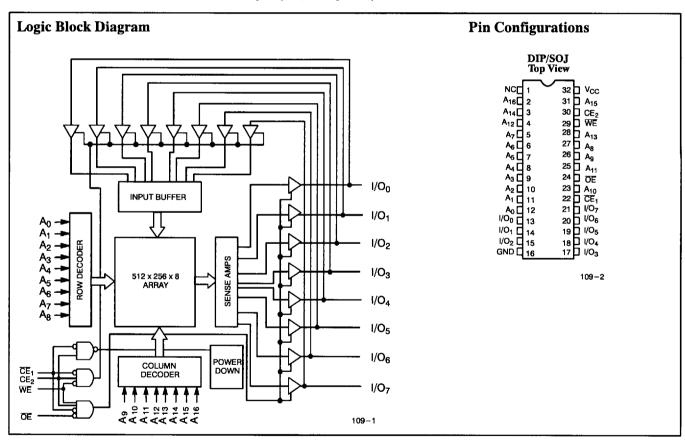


Features

- High speed
 - $-t_{AA} = 15 \text{ ns}$
- CMOS for optimum speed/power
- Low active power
 - 770 mW
- Low standby power
 - 165 mW
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE2, and OE options

Functional Description

The CY7C109 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}_1) , an active HIGH chip enable (CE_2) , an active LOW output enable (OE), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.


Writing to the device is accomplished by taking chip enable one (CE₁) and write enable (WE) inputs LOW and chip enable two (CE₂) input HIGH. Data on the eight I/O pins $(I/O_0$ through I/O_7) is then written

128K x 8 Static RAM

into the location specified on the address pins $(A_0 \text{ through } A_{16})$.

Reading from the device is accomplished by taking chip enable one (CE₁) and output enable (OE) LOW while forcing write enable (WE) and chip enable two (CE₂) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE₂ LOW), the outputs are disabled (OE HIGH), or during a write operation $(\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW).$ The CY7C109 is available in standard 400-mil-wide DIPs and SOJs.

Selection Guide

		7C109-15	7C109-20	7C109-25	7C109-35
Maximum Access Time (ns)		15	20	25	35
Maximum Operating Current (mA)	Commercial	155	140	135	125
Maximum Standby Current (mA)	Commercial	40	30	30	25

Cypress Semiconductor Corporation

3901 North First Street

San Jose

CA 95134 • 408-943-2600

2589662 0017187 460 📟

Maximum Ratings

Current into Outputs (LOW)	. 20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	

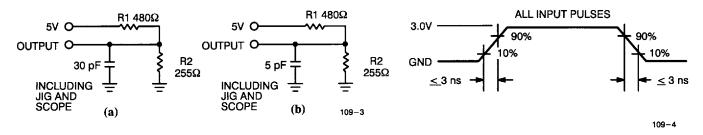
Operating Range

	Range	Ambient Temperature ^[2]	v_{cc}
C	Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3]

DC Input Voltage [1] -0.5V to V_{CC} +0.5V

			-	7C10	9-15	7C10	9-20	7C10	9-25	7C10	9-35	
Pa- rame- ter	Description	Test Conditions	s	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	4.0 mA	2.4		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.$	0 mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	v						
V_{IL}	InputLOW Voltage ^[1]			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Cur- rent	$GND \leq V_I \leq V_{CC}$		-1	+1	-1	+1	-1	+1	-1	+1	μА
I _{OZ}	Output Leakage Current	GND $\leq V_1 \leq V_{CC}$, Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	μА
Ios	Output Short Circuit Cur- rent ^[4]	V_{CC} = Max., V_{OUT} =	GND		-300		-300		-300		-300	mA
I_{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max$, $I_{OUT} = 0 \text{ mÅ}$, $f = f_{MAX} = 1/t_{RC}$	Com'l		155		140		135		125	mA
I _{SB1}	Automatic CE Power-Down Current — TTL Inputs	$\begin{aligned} &\text{Max.} V_{CC}, \overline{CE}_1 \! \geq \! V_{IH} \\ &\text{or } CE_2 \leq V_{IL}, \\ &V_{IN} \geq V_{IH} \text{or} \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$	Com'l		40		30		30		25	mA
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \\ \overline{CE}_1 \geq V_{CC} - 0.3 \text{V}, \\ \text{or } CE_2 \leq 0.3 \text{V}, \\ V_{IN} \geq V_{CC} - 0.3 \text{V}, \\ \text{or } V_{IN} \leq 0.3 \text{V}, \text{f=0} \end{array}$	Com'l		10		10		10		10	mA


Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF

- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "instant on" case temperature.
- 3. See the last page of this specification for Group A subgroup testing information.
- 4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

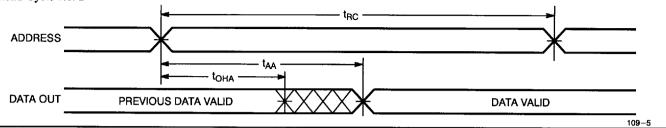
Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O 167Ω

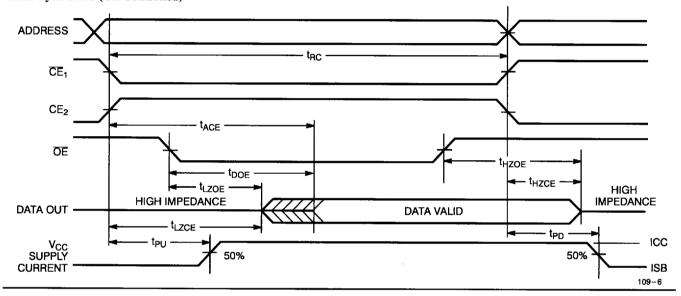
1.73V

Switching Characteristics^[3, 6] Over the Operating Range

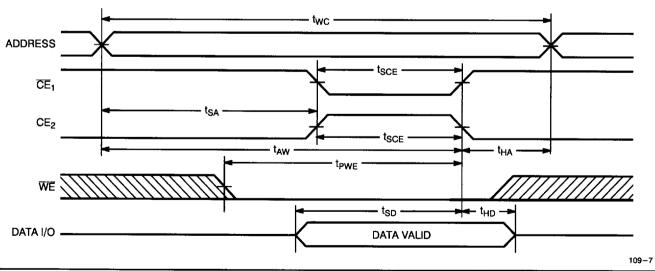
			9-15	7C10	7C109-20		7C109-25		7C109-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Min.	Unit
READ CYC	CLE		•			•			•	
t _{RC}	Read Cycle Time	15		20		25		35		ns
t _{AA}	Address to Data Valid		15		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		5		5		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		7		8		10		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		7		8		10		15	ns
tLZCE	$\overline{\text{CE}}_1$ LOW to Low Z, CE_2 HIGH to Low $Z^{[8]}$	3		3		5		5		ns
t _{HZCE}	$\overline{\text{CE}}_1$ HIGH to High Z, CE_2 LOW to High $\mathbb{Z}^{[7,8]}$		7		8		10		15	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		15		20		25		35	ns
WRITE CY	CLE ^[9]									
twc	Write Cycle Time	15		20		25		35		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	12		15		20		25		ns
t _{AW}	Address Set-Up to Write End	12		15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		20		25		ns
t_{SD}	Data Set-Up to Write End	8		10		15		20		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		3		5		5		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		7		8		10		15	ns


Notes:

- 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
- 9. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

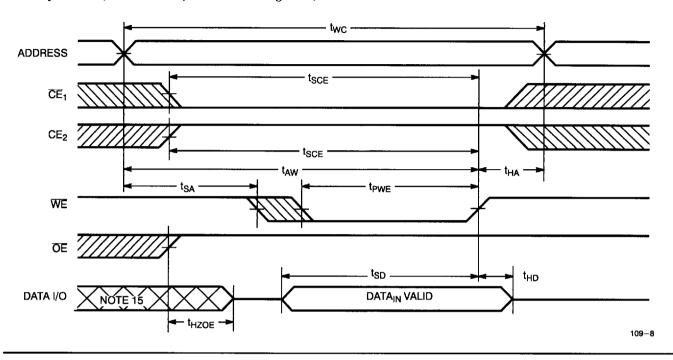


Switching Waveforms

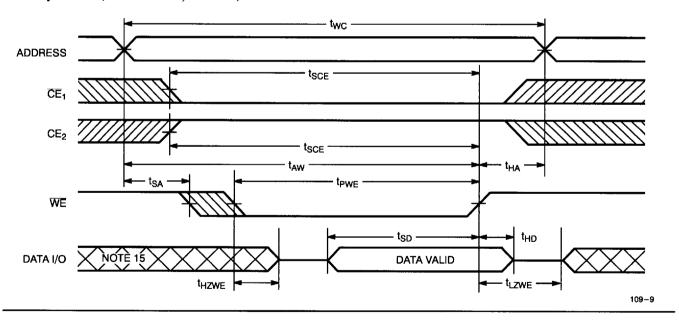

Read Cycle No. 1[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]

Write Cycle No. 1 (CE₁ or CE₂ Controlled)^[13, 14]


Notes:

- 10. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.
- 11. WE is HIGH for read cycle.
- 12. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.
- 13. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 14. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

Write Cycle No. 3 (WE Controlled, OE LOW)[NO TAG, 14]

Note:

15. During this period the I/Os are in the output state and input signals should not be applied.

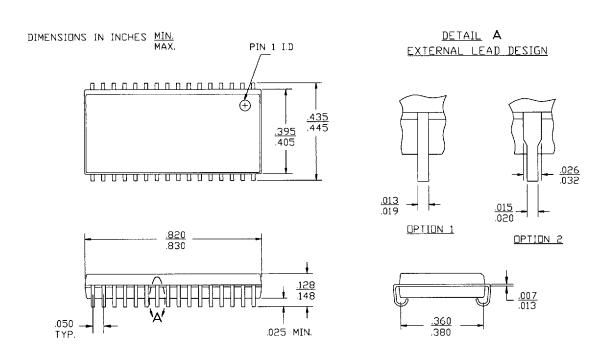
Truth Table

\overline{CE}_1	CE ₂	ŌĒ	WE	$I/O_0 - I/O_7$	Mode	Power
Н	X	Х	X	High Z	Power-Down	Standby (I _{SB})
X	L	Х	X	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	X	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C109-15PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109-15VC	V33	32-Lead (400-Mil) Molded SOJ	
20	CY7C109-20PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109-20VC	V33	32-Lead (400-Mil) Molded SOJ	
25	CY7C109-25PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109-25VC	V33	32-Lead (400-Mil) Molded SOJ	
35	CY7C109-35PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109-35VC	V33	32-Lead (400-Mil) Molded SOJ	

Document #: 38-00140-G



Package Diagrams

32-Lead (400-Mil) Molded DIP P43

32-Lead (400-Mil) Molded SOJ V33

