stop on match are enabled	
Fig 59.	32-bit counter/timer block diagram	
Fig 60.	System tick timer block diagram	347
Fig 61.	Repetitive Interrupt Timer (RI Timer) block	
F : 00	diagram	
Fig 62.	Boot process flowchart	
Fig 63.	IAP parameter passing	
Fig 64.	Algorithm for generating a 128-bit signature	394
Fig 65.	Connecting the SWD pins to a standard SWD	~~~
	connector	397

Chapter 23: Supplementary information

23.5 Contents

Chap	Chapter 1: LPC1315/16/17/45/46/47 Introductory information						
1.1 1.2	Introduction		1.3 1.4	Ordering information			
Chap	ter 2: LPC1315/16/17/45/46/47 Memory	map	ping				
2.1 2.2	How to read this chapter		2.2.1 2.2.2 2.2.3	On-chip flash programming memory	9		
Chap	ter 3: LPC1315/16/17/45/46/47 System	cont	rol bloc	k			
3.1	How to read this chapter	11	3.5.24	POR captured PIO status 0 register			
3.2	Introduction	11		(PIOPORCAP0)	25		
3.3	Pin description		3.5.25	POR captured PIO status 1 register			
3.4	Clocking and power control			(PIOPORCAP1)			
			3.5.26	Brown-Out Detect register (BODCTRL)	25		
3.5	Register description	13	3.5.27	System tick counter calibration register			
3.5.1	System memory remap register	4.4		(SYSTCKCAL)			
3.5.2	(SYSMEMREMAP)Peripheral reset control register	14	3.5.28	IQR delay register (IRQLATENCY)			
3.3.2	(PRESETCTRL)	15	3.5.29	NMI Source Control register (NMISRC)	27		
3.5.3	System PLL control register (SYSPLLCTRL).		3.5.30	GPIO Pin Interrupt Select register	27		
3.5.4	System PLL status register (SYSPLLSTAT)		3.5.31	(PINTSEL0 to 7)			
3.5.5	USB PLL control register (USBPLLCTRL)		3.5.32	USB clock status register (USBCLKST)			
3.5.6	USB PLL status register (USBPLLSTAT)		3.5.32	Start logic 0 interrupt wake-up enable register 0			
3.5.7	System oscillator control register	-	0.0.00	(STARTERPO)			
	(SYSOSCCTRL)	16	3.5.34	Start logic 1 interrupt wake-up enable register			
3.5.8	Watchdog oscillator control register	17	0.0.0	(STARTERP1)	29		
3.5.9	System reset status register (SYSRSTSTAT).	18	3.5.35	Deep-sleep mode configuration register			
3.5.10	System PLL clock source select register			(PDSLEEPCFG)	30		
	(SYSPLLCLKSEL)	19	3.5.36	Wake-up configuration (PDAWAKECFG)	31		
3.5.11	USB PLL clock source select register		3.5.37	Power configuration register (PDRUNCFG) .	32		
	(USBPLLCLKSEL)	19	3.5.38	Device ID (DEVICE_ID)	33		
3.5.12	Main clock source select register	40	3.6	Reset	34		
2 5 42	(MAINCLKSEL)	19	3.7	Start-up behavior	34		
3.5.13	System clock divider register (SYSAHBCLKDIV)	20	3.8	Brown-out detection			
3.5.14	System clock control register	20	3.9	Power management			
J.J. 14	(SYSAHBCLKCTRL)	20	3.9.1	Reduced power modes and WWDT lock	-		
3.5.15	SSP0 clock divider register (SSP0CLKDIV)		0.0.1	features	36		
3.5.16	UART clock divider register (UARTCLKDIV) .		3.9.2	Active mode			
3.5.17	SSP1 clock divider register (SSP1CLKDIV)		3.9.2.1	Power configuration in Active mode			
3.5.18	ARM trace clock divider register		3.9.3	Sleep mode			
	(TRACECLKDIV)	23	3.9.3.1	Power configuration in Sleep mode			
3.5.19	SYSTICK clock divider register		3.9.3.2	Programming Sleep mode	37		
	(SYSTICKCLKDIV)	23	3.9.3.3	Wake-up from Sleep mode	38		
3.5.20	USB clock source select register		3.9.4	Deep-sleep mode	38		
	(USBCLKSEL)	24	3.9.4.1	Power configuration in Deep-sleep mode			
3.5.21	USB clock source divider register	_	3.9.4.2	Programming Deep-sleep mode			
	(USBCLKDIV)	24	3.9.4.3	Wake-up from Deep-sleep mode			
3.5.22	CLKOUT clock source select register		3.9.5	Power-down mode			
0.5.00	(CLKOUTSEL)		3.9.5.1	Power configuration in Power-down mode			
3.5.23	CLKOUT clock divider register (CLKOUTDIV)	25	3.9.5.2	Programming Power-down mode	40 40		
			3953	Wake-up from Power-down mode	41		

3.9.6 3.9.6.1	Deep power-down mode Power configuration in Deep power-down		3.10.3	Divider ratio programming
	mode			Feedback divider
3.9.6.2	Programming Deep power-down mode			Changing the divider values
3.9.6.3	Wake-up from Deep power-down mode		3.10.4	Frequency selection
3.10	System PLL/USB PLL functional description		3.10.4.1	Normal mode
3.10.1	Lock detector		3.10.4.2	Power-down mode
3.10.2	Power-down control	43		
Chapt	er 4: LPC1315/16/17/45/46/47 Power N	<i>l</i> lanag	jement l	Jnit (PMU)
4.1	How to read this chapter		4.3.1	Power control register 45
4.2	Introduction	45	4.3.2	General purpose registers 0 to 3 46
4.3	Register description	45	4.3.3	General purpose register 4
			4.4 F	Functional description 47
Chapt	er 5: LPC1315/16/17/45/46/47 Power p	rofile	S	
5.1	How to read this chapter		5.5.1.4.4	System clock less than or equal to the expected
5.2	Features			value 52
5.3	General description	48	5.5.1.4.5	System clock greater than or equal to the expected value
5.4	Definitions	50	55146	System clock approximately equal to the expected
5.5	Clocking routine	50	0.0.11.1.0	value
5.5.1	set_pll		5.6 F	Power routine 53
5.5.1.1	System PLL input frequency and expected syst		5.6.1	set_power
	clock		5.6.1.1	New system clock
5.5.1.2	Mode		5.6.1.2	Mode
5.5.1.3 5.5.1.4	System PLL lock time-out		5.6.1.3	Current system clock 55
5.5.1.4 5.5.1.4.	Code examples		5.6.1.4	Code examples
J.J. 1. 4 .	exceeded)		5.6.1.4.1	Invalid frequency (device maximum clock rate
5.5.1.4.	2 Invalid frequency selection (system clock divide		50440	exceeded)
	restrictions)		5.6.1.4.2	An applicable power setup 55
5.5.1.4.	3 Exact solution cannot be found (PLL)	52		
Chapt	er 6: LPC1315/16/17/45/46/47 NVIC			
6.1	How to read this chapter	57	6.4 I	nterrupt sources57
6.2	Introduction	57	6.5 F	Register description 59
6.3	Features	57		
Chapt	er 7: LPC1315/16/17/45/46/47 I/O conf	igura	tion	
7.1	How to read this chapter	60	7.4.1	I/O configuration for pin RESET_PIO0_0 65
7.2	Introduction	60	7.4.2	I/O configuration for pin PIOO_1 66
7.3	General description	60	7.4.3	I/O configuration for pin PIOO_2 67
7.3.1	Pin function	61	7.4.4	I/O configuration for pin PIOO_3
7.3.2	Pin mode	61	7.4.5 7.4.6	I/O configuration for pin PIO0_4
7.3.3	Hysteresis		7.4.6 7.4.7	I/O configuration for pin PIO0_5
7.3.4	Input inverter		7.4.7 7.4.8	I/O configuration for pin PIOO_6 69 I/O configuration for pin PIOO_7 70
7.3.5	Input glitch filter		7.4.9	I/O configuration for pin PIO0_8
7.3.6	Open-drain mode		7.4.10	I/O configuration for pin PIO0_9
7.3.7	Analog mode		7.4.11	I/O configuration for pin SWCLK/PIO0_10 73
7.3.8	I ² C mode		7.4.12	I/O configuration for pin TDI/PIO0_11 73
7.3.9 7.3.10	WAKEUP pin (pin PIO0_16)		7.4.13	I/O configuration for pin TMS/PIO0_12 74
			7.4.14	I/O configuration for pin TDO/PIO0_13 75
7.4	Register description	03	7.4.15	I/O configuration for pin TRST/PIO0_14 76

Chapter 23: Supplementary information

7.4.16 7.4.17	I/O configuration for pin SWDIO/PIO0_15 77 I/O configuration for pin PIO0_16 78	7.4.35 7.4.36	I/O configuration for PIO1_13	
7.4.18	I/O configuration for pin PIOO_17	7.4.37	I/O configuration for pin PIO1_15	
7.4.19	I/O configuration for pin PIO0_18	7.4.38	I/O configuration for pin PIO1_16	
7.4.20	I/O configuration for pin PIO0_19	7.4.39	I/O configuration for PIO1_17	
7.4.21	I/O configuration for pin PIO0_20 82	7.4.40	I/O configuration for PIO1_18	
7.4.22	I/O configuration for pin PIO0_21 82	7.4.41	I/O configuration for pin PIO1_19	
7.4.23	I/O configuration for pin PIO0_22	7.4.42	I/O configuration for pin PIO1_20	
7.4.24	I/O configuration for pin PIO0_23 84	7.4.43	I/O configuration for pin PIO1_21	
7.4.25	I/O configuration for pin PIO1_085	7.4.44	I/O configuration for pin PIO1_22	. 99
7.4.26	I/O configuration for pin PIO1_1 86	7.4.45	I/O configuration for pin PIO1_23	. 99
7.4.27	I/O configuration for pin PIO1_2	7.4.46	I/O configuration for pin PIO1_24	100
7.4.28	I/O configuration for pin PIO1_3 87	7.4.47	I/O configuration for pin PIO1_25	101
7.4.29	I/O configuration for pin PIO1_4	7.4.48	I/O configuration for pin PIO1_26	102
7.4.30	I/O configuration for pin PIO1_5	7.4.49	I/O configuration for pin PIO1_27	102
7.4.31	I/O configuration for pin PIO1_7	7.4.50	I/O configuration for pin PIO1_28	103
7.4.32	I/O configuration for pin PIO1_8 90	7.4.51	I/O configuration for pin PIO1_29	104
7.4.33 7.4.34	I/O configuration for pin PIO1_10	7.4.52	I/O configuration for pin PIO1_31	105
	I/O configuration for pin PIO1_11 91			
Chapt	er 8: LPC1315/16/17/45/46/47 Pin configur	ation		
8.1	Pin configuration	8.1.1	Pin description	106
Chapt	er 9: LPC1315/16/17/45/46/47 GPIO			
9.1	How to read this chapter	9.5.1.9	Pin interrupt falling edge register	
9.2	Basic configuration	9.5.1.10 9.5.2	Pin interrupt status register	125
9.3	Features	3.3.2	description	126
9.3.1	GPIO pin interrupt features	9.5.2.1	Grouped interrupt control register	126
9.3.2	GPIO group interrupt features	9.5.2.2	GPIO grouped interrupt port polarity	120
9.3.3	GPIO port features		registers	126
9.4	Introduction	9.5.2.3	GPIO grouped interrupt port enable registers	
9.4.1	GPIO pin interrupts	9.5.3	GPIO port register description	128
9.4.2	GPIO group interrupt	9.5.3.1	GPIO port byte pin registers	128
9.4.3	GPIO port	9.5.3.2	GPIO port word pin registers	128
9.5	Register description	9.5.3.3	GPIO port direction registers	
9.5.1	GPIO pin interrupts register description 121	9.5.3.4	GPIO port mask registers	
9.5.1.1	Pin interrupt mode register	9.5.3.5	GPIO port pin registers	
9.5.1.2	Pin interrupt level (rising edge) interrupt enable	9.5.3.6	GPIO masked port pin registers	
0540	register	9.5.3.7		131
9.5.1.3	Pin interrupt level (rising edge) interrupt set	9.5.3.8	GPIO port clear registers	
9.5.1.4	register	9.5.3.9	GPIO port toggle registers	131
9.5.1.4	register		Functional description	
9.5.1.5	Pin interrupt active level (falling edge) interrupt	9.6.1	Reading pin state	132
0.0.1.0	enable register	9.6.2	GPIO output	132
9.5.1.6	Pin interrupt active level (falling edge) interrupt set	9.6.3	Masked I/O	133
0.00	register	9.6.4 9.6.4.1	GPIO Interrupts	
9.5.1.7	Pin interrupt active level (falling edge interrupt)	9.6.4.1	Pin interrupts	133 134
	clear register	9.6.5	Recommended practices	134
9.5.1.8	Pin interrupt rising edge register 124	3.0.0	Recommended practices	104
Chapt	er 10: LPC1345/46/47 USB2.0 device cont	roller		
10.1	How to read this chapter 135	10.4	General description	135
10.2	Basic configuration	10.4.1	USB software interface	137
10.3	Features	10.4.2	Fixed endpoint configuration	

UM10524

Chapter 23: Supplementary information

10.4.3 10.4.4	SoftConnect		10.6.10 10.6.11	USB interrupt enable register (INTEN) 1 USB set interrupt status register	46
10.4.5	Suspend and resume			(INTSETSTAT)	47
10.4.6	Frame toggle output		10.6.12	USB interrupt routing register	••
10.4.7	Clocking			(INTROUTING) 1	47
10.5	Pin description		10.6.13	USB Endpoint toggle (EPTOGGLE) 1	
				Functional description	
10.6	Register description	139	10.7.1	-	48
10.6.1	USB Device Command/Status register	4.40	10.7.1		51
	(DEVCMDSTAT)				
10.6.2	USB Info register (INFO)	142	10.7.3 10.7.4		52 53
10.6.3	USB EP Command/Status List start address	4.40	10.7.4		53
4004	(EPLISTSTART)	142	10.7.5.1	Use of the Active bit	
10.6.4	USB Data buffer start address	4.40	10.7.5.1	Generation of a STALL handshake 1	
10 C E	(DATABUFSTART)		10.7.5.2	Clear Feature (endpoint halt)	
10.6.5	Link Power Management register (LPM)		10.7.5.4	Set configuration	
10.6.6	USB Endpoint Skip (EPSKIP)		10.7.6	USB wake-up	
10.6.7 10.6.8	USB Endpoint Buffer in use (EPINUSE) USB Endpoint Buffer Configuration	144	10.7.6.1	Waking up from Deep-sleep and Power-down	٠.
10.6.6	(EPBUFCFG)	111	10.7.0.1	modes on USB activity	54
1060	USB interrupt status register (INTSTAT)		10.7.6.2	Remote wake-up	
10.6.9	USB interrupt status register (INTSTAT)	145	10111012	romoto water up	٠.
Chapt	er 11: LPC1345/46/47 USB on-chip d	rivers			
11.1	How to read this chapter	156	11.5.14	_MSC_CSW 1	62
11.2	Introduction	156	11.5.15	_REQUEST_TYPE	
11.3	USB driver functions		11.5.16	_USB_COMMON_DESCRIPTOR 1	62
11.4	Calling the USB device driver		11.5.17		63
	_		11.5.18	_USB_DEVICE_QUALIFIER_DESCRIPTOR 1	63
11.5	USB API		11.5.19		63
11.5.1	WORD_BYTE		11.5.20		64
11.5.2	_BM_T	158	11.5.21		64
11.5.3			11.5.22		65
	_CDC_ABSTRACT_CONTROL_MANAGEM		11.5.23		65
	_DESCRIPTOR	159	11.5.24	_WB_T 1	
11.5.4	_CDC_CALL_MANAGEMENT_	4=0	11.5.25	USBD_API	
44 5 5	DESCRIPTOR		11.5.26	USBD_API_INIT_PARAM 1	
11.5.5	_CDC_HEADER_DESCRIPTOR		11.5.27	USBD_CDC_API 1	
11.5.6	_CDC_LINE_CODING		11.5.28	USBD_CDC_INIT_PARAM 1	
11.5.7	_CDC_UNION_1SLAVE_DESCRIPTOR		11.5.29	USBD_CORE_API 1	
11.5.8	_CDC_UNION_DESCRIPTOR		11.5.30	USBD_DFU_API	
11.5.9	_DFU_STATUS		11.5.31	USBD_DFU_INIT_PARAM 1	
11.5.10	_HID_DESCRIPTOR		11.5.32	USBD_HID_API	
11.5.11	_HID_DESCRIPTOR::_HID_DESCRIPTOR_		11.5.33	USBD_HID_INIT_PARAM 1	
44 5 40	LIST		11.5.34	USBD_HW_API 1	
11.5.12	_HID_REPORT_T		11.5.35		202
11.5.13	_MSC_CBW	162	11.5.36	USBD_MSC_INIT_PARAM 2	203
Chapt	er 12: LPC1315/16/17/45/46/47 USAR	Т			
12.1	How to read this chapter	208	12.5.3	USART Divisor Latch LSB and MSB Registers	
12.2	Basic configuration	208		(when DLAB = 1)	211
12.3	Features		12.5.4	USART Interrupt Enable Register (when	
12.4	Pin description			DLAB = 0)	211
	-		12.5.5	USART Interrupt Identification Register (Read	
12.5	Register description	209		• ,	212
12.5.1	USART Receiver Buffer Register (when	210	12.5.6	9 (),	214
10.50	DLAB = 0, Read Only)	210	12.5.7		215
12.5.2	USART Transmitter Holding Register (when	210	12.5.8	· · · · · · · · · · · · · · · · · · ·	216
	DLAB = 0, Write Only)	210	12.5.8.1	Auto-flow control 2	17

UM10524

12.5.8.1 12.5.9 12.5.10 12.5.11 12.5.12 12.5.12. 12.5.12. 12.5.13 12.5.14 12.5.14. 12.5.14. 12.5.14.	.1 Auto-RTS .2 Auto-CTS USART Line Status Register (Read-Only) USART Modem Status Register USART Scratch Pad Register USART Auto-baud Control Register 1 Auto-baud 2 Auto-baud modes USART IrDA Control Register USART Fractional Divider Register 1 Baud rate calculation 1.1 Example 1: UART_PCLK = 14.7456 MHz, B 9600 1.2 Example 2: UART_PCLK = 12.0 MHz, BR = 115200 USART Oversampling Register USART Transmit Enable Register	218 219 221 221 222 222 223 224 226 227 R = 229 229 229 230	12.6.1 12.6.2 12.6.2.1	USART Smart Card Interface Control register
12.5.17	USART Half-duplex enable register	231		200
Cnapte	er 13: LPC1315/16/17/45/46/47 SSP/S	PI		
	How to read this chapter		13.6.9	SSP/SPI Interrupt Clear Register 249
13.2	Basic configuration			Functional description 249
13.3	Features		13.7.1	Texas Instruments synchronous serial frame
13.4	General description		13.7.2	format
13.5	Pin description	74.3	13.7.2.1	
13.6	Register description	243	.0	control
13.6.1	SSP/SPI Control Register 0		13.7.2.2	
13.6.2	SSP/SPI Control Register 1		13.7.2.3	
13.6.3	SSP/SPI Data Register	~ 4-	13.7.2.4	•
13.6.4	SSP/SPI Status Register	0.47	13.7.2.5	,
13.6.5 13.6.6		0.47	13.7.3	Semiconductor Microwire frame format 254
13.6.7	SSP/SPI Raw Interrupt Status Register		13.7.3.1	·
13.6.8	SSP/SPI Masked Interrupt Status Register .			respect to SK in Microwire mode
Chapte	er 14: LPC1315/16/17/45/46/47 I2C-bu	s cont	roller	
14.1	How to read this chapter	257	14.7.7.2	Loss of arbitration in Monitor mode 266
14.2	Basic configuration	257	14.7.8	I ² C Slave Address registers (ADR[1, 2, 3]) . 266
14.3	Features		14.7.9	I ² C Data buffer register (DATA_BUFFER) 266
	Applications		14.7.10	I ² C Mask registers (MASK[0, 1, 2, 3]) 267
14.5	General description	257		I ² C operating modes
14.5.1	I ² C Fast-mode Plus	258	14.8.1	Master Transmitter mode
14.6	Pin description	050	14.8.2	Master Receiver mode
14.7	Register description		14.8.3 14.8.4	Slave Receiver mode
14.7.1	I ² C Control Set register (CONSET)			_
14.7.2		000	14.9 14.9.1	•
14.7.3	I ² C Data register (DAT)	000	14.9.1	Input filters and output stages
14.7.4	I ² C Slave Address register 0 (ADR0)	000	14.9.3	Address mask registers, MASK0 to MASK3 272
14.7.5	I ² C SCL HIGH and LOW duty cycle registers		14.9.4	Comparator
:	(SCLH and SCLL)	263	14.9.5	Shift register, DAT
14.7.5.1	Selecting the appropriate I ² C data rate and du	000	14.9.6	Arbitration and synchronization logic 272
1176	cycle	004	14.9.7	Serial clock generator
14.7.6 14.7.7	I ² C Monitor mode control register (MMCTRL)	004	14.9.8	Timing and control
14.7.7.1	Interrupt in Monitor mode	205	14.9.9	Control register, CONSET and CONCLR 274
			14.9.10	Status decoder and status register 274

Chapter 23: Supplementary information

14.10	Details of I ² C operating modes			3 State: 0x08	
14.10.1	Master Transmitter mode	275	14.11.5.	4 State: 0x10	
14.10.2	Master Receiver mode	279	14.11.6	Master Transmitter states	
14.10.3	Slave Receiver mode	282	14.11.6.	1 State: 0x18	294
14.10.4	Slave Transmitter mode	286	14.11.6.	2 State: 0x20	294
14.10.5	Miscellaneous states	288	14.11.6.	3 State: 0x28	294
14.10.5.	1 STAT = 0xF8		14.11.6.	4 State: 0x30	295
	2 STAT = 0x00		14.11.6.	5 State: 0x38	295
14.10.6	Some special cases	289	14.11.7	Master Receive states	295
14.10.6.	1 Simultaneous Repeated START conditions f		14.11.7.	1 State: 0x40	295
	two masters		14.11.7.	2 State: 0x48	295
14.10.6.	2 Data transfer after loss of arbitration		14.11.7.	3 State: 0x50	295
14.10.6.	3 Forced access to the I ² C-bus	290	14.11.7.	4 State: 0x58	296
	4 I2C-bus obstructed by a LOW level on SCL of		14.11.8	Slave Receiver states	296
	SDA		14.11.8.	1 State: 0x60	296
14.10.6.	5 Bus error			2 State: 0x68	
14.10.7	I ² C state service routines			3 State: 0x70	
14.10.8	Initialization		14.11.8.	4 State: 0x78	297
14.10.9	I ² C interrupt service			5 State: 0x80	
14.10.10	·			6 State: 0x88	
14.10.11				7 State: 0x90	
14.11	Software example			8 State: 0x98	
14.11.1	Initialization routine			9 State: 0xA0	
14.11.1	Start Master Transmit function			Slave Transmitter states	
14.11.2			14.11.9.	1 State: 0xA8	
_	Start Master Receive function			2 State: 0xB0	
14.11.4	I ² C interrupt routine			3 State: 0xB8	
14.11.5	Non mode specific states			4 State: 0xC0	
14.11.5.	1 State: 0x00	293			
1/115	2 Master States		14.11.9.	5 State: 0xC8	299
	2 Master States	293			299
	2 Master States	293			299
	er 15: LPC1315/16/17/45/46/47 Wind	293 owed V		og Timer (WWDT)	303
Chapt	er 15: LPC1315/16/17/45/46/47 Wind	293 owed V 300	Vatchdo 15.7.3	og Timer (WWDT) Changing the WWDT reload value	303
Chapte 15.1 15.2	er 15: LPC1315/16/17/45/46/47 Windo How to read this chapter	293 owed V 300 300	Vatchdo 15.7.3 15.8	Og Timer (WWDT) Changing the WWDT reload value	303 304
Chapte 15.1 15.2 15.3	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter Basic configuration Features	293 owed V 300 300 300	Vatchdo 15.7.3 15.8 15.8.1	Changing the WWDT reload value	303 304 304
Chapte 15.1 15.2 15.3 15.4	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter	293 owed V 300 300 300 300 301	15.7.3 15.8 15.8.1 15.8.2	Changing the WWDT reload value	303 304 304 306
Chapte 15.1 15.2 15.3 15.4 15.5	er 15: LPC1315/16/17/45/46/47 Windomer 15: LPC1315/16/17/45/46/47	293 owed V 300 300 300 301 301	15.7.3 15.8 15.8.1 15.8.2 15.8.3	Changing the WWDT reload value	303 304 304 306 306
Chapte 15.1 15.2 15.3 15.4	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter	293 owed V 300 300 300 301 301	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4	Changing the WWDT reload value	303 304 304 306 306 307
Chapte 15.1 15.2 15.3 15.4 15.5	er 15: LPC1315/16/17/45/46/47 Windomer 15: LPC1315/16/17/45/46/47	293 owed V 300 300 300 301 301 301	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register. Watchdog Feed register. Watchdog Timer Value register Watchdog Clock Select register.	303 304 304 306 306 307 307
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter	293 owed V 300 300 300 301 301 301 301 302	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6	Changing the WWDT reload value	303 304 304 306 306 307 307 307
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter	293 owed V 300 300 300 301 301 301 302 303	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7	Changing the WWDT reload value	303 304 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1	How to read this chapter	293 owed V 300 300 301 301 301 302 303 303	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7	Changing the WWDT reload value	303 304 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source.	293 owed V 300 300 301 301 301 302 303 303	15.7.3 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register. Watchdog Feed register. Watchdog Timer Value register Watchdog Clock Select register. Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register. Watchdog Timer Window register.	303 304 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2	How to read this chapter	293 owed V 300 300 301 301 301 302 303 303	15.7.3 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register. Watchdog Feed register. Watchdog Timer Value register Watchdog Clock Select register. Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register. Watchdog Timer Window register.	303 304 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source.	293 owed V 300 300 301 301 301 302 303 303 303 303	15.7.3 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Feed register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples	303 304 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2 Chapte	How to read this chapter	293 owed V 300 300 300 301 301 301 302 303 303 303 303 303	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Feed register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples	303 304 304 306 307 307 307 308 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2 Chapte 16.1 16.2	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 303 1	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Feed register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register	303 304 306 306 307 307 307 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 303 310 310	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register Match Registers Capture Control Register	303 304 306 307 307 307 308 308
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Feed register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register Match Registers Capture Control Register	303 304 306 307 307 307 308 315 316 317
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter. Basic configuration. Features Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features Applications. General description.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.5 16.7.5 16.7.7	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Timer Value register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register Match Registers Capture Control Register Capture Registers	303 304 306 306 307 307 307 308 308 315 316 317 317
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.6 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4	How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register Match Registers Capture Control Register Capture Registers External Match Register	303 304 306 307 307 307 308 308 315 316 317 317 317
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4 16.5 16.6	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter Basic configuration Features Applications Description Block diagram. Clocking and power control Using the WWDT lock features Accidental overwrite of the WWDT clock Changing the WWDT clock source er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter Basic configuration Features Applications General description Pin description	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311 311 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9 16.7.10	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Capture Control Register Capture Control Register Capture Registers External Match Register Count Control Register PWM Control register PWM Control register	303 304 306 307 307 307 308 315 316 317 317 319 320
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4 16.5 16.6 16.7	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications. General description. Pin description. Register description	293 owed V 300 300 301 301 301 302 303 303	15.7.3 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9 16.7.10 16.7.11	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Capture Control Register Capture Control Register Capture Registers External Match Register Count Control Register PWM Control register PWM Control register	303 304 306 307 307 307 308 315 316 317 317 319 320 321
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4 16.5 16.6 16.7	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications. General description. Pin description. Register description Interrupt Register.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311 311 311 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9 16.7.10 16.7.11	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Feed register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Capture Control Register Match Control Register Capture Control Register Capture Registers External Match Register Count Control Register PWM Control register Rules for single edge controlled PWM	303 304 306 307 307 307 308 315 316 317 317 319 320 321
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.7.1	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications. General description. Pin description. Register description Interrupt Register. Timer Control Register.	293 owed V 300 300 300 301 301 301 302 303 303 303 303 310 310 311 311 311 311	15.7.3 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time: 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9 16.7.10 16.7.11 16.7.12 16.7.13	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register. Watchdog Timer Value register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Capture Control Register Match Control Register Capture Registers Capture Registers External Match Register Count Control Register PWM Control register Rules for single edge controlled PWM outputs	303 304 306 307 307 307 308 315 316 317 319 320 321 324 325
Chapte 15.1 15.2 15.3 15.4 15.5 15.5.1 15.7 15.7.1 15.7.2 Chapte 16.1 16.2 16.3 16.4 16.5 16.6 16.7	er 15: LPC1315/16/17/45/46/47 Winder How to read this chapter. Basic configuration. Features. Applications. Description. Block diagram. Clocking and power control. Using the WWDT lock features. Accidental overwrite of the WWDT clock Changing the WWDT clock source. er 16: LPC1315/16/17/45/46/47 16-bit How to read this chapter. Basic configuration. Features. Applications. General description. Pin description. Register description Interrupt Register.	293 owed V 300 300 301 301 301 302 303 303 303 303 310 310 311 311 311 311	15.7.3 15.8 15.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.8.6 15.8.7 15.9 er/time 16.7.5 16.7.6 16.7.7 16.7.8 16.7.9 16.7.10 16.7.11	Changing the WWDT reload value Register description Watchdog mode register Watchdog Timer Constant register Watchdog Timer Value register Watchdog Timer Value register Watchdog Clock Select register Watchdog Timer Warning Interrupt register Watchdog Timer Window register Watchdog Timer Window register Watchdog Timer Window register Watchdog timing examples TS CT16B0/1 Prescale Counter register Match Control Register Match Registers Capture Control Register Capture Registers External Match Register Count Control Register PWM Control register Rules for single edge controlled PWM outputs Example timer operation	303 304 306 307 307 307 308 315 316 317 319 320 321 324

UM10524

Chapter 23: Supplementary information

Chapter 17: LPC1315/16/17/45/46/47 32-bit counter/timers CT32B0/1

17.1	How to read this chapter	328	17.7.5	Prescale Counter Register	333
17.2	Basic configuration		17.7.6	Match Control Register	
17.3	Features		17.7.7	Match Registers	
17.4	Applications		17.7.8	Capture Control Register	
17.5	General description		17.7.9	Capture Registers	
17.6	Pin description		17.7.10 17.7.11	External Match Register Count Control Register	337 339
17.7	Register description		17.7.11	PWM Control Register	341
17.7.1	Interrupt Register		17.7.13	Rules for single edge controlled PWM	011
17.7.2	Timer Control Register			outputs	342
17.7.3	Timer Counter registers		17.8	Example timer operation	343
17.7.4	Prescale Register	333	17.9	Architecture	344
Chapt	er 18: LPC1315/16/17/45/46/47 Syste	m tick	timer		
18.1	How to read this chapter	346	18.5.4	System Timer Calibration value register	
18.2	Basic configuration	346		(SYST_CALIB - 0xE000 E01C)	
18.3	Features	346	18.6	Functional description	
18.4	General description	346	18.7	Example timer calculations	
18.5	Register description	347		System clock = 72 MHz	
18.5.1	System Timer Control and status register			System tick timer clock = 24 MHz System clock = 12 MHz	
18.5.2	System Timer Reload value register			System clock = 12 IVII IZ	. 330
18.5.3	System Timer Current value register	349			
Chapt	er 19: LPC1315/16/17/45/46/47 Repet	itive In	terrupt	t Timer (RI timer)	
19.1	How to read this chapter	351	19.5.3	RI Control register	
19.2	Basic configuration	351	19.5.4	RI Counter LSB register	
19.3	Features	351	19.5.5 19.5.6	RI Compare Value MSB register	
19.4	General description	351	19.5.7	RI Mask MSB register	
19.5	Register description	352	19.6	RI timer operation	
19.5.1	RI Compare Value LSB register		13.0	Transfer operation	000
19.5.2	RI Mask LSB register	353			
Chapt	er 20: LPC1315/16/17/45/46/47 ADC				
20.1	How to read this chapter		20.6	Operation	
20.2	Basic configuration		20.6.1	Hardware-triggered conversion	
20.3	Features	356	20.6.2 20.6.3	Interrupts	
20.4	Pin description		20.6.4	Optional operating modes	
20.5	Register description		_0.0.1	Crucius opoidung modoc	302
20.5.1	A/D Control Register (CR)				
20.5.2	A/D Global Data Register (GDR)				
20.5.3 20.5.4	A/D Data Registers (DR0 to DR7)				
20.5.4	A/D Data Registers (DR0 to DR7)				
20.5.6	A/D Trim register (TRM)				
	, , , , , , , , , , , , , , , , , , , ,				

continued >>

414 of 416

Chapter 23: Supplementary information

Chapter 21: LPC1315/16/17/45/46/47 Flash/EEPRPOM programming firmware

21.1	How to read this chapter	364	21.13.10	Blank check sector(s) <sector number=""> <end< th=""><th></th></end<></sector>	
21.2	Bootloader	364		sector number>	379
21.3	Features	364	21.13.11		379
21.4	Description				380
21.5	Memory map after any reset		21.13.13	Compare <address1> <address2></address2></address1>	
_			04.40.44	<no bytes="" of=""></no>	
21.6	Flash content protection mechanism			ReadUID	
21.7	Criterion for Valid User Code			ISP Return Codes	
21.8	ISP/IAP communication protocol			AP commands	
21.8.1	ISP command format		21.14.1	Prepare sector(s) for write operation	
21.8.2	ISP response format		21.14.2	, ,	384
21.8.3	ISP data format		21.14.3	. ,	385
21.8.4	ISP flow control		21.14.4	()	386
21.8.5	ISP command abort		21.14.5		386
21.8.6	Interrupts during ISP		21.14.6		386
21.8.7	Interrupts during IAP	368	21.14.7	Compare <address1> <address2></address2></address1>	207
21.8.8	RAM used by ISP command handler		24 4 4 0	<no bytes="" of=""></no>	
21.8.9	RAM used by IAP command handler		21.14.8 21.14.9	Reinvoke ISP	
21.9	USB communication protocol		21.14.9	Erase page	
21.9.1	Usage note	369	21.14.10	Write EEPROM	
21.10	Boot process flowchart	370		Read EEPROM	
21.11	Sector numbers	371		IAP Status Codes	
21.12	Code Read Protection (CRP)	371		Debug notes	
21.12.1	ISP entry protection		21.15.1		389
21.13	ISP commands		21.15.1	Serial Wire Debug (SWD) flash programming	503
21.13.1	Unlock <unlock code=""></unlock>		21.10.2	interface	389
21.13.2	Set Baud Rate <baud rate=""> <stop bit=""></stop></baud>		21.16 F		390
21.13.3	Echo <setting></setting>		21.16.1	-	390
21.13.4	Write to RAM <start address=""></start>		21.16.1	, ,	390
	<number bytes="" of=""></number>	375	21.16.3	Signature generation address and control	390
21.13.5	Read Memory <address> <no. bytes="" of=""></no.></address>		21.10.5		391
21.13.6	Prepare sector(s) for write operation <start se<="" td=""><td></td><td>21.16.4</td><td>•</td><td>391</td></start>		21.16.4	•	391
	number> <end number="" sector=""></end>		21.16.5		392
21.13.7	Copy RAM to flash <flash address=""> <ram< td=""><td></td><td>21.16.6</td><td></td><td>392</td></ram<></flash>		21.16.6		392
	address> <no bytes="" of=""></no>	377	21.16.7	Algorithm and procedure for signature	002
21.13.8	Go <address> <mode></mode></address>		21.10.7	generation	393
21.13.9	Erase sector(s) <start number="" sector=""> <end< td=""><td></td><td></td><td>Signature generation</td><td></td></end<></start>			Signature generation	
	sector number>	379		Content verification	
Chapt	er 22: LPC1315/16/17/45/46/47 Serial	Wire D	Debugge		
22.1	How to read this chapter			· · · ·	396
22.2	Features		22.6.1	•	396
22.3	Introduction		22.6.2		396
22.4			22.6.3	•	397
	Description			•	
22.5	Pin description	39 5			

continued >>

Chapter 23: Supplementary information

Chapter 23: Supplementary information

23.1	Abbreviations	398	23.3	Tables	400
23.2	Legal information	399	23.4	Figures	407
23.2.1	Definitions	399	23.5	Contents	408
	Disclaimers				
23.2.3	Trademarks	399			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 March 2013 Document identifier: UM10524