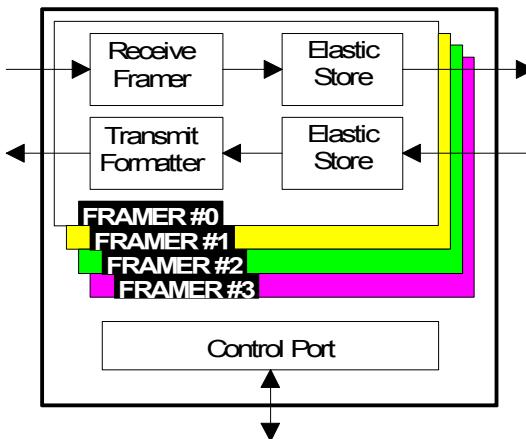


[www.maxim-ic.com](http://www.maxim-ic.com)

### FEATURES


- Four E1 (CEPT or PCM-30)/ISDN-PRI framing transceivers
- All four framers are fully independent; transmit and receive sections of each framer are fully independent
- Frames to FAS, CAS, CCS, and CRC4 formats
- Each of the four framers contain dual two-frame elastic store slip buffers that can connect to asynchronous backplanes up to 8.192MHz
- 8-bit parallel control port that can be used directly on either multiplexed or nonmultiplexed buses (Intel or Motorola)
- Easy access to Si and Sa bits
- Extracts and inserts CAS signaling
- Large counters for bipolar and code violations, CRC4 code word errors, FAS word errors, and E-bits
- Programmable output clocks for Fractional E1, per channel loopback, H0 and H12 applications
- Integral HDLC controller with 64-byte buffers configurable for Sa bits or DS0 operation
- Detects and generates AIS, remote alarm, and remote multiframe alarms
- Pin compatible with DS21Q42 enhanced quad T1 framer
- 3.3V supply with 5V tolerant I/O; low-power CMOS
- Available in 128-pin TQFP package
- IEEE 1149.1 support

### DESCRIPTION

The DS21Q44 E1 is an enhanced version of the DS21Q43 quad E1 framer. The DS21Q44 contains four framers that are configured and read through a common microprocessor-compatible parallel port. Each framer consists of a receive framer, receive elastic store, transmit formatter, and transmit elastic store. All four framers in the DS21Q44 are totally independent; they do not share a common framing synchronizer. The transmit and receive sides of each framer are also totally independent. The dual two-frame elastic stores contained in each of the four framers can be independently enabled and disabled as required. The

*Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: [www.maxim-ic.com/errata](http://www.maxim-ic.com/errata).*

### FUNCTIONAL DIAGRAM



### ACTUAL SIZE



### ORDERING INFORMATION

|           |                |
|-----------|----------------|
| DS21Q44T  | 0°C to +70°C   |
| DS21Q44TN | -40°C to +85°C |

device fully meets all of the latest E1 specifications including CCITT/ITU G.704, G.706, G.962, and I.431 as well as ETS 300 011 and ETS 300 233.

## 1. INTRODUCTION

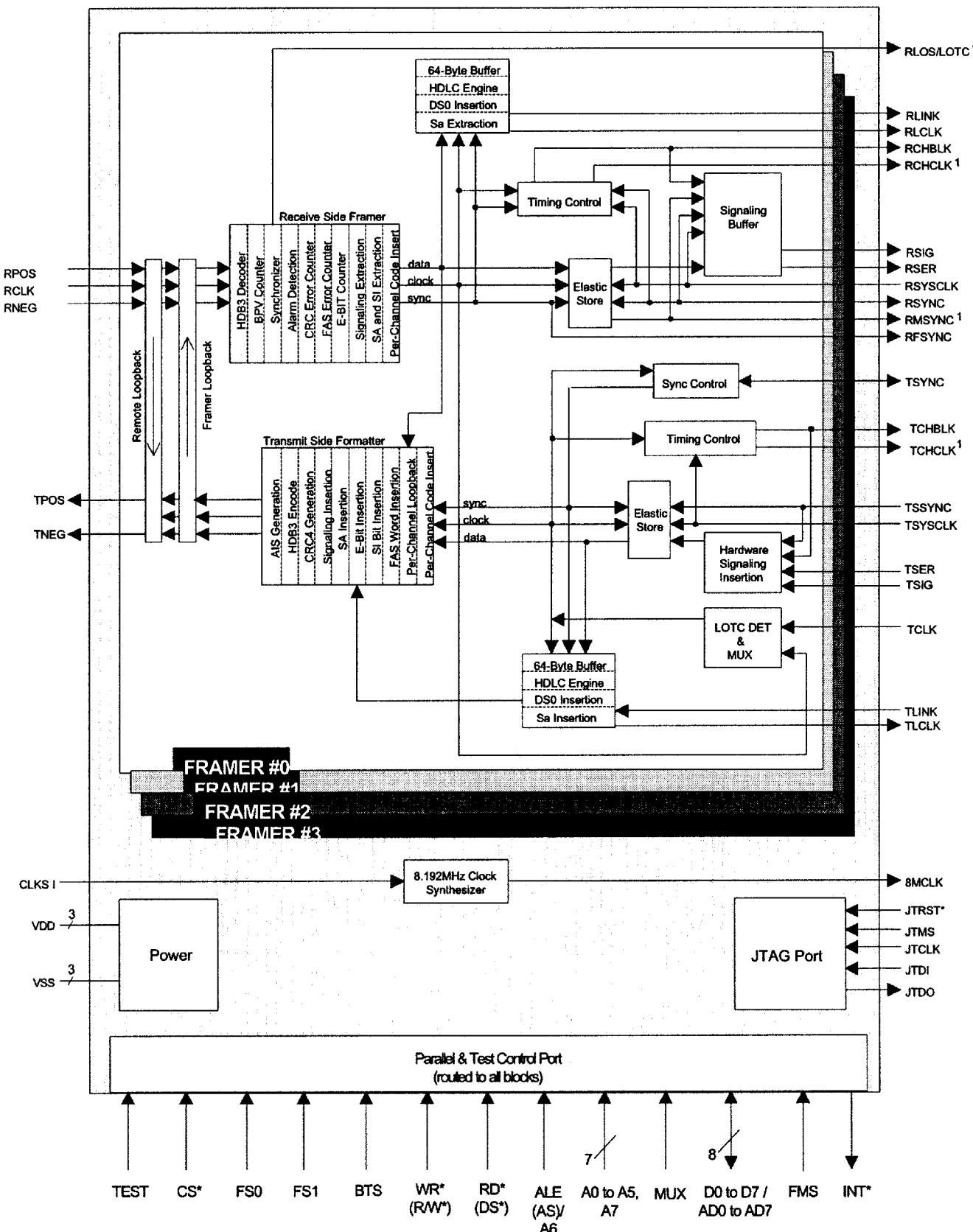
The DS21Q44 is a superset version of the popular DS21Q43 quad E1 framer offering the new features listed below. All of the original features of the DS21Q43 have been retained and software created for the original device is transferable to the DS21Q44.

## NEW FEATURES

- Additional hardware signaling capability including:
  - receive signaling reinsertion to a backplane multiframe sync
  - availability of signaling in a separate PCM data stream
  - signaling freezing
  - interrupt generated on change of signaling data
- Per-channel code insertion in both transmit and receive paths
- Full HDLC controller with 64-byte buffers in both transmit and receive paths. Configurable for Sa bits or DS0 access
- RCL, RLOS, RRA, and RUA1 alarms now interrupt on change of state
- 8.192MHz clock synthesizer
- Ability to monitor one DS0 channel in both the transmit and receive paths
- Option to extend carrier loss criteria to a 1 ms period as per ETS 300 233
- Automatic RAI generation to ETS 300 011 specifications
- IEEE 1149.1 support

## FUNCTIONAL DESCRIPTION

The receive side in each framer locates FAS frame and CRC and CAS multiframe boundaries as well as detects incoming alarms including, carrier loss, loss of synchronization, AIS and Remote Alarm. If needed, the receive side elastic store can be enabled in order to absorb the phase and frequency differences between the recovered E1 data stream and an asynchronous backplane clock which is provided at the RSYCLK input. The clock applied at the RSYCLK input can be either a 2.048 MHz clock or a 1.544 MHz clock. The RSYCLK can be a burst clock with speeds up to 8.192 MHz.


The transmit side in each framer is totally independent from the receive side in both the clock requirements and characteristics. Data off of a backplane can be passed through a transmit side elastic store if necessary. The transmit formatter will provide the necessary frame/multiframe data overhead for E1 transmission.

## READER'S NOTE:

This data sheet assumes a particular nomenclature of the E1 operating environment. In each 125 us frame, there are 32 8-bit timeslots numbered 0 to 31. Timeslot 0 is transmitted first and received first. These 32 timeslots are also referred to as channels with a numbering scheme of 1 to 32. Timeslot 0 is identical to channel 1, timeslot 1 is identical to Channel 2, and so on. Each timeslot (or channel) is made up of 8 bits which are numbered 1 to 8. Bit number 1 is the MSB and is transmitted first. Bit number 8 is the LSB and is transmitted last. Throughout this data sheet, the following abbreviations will be used:

|     |                              |       |                           |
|-----|------------------------------|-------|---------------------------|
| FAS | Frame Alignment Signal       | CRC4  | Cyclical Redundancy Check |
| CAS | Channel Associated Signaling | CCS   | Common Channel Signaling  |
| MF  | Multiframe                   | Sa    | Additional bits           |
| Si  | International bits           | E-bit | CRC4 Error Bits           |

Figure 1-1. DS21Q44 ENHANCED QUAD E1 FRAMER



Note:

1. Alternate pin functions. Consult data sheet for restrictions.

## TABLE OF CONTENTS

|                                                                         |           |
|-------------------------------------------------------------------------|-----------|
| <b>1. INTRODUCTION .....</b>                                            | <b>2</b>  |
| <b>2. DS21Q44 PIN DESCRIPTION .....</b>                                 | <b>7</b>  |
| <b>3. DS21Q44 PIN FUNCTION DESCRIPTION .....</b>                        | <b>13</b> |
| <b>4. DS21Q44 REGISTER MAP .....</b>                                    | <b>20</b> |
| <b>5. PARALLEL PORT .....</b>                                           | <b>24</b> |
| <b>6. CONTROL, ID, AND TEST REGISTERS.....</b>                          | <b>24</b> |
| <b>7. STATUS AND INFORMATION REGISTERS .....</b>                        | <b>35</b> |
| <b>8. ERROR COUNT REGISTERS.....</b>                                    | <b>41</b> |
| <b>9. DS0 MONITORING FUNCTION .....</b>                                 | <b>44</b> |
| <b>10. SIGNALING OPERATION .....</b>                                    | <b>46</b> |
| 10.1 PROCESSOR-BASED SIGNALING .....                                    | 46        |
| 10.2 HARDWARE-BASED SIGNALING .....                                     | 49        |
| <b>11. PER-CHANNEL CODE GENERATION AND LOOPBACK .....</b>               | <b>50</b> |
| 11.1 TRANSMIT SIDE CODE GENERATION .....                                | 50        |
| 11.1.1 <i>Simple Idle Code Insertion and Per-Channel Loopback</i> ..... | 50        |
| 11.1.2 <i>Per-Channel Code Insertion</i> .....                          | 51        |
| 11.2 RECEIVE SIDE CODE GENERATION .....                                 | 52        |
| <b>12. CLOCK BLOCKING REGISTERS.....</b>                                | <b>53</b> |
| <b>13. ELASTIC STORES OPERATION .....</b>                               | <b>54</b> |
| 13.1 RECEIVE SIDE.....                                                  | 55        |
| 13.2 TRANSMIT SIDE .....                                                | 55        |
| <b>14. ADDITIONAL (SA) AND INTERNATIONAL (SI) BIT OPERATION .....</b>   | <b>55</b> |
| 14.1 HARDWARE SCHEME .....                                              | 55        |
| 14.2 INTERNAL REGISTER SCHEME BASED ON DOUBLE-FRAME.....                | 56        |
| 14.3 INTERNAL REGISTER SCHEME BASED ON CRC4 MULTIFRAME.....             | 58        |

---

|                                                                       |            |
|-----------------------------------------------------------------------|------------|
| <b>15. HDLC CONTROLLER FOR THE SA BITS OR DS0 .....</b>               | <b>60</b>  |
| 15.1 GENERAL OVERVIEW .....                                           | 60         |
| 15.2 HDLC STATUS REGISTERS .....                                      | 61         |
| 15.3 BASIC OPERATION DETAILS .....                                    | 62         |
| 15.4 HDLC REGISTER DESCRIPTION .....                                  | 63         |
| <b>16. INTERLEAVED PCM BUS OPERATION.....</b>                         | <b>70</b>  |
| <b>17. JTAG-BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT .....</b> | <b>73</b>  |
| 17.1 DESCRIPTION .....                                                | 73         |
| 17.2 TAP CONTROLLER STATE MACHINE .....                               | 74         |
| 17.3 INSTRUCTION REGISTER AND INSTRUCTIONS .....                      | 76         |
| 17.4 TEST REGISTERS .....                                             | 78         |
| <b>18. TIMING DIAGRAMS.....</b>                                       | <b>82</b>  |
| <b>19. OPERATING PARAMETERS .....</b>                                 | <b>92</b>  |
| <b>20. 128-PIN TQFP PACKAGE SPECIFICATIONS .....</b>                  | <b>105</b> |

---

## DOCUMENT REVISION HISTORY

### REVISION NOTES:

| DATE   | NOTES                                                                                                                                                                                                                  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 122298 | Initial Release                                                                                                                                                                                                        |
| 052300 | <ul style="list-style-type: none"><li>▪ Changed explanation on JTRST test access port pin.</li><li>▪ All instances of JTRST* changed to JTRST.</li><li>▪ Corrected errors in the JTAG portion of data sheet.</li></ul> |
| 062602 | <ul style="list-style-type: none"><li>▪ Updated device characterization data</li></ul>                                                                                                                                 |

## 2. DS21Q44 PIN DESCRIPTION

**Table 2-1. PIN DESCRIPTION SORTED BY PIN NUMBER**

| PIN | SYMBOL                | TYPE     | DESCRIPTION                                                                                               |
|-----|-----------------------|----------|-----------------------------------------------------------------------------------------------------------|
| 1   | TCHBLK0               | O        | Transmit Channel Block from Framer 0                                                                      |
| 2   | TPOS0                 | O        | Transmit Bipolar Data from Framer 0                                                                       |
| 3   | TNEG0                 | O        | Transmit Bipolar Data from Framer 0                                                                       |
| 4   | RLINK0                | O        | Receive Link Data from Framer 0                                                                           |
| 5   | RLCLK0                | O        | Receive Link Clock from Framer 0                                                                          |
| 6   | RCLK0                 | I        | Receive Clock for Framer 0                                                                                |
| 7   | RNEG0                 | I        | Receive Bipolar Data for Framer 0                                                                         |
| 8   | RPOS0                 | I        | Receive Bipolar Data for Framer 0                                                                         |
| 9   | RSIG0<br>[RCHCLK0]    | O<br>[O] | Receive Signaling Output from Framer 0<br>[Receive Channel Clock from Framer 0]                           |
| 10  | RCHBLK0               | O        | Receive Channel Block from Framer 0                                                                       |
| 11  | RSYSCLK0              | I        | Receive System Clock for Elastic Store in Framer 0                                                        |
| 12  | RSYNC0                | I/O      | Receive Sync for Framer 0                                                                                 |
| 13  | RSER0                 | O        | Receive Serial Data from Framer 0                                                                         |
| 14  | VSS                   | —        | Signal Ground                                                                                             |
| 15  | VDD                   | —        | Positive Supply Voltage                                                                                   |
| 16  | SPARE1<br>[RMSYNC0]   | —<br>[O] | <i>Reserved.</i> Must be left unconnected for normal operation<br>[Receive Multiframe Sync from Framer 0] |
| 17  | RFSYNC0               | O        | Receive Frame Sync from Framer 0                                                                          |
| 18  | JTRST<br>[RLOS/LOTC0] | I<br>[O] | JTAG Reset<br>[Receive Loss of Sync/Loss of Transmit clock from Framer 0]                                 |
| 19  | TCLK0                 | I        | Transmit Clock for Framer 0                                                                               |
| 20  | TLCLK0                | O        | Transmit Link Clock from Framer 0                                                                         |
| 21  | TSYNC0                | I/O      | Transmit Sync for Framer 0                                                                                |
| 22  | TLINK0                | I        | Transmit Link Data for Framer 0                                                                           |
| 23  | A0                    | I        | Address Bus Bit 0; LSB                                                                                    |
| 24  | A1                    | I        | Address Bus Bit 1                                                                                         |
| 25  | A2                    | I        | Address Bus Bit 2                                                                                         |
| 26  | A3                    | I        | Address Bus Bit 3                                                                                         |
| 27  | A4                    | I        | Address Bus Bit 4                                                                                         |
| 28  | A5                    | I        | Address Bus Bit 5                                                                                         |
| 29  | A6/ALE (AS)           | I        | Address Bus Bit 6; MSB or Address Latch Enable (Address Strobe)                                           |
| 30  | INT*                  | O        | Receive Alarm Interrupt for all Four Framers                                                              |
| 31  | TSYSCLK1              | I        | Transmit System Clock for Elastic Store in Framer 1                                                       |
| 32  | TSER1                 | I        | Transmit Serial Data for Framer 1                                                                         |
| 33  | TSSYNC1               | I        | Transmit Sync for Elastic Store in Framer 1                                                               |
| 34  | TSIG1<br>[TCHCLK1]    | I<br>[O] | Transmit Signaling Input for Framer 1<br>[Transmit Channel Clock from Framer 1]                           |
| 35  | TCHBLK1               | O        | Transmit Channel Block from Framer 1                                                                      |
| 36  | TPOS1                 | O        | Transmit Bipolar Data from Framer 1                                                                       |
| 37  | TNEG1                 | O        | Transmit Bipolar Data from Framer 1                                                                       |
| 38  | RLINK1                | O        | Receive Link Data from Framer 1                                                                           |

| PIN | SYMBOL                | TYPE     | DESCRIPTION                                                                     |
|-----|-----------------------|----------|---------------------------------------------------------------------------------|
| 39  | RLCLK1                | O        | Receive Link Clock from Framer 1                                                |
| 40  | RCLK1                 | I        | Receive Clock for Framer 1                                                      |
| 41  | RNEG1                 | I        | Receive Bipolar Data for Framer 1                                               |
| 42  | RPOS1                 | I        | Receive Bipolar Data for Framer 1                                               |
| 43  | RSIG1<br>[RCHCLK1]    | O<br>[O] | Receive Signaling output from Framer 1<br>[Receive Channel Clock from Framer 1] |
| 44  | RCHBLK1               | O        | Receive Channel Block from Framer 1                                             |
| 45  | RSYSLCK1              | I        | Receive System Clock for Elastic Store in Framer 1                              |
| 46  | A7                    | I        | Address Bus Bit 7                                                               |
| 47  | FMS                   | I        | Framer Mode Select                                                              |
| 48  | RSYNC1                | I/O      | Receive Sync for Framer 1                                                       |
| 49  | RSER1                 | O        | Receive Serial Data from Framer 1                                               |
| 50  | JTMS<br>[RMSYNC1]     | I<br>[O] | JTAG Test Mode Select<br>[Receive Multiframe Sync from Framer 1]                |
| 51  | RFSYNC1               | O        | Receive Frame Sync from Framer 1                                                |
| 52  | JTCLK<br>[RLOS/LOTC1] | I<br>[O] | JTAG Test Clock<br>[Receive Loss of Sync/Loss of Transmit clock from Framer 1]  |
| 53  | TCLK1                 | I        | Transmit Clock for Framer 1                                                     |
| 54  | TLCLK1                | O        | Transmit Link Clock from Framer 1                                               |
| 55  | TSYNC1                | I/O      | Transmit Sync for Framer 1                                                      |
| 56  | TLINK1                | I        | Transmit Link Data for Framer 1                                                 |
| 57  | TEST                  | I        | Tri-state Control for all Output and I/O Pins                                   |
| 58  | FS0                   | I        | Framer Select 0 for Parallel Control Port                                       |
| 59  | FS1                   | I        | Framer Select 1 for Parallel Control Port                                       |
| 60  | CS*                   | I        | Chip Select                                                                     |
| 61  | BTS                   | I        | Bus Type Select for Parallel Control Port                                       |
| 62  | RD*/(DS*)             | I        | Read Input (Data Strobe)                                                        |
| 63  | WR*/(R/W*)            | I        | Write Input (Read/Write)                                                        |
| 64  | MUX                   | I        | Nonmultiplexed or Multiplexed Bus Select                                        |
| 65  | TSYSLCK2              | I        | Transmit System Clock for Elastic Store in Framer 2                             |
| 66  | TSER2                 | I        | Transmit Serial Data for Framer 2                                               |
| 67  | TSSYNC2               | I        | Transmit Sync for Elastic Store in Framer 2                                     |
| 68  | TSIG2<br>[TCHCLK2]    | I<br>[O] | Transmit Signaling Input for Framer 2<br>[Transmit Channel Clock from Framer 2] |
| 69  | TCHBLK2               | O        | Transmit Channel Block from Framer 2                                            |
| 70  | TPOS2                 | O        | Transmit Bipolar Data from Framer 2                                             |
| 71  | TNEG2                 | O        | Transmit Bipolar Data from Framer 2                                             |
| 72  | RLINK2                | O        | Receive Link Data from Framer 2                                                 |
| 73  | RLCLK2                | O        | Receive Link Clock from Framer 2                                                |
| 74  | RCLK2                 | I        | Receive Clock for Framer 2                                                      |
| 75  | RNEG2                 | I        | Receive Bipolar Data for Framer 2                                               |
| 76  | RPOS2                 | I        | Receive Bipolar Data for Framer 2                                               |
| 77  | RSIG2<br>[RCHCLK2]    | O<br>[O] | Receive Signaling Output from Framer 2<br>[Receive Channel Clock from Framer 2] |
| 78  | VSS                   | —        | Signal Ground                                                                   |
| 79  | VDD                   | —        | Positive Supply Voltage                                                         |
| 80  | RCHBLK2               | O        | Receive Channel Block from Framer 2                                             |

| PIN | SYMBOL                | TYPE     | DESCRIPTION                                                                                |
|-----|-----------------------|----------|--------------------------------------------------------------------------------------------|
| 81  | RSYSCLK2              | I        | Receive System Clock for Elastic Store in Framer 2                                         |
| 82  | RSYNC2                | I/O      | Receive Sync for Framer 2                                                                  |
| 83  | RSER2                 | O        | Receive Serial Data from Framer 2                                                          |
| 84  | JTDI<br>[RMSYNC2]     | I<br>[O] | JTAG Test Data Input<br>[Receive Multiframe Sync from Framer 2]                            |
| 85  | RFSYNC2               | O        | Receive Frame Sync from Framer 2                                                           |
| 86  | JTDO<br>[RLOS/LOTC2]  | O<br>[O] | JTAG Test Data Output<br>[Receive Loss of Sync/Loss of Transmit clock from Framer 2]       |
| 87  | TCLK2                 | I        | Transmit Clock for Framer 2                                                                |
| 88  | TLCLK2                | O        | Transmit Link Clock from Framer 2                                                          |
| 89  | TSYNC2                | I/O      | Transmit Sync for Framer 2                                                                 |
| 90  | TLINK2                | I        | Transmit Link Data for Framer 2                                                            |
| 91  | TSYSCLK3              | I        | Transmit System Clock for Elastic Store in Framer 3                                        |
| 92  | TSER3                 | I        | Transmit Serial Data for Framer 3                                                          |
| 93  | TSSYNC3               | I        | Transmit Sync for Elastic Store in Framer 3                                                |
| 94  | TSIG3<br>[TCHCLK3]    | I        | Transmit Signaling Input for Framer 3<br>[Transmit Channel Clock from Framer 3]            |
| 95  | TCHBLK3               | O        | Transmit Channel Block from Framer 3                                                       |
| 96  | TPOS3                 | O        | Transmit Bipolar Data from Framer 3                                                        |
| 97  | TNEG3                 | O        | Transmit Bipolar Data from Framer 3                                                        |
| 98  | RLINK3                | O        | Receive Link Data from Framer 3                                                            |
| 99  | RLCLK3                | O        | Receive Link Clock from Framer 3                                                           |
| 100 | RCLK3                 | I        | Receive Clock for Framer 3                                                                 |
| 101 | RNEG3                 | I        | Receive Bipolar Data for Framer 3                                                          |
| 102 | RPOS3                 | I        | Receive Bipolar Data for Framer 3                                                          |
| 103 | RSIG3<br>[RCHCLK3]    | O<br>[O] | Receive Signaling Output from Framer 3<br>[Receive Channel Clock from Framer 3]            |
| 104 | RCHBLK3               | O        | Receive Channel Block from Framer 3                                                        |
| 105 | RSYSCLK3              | I        | Receive System Clock for Elastic Store in Framer 3                                         |
| 106 | RSYNC3                | I/O      | Receive Sync for Framer 3                                                                  |
| 107 | RSER3                 | O        | Receive Serial Data from Framer 3                                                          |
| 108 | 8MCLK<br>[RMSYNC3]    | O<br>[O] | 8MHz Clock<br>[Receive Multiframe Sync from Framer 3]                                      |
| 109 | RFSYNC3               | O        | Receive Frame Sync from Framer 3                                                           |
| 110 | VSS                   | —        | Signal Ground                                                                              |
| 111 | VDD                   | —        | Positive Supply Voltage                                                                    |
| 112 | CLKSI<br>[RLOS/LOTC3] | I<br>[O] | 8MCLK Clock Reference Input<br>[Receive Loss of Sync/Loss of Transmit clock from Framer 3] |
| 113 | TCLK3                 | I        | Transmit Clock for Framer 3                                                                |
| 114 | TLCLK3                | O        | Transmit Link Clock from Framer 3                                                          |
| 115 | TSYNC3                | I/O      | Transmit Sync for Framer 3                                                                 |
| 116 | TLINK3                | I        | Transmit Link Data for Framer 3                                                            |
| 117 | D0 or AD0             | I/O      | Data Bus Bit or Address/Data Bit 0; LSB                                                    |
| 118 | D1 or AD1             | I/O      | Data Bus Bit or Address/Data Bit 1                                                         |
| 119 | D2 or AD2             | I/O      | Data Bus Bit or Address/Data Bit 2                                                         |
| 120 | D3 or AD3             | I/O      | Data Bus Bit or Address/Data Bit 3                                                         |
| 121 | D4 or AD4             | I/O      | Data Bus Bit or Address/Data Bit 4                                                         |

| PIN | SYMBOL             | TYPE     | DESCRIPTION                                                                     |
|-----|--------------------|----------|---------------------------------------------------------------------------------|
| 122 | D5 or AD5          | I/O      | Data Bus Bit or Address/Data Bit 5                                              |
| 123 | D6 or AD6          | I/O      | Data Bus Bit or Address/Data Bit 6                                              |
| 124 | D7 or AD7          | I/O      | Data Bus Bit or Address/Data Bit 7; MSB                                         |
| 125 | TSYSCLK0           | I        | Transmit System Clock for Elastic Store in Framer 0                             |
| 126 | TSER0              | I        | Transmit Serial Data for Framer 0                                               |
| 127 | TSSYNC0            | I        | Transmit Sync for Elastic Store in Framer 0                                     |
| 128 | TSIG0<br>[TCHCLK0] | I<br>[O] | Transmit Signaling Input for Framer 0<br>[Transmit Channel Clock from Framer 0] |

### NOTES:

- 1) Brackets [ ] indicate pin function when the DS21Q44 is configured for emulation of the DS21Q43, (FMS = 1).

**Table 2-2. PIN DESCRIPTION SORTED BY PIN FUNCTION, FMS = 0**

| PIN | SYMBOL      | TYPE | DESCRIPTION                                                     |
|-----|-------------|------|-----------------------------------------------------------------|
| 108 | 8MCLK       | O    | 8MHz Clock                                                      |
| 23  | A0          | I    | Address Bus Bit 0; LSB                                          |
| 24  | A1          | I    | Address Bus Bit 1                                               |
| 25  | A2          | I    | Address Bus Bit 2                                               |
| 26  | A3          | I    | Address Bus Bit 3                                               |
| 27  | A4          | I    | Address Bus Bit 4                                               |
| 28  | A5          | I    | Address Bus Bit 5                                               |
| 29  | A6/ALE (AS) | I    | Address Bus Bit 6; MSB or Address Latch Enable (Address Strobe) |
| 46  | A7          | I    | Address Bus Bit 7                                               |
| 61  | BTS         | I    | Bus Type Select for Parallel Control Port                       |
| 112 | CLKSI       | I    | 8MCLK Clock Reference Input                                     |
| 60  | CS*         | I    | Chip Select                                                     |
| 117 | D0 or AD0   | I/O  | Data Bus Bit or Address/Data Bit 0; LSB                         |
| 118 | D1 or AD1   | I/O  | Data Bus Bit or Address/Data Bit 1                              |
| 119 | D2 or AD2   | I/O  | Data Bus Bit or Address/Data Bit 2                              |
| 120 | D3 or AD3   | I/O  | Data Bus Bit or Address/Data Bit 3                              |
| 121 | D4 or AD4   | I/O  | Data Bus Bit or Address/Data Bit 4                              |
| 122 | D5 or AD5   | I/O  | Data Bus Bit or Address/Data Bit 5                              |
| 123 | D6 or AD6   | I/O  | Data Bus Bit or Address/Data Bit 6                              |
| 124 | D7 or AD7   | I/O  | Data Bus Bit or Address/Data Bit 7; MSB                         |
| 47  | FMS         | I    | Framer Mode Select                                              |
| 58  | FS0         | I    | Framer Select 0 for Parallel Control Port                       |
| 59  | FS1         | I    | Framer Select 1 for Parallel Control Port                       |
| 30  | INT*        | O    | Receive Alarm Interrupt for all Four Framers                    |
| 52  | JTCLK       | I    | JTAG Test Clock                                                 |
| 84  | JTDI        | I    | JTAG Test Data Input                                            |
| 86  | JTDO        | O    | JTAG Test Data Output                                           |
| 50  | JTMS        | I    | JTAG Test Mode Select                                           |
| 18  | JTRST       | I    | JTAG Reset                                                      |
| 64  | MUX         | I    | Nonmultiplexed or Multiplexed Bus Select                        |
| 10  | RCHBLK0     | O    | Receive Channel Block from Framer 0                             |
| 44  | RCHBLK1     | O    | Receive Channel Block from Framer 1                             |
| 80  | RCHBLK2     | O    | Receive Channel Block from Framer 2                             |
| 104 | RCHBLK3     | O    | Receive Channel Block from Framer 3                             |
| 6   | RCLK0       | I    | Receive Clock for Framer 0                                      |
| 40  | RCLK1       | I    | Receive Clock for Framer 1                                      |
| 74  | RCLK2       | I    | Receive Clock for Framer 2                                      |
| 100 | RCLK3       | I    | Receive Clock for Framer 3                                      |
| 62  | RD*/(DS*)   | I    | Read Input (Data Strobe)                                        |
| 17  | RFSYNC0     | O    | Receive Frame Sync from Framer 0                                |
| 51  | RFSYNC1     | O    | Receive Frame Sync from Framer 1                                |
| 85  | RFSYNC2     | O    | Receive Frame Sync from Framer 2                                |
| 109 | RFSYNC3     | O    | Receive Frame Sync from Framer 3                                |

| PIN | SYMBOL  | TYPE | DESCRIPTION                                                    |
|-----|---------|------|----------------------------------------------------------------|
| 5   | RLCLK0  | O    | Receive Link Clock from Framer 0                               |
| 39  | RLCLK1  | O    | Receive Link Clock from Framer 1                               |
| 73  | RLCLK2  | O    | Receive Link Clock from Framer 2                               |
| 99  | RLCLK3  | O    | Receive Link Clock from Framer 3                               |
| 4   | RLINK0  | O    | Receive Link Data from Framer 0                                |
| 38  | RLINK1  | O    | Receive Link Data from Framer 1                                |
| 72  | RLINK2  | O    | Receive Link Data from Framer 2                                |
| 98  | RLINK3  | O    | Receive Link Data from Framer 3                                |
| 7   | RNEG0   | I    | Receive Bipolar Data for Framer 0                              |
| 41  | RNEG1   | I    | Receive Bipolar Data for Framer 1                              |
| 75  | RNEG2   | I    | Receive Bipolar Data for Framer 2                              |
| 101 | RNEG3   | I    | Receive Bipolar Data for Framer 3                              |
| 8   | RPOS0   | I    | Receive Bipolar Data for Framer 0                              |
| 42  | RPOS1   | I    | Receive Bipolar Data for Framer 1                              |
| 76  | RPOS2   | I    | Receive Bipolar Data for Framer 2                              |
| 102 | RPOS3   | I    | Receive Bipolar Data for Framer 3                              |
| 13  | RSER0   | O    | Receive Serial Data from Framer 0                              |
| 49  | RSER1   | O    | Receive Serial Data from Framer 1                              |
| 83  | RSER2   | O    | Receive Serial Data from Framer 2                              |
| 107 | RSER3   | O    | Receive Serial Data from Framer 3                              |
| 9   | RSIG0   | O    | Receive Signaling Output from Framer 0                         |
| 43  | RSIG1   | O    | Receive Signaling output from Framer 1                         |
| 77  | RSIG2   | O    | Receive Signaling Output from Framer 2                         |
| 103 | RSIG3   | O    | Receive Signaling Output from Framer 3                         |
| 12  | RSYNC0  | I/O  | Receive Sync for Framer 0                                      |
| 48  | RSYNC1  | I/O  | Receive Sync for Framer 1                                      |
| 82  | RSYNC2  | I/O  | Receive Sync for Framer 2                                      |
| 106 | RSYNC3  | I/O  | Receive Sync for Framer 3                                      |
| 11  | RSYSLK0 | I    | Receive System Clock for Elastic Store in Framer 0             |
| 45  | RSYSLK1 | I    | Receive System Clock for Elastic Store in Framer 1             |
| 81  | RSYSLK2 | I    | Receive System Clock for Elastic Store in Framer 2             |
| 105 | RSYSLK3 | I    | Receive System Clock for Elastic Store in Framer 3             |
| 16  | SPARE1  | —    | <i>Reserved.</i> Must be left unconnected for normal operation |
| 1   | TCHBLK0 | O    | Transmit Channel Block from Framer 0                           |
| 35  | TCHBLK1 | O    | Transmit Channel Block from Framer 1                           |
| 69  | TCHBLK2 | O    | Transmit Channel Block from Framer 2                           |
| 95  | TCHBLK3 | O    | Transmit Channel Block from Framer 3                           |
| 19  | TCLK0   | I    | Transmit Clock for Framer 0                                    |
| 53  | TCLK1   | I    | Transmit Clock for Framer 1                                    |
| 87  | TCLK2   | I    | Transmit Clock for Framer 2                                    |
| 113 | TCLK3   | I    | Transmit Clock for Framer 3                                    |
| 57  | TEST    | I    | Tri-state Control for all Output and I/O Pins                  |
| 20  | TLCLK0  | O    | Transmit Link Clock from Framer 0                              |
| 54  | TLCLK1  | O    | Transmit Link Clock from Framer 1                              |
| 88  | TLCLK2  | O    | Transmit Link Clock from Framer 2                              |
| 114 | TLCLK3  | O    | Transmit Link Clock from Framer 3                              |

| PIN | SYMBOL     | TYPE | DESCRIPTION                                         |
|-----|------------|------|-----------------------------------------------------|
| 22  | TLINK0     | I    | Transmit Link Data for Framer 0                     |
| 56  | TLINK1     | I    | Transmit Link Data for Framer 1                     |
| 90  | TLINK2     | I    | Transmit Link Data for Framer 2                     |
| 116 | TLINK3     | I    | Transmit Link Data for Framer 3                     |
| 3   | TNEG0      | O    | Transmit Bipolar Data from Framer 0                 |
| 37  | TNEG1      | O    | Transmit Bipolar Data from Framer 1                 |
| 71  | TNEG2      | O    | Transmit Bipolar Data from Framer 2                 |
| 97  | TNEG3      | O    | Transmit Bipolar Data from Framer 3                 |
| 2   | TPOS0      | O    | Transmit Bipolar Data from Framer 0                 |
| 36  | TPOS1      | O    | Transmit Bipolar Data from Framer 1                 |
| 70  | TPOS2      | O    | Transmit Bipolar Data from Framer 2                 |
| 96  | TPOS3      | O    | Transmit Bipolar Data from Framer 3                 |
| 126 | TSER0      | I    | Transmit Serial Data for Framer 0                   |
| 32  | TSER1      | I    | Transmit Serial Data for Framer 1                   |
| 66  | TSER2      | I    | Transmit Serial Data for Framer 2                   |
| 92  | TSER3      | I    | Transmit Serial Data for Framer 3                   |
| 128 | TSIG0      | I    | Transmit Signaling Input for Framer 0               |
| 34  | TSIG1      | I    | Transmit Signaling Input for Framer 1               |
| 68  | TSIG2      | I    | Transmit Signaling Input for Framer 2               |
| 94  | TSIG3      | I    | Transmit Signaling Input for Framer 3               |
| 127 | TSSYNC0    | I    | Transmit Sync for Elastic Store in Framer 0         |
| 33  | TSSYNC1    | I    | Transmit Sync for Elastic Store in Framer 1         |
| 67  | TSSYNC2    | I    | Transmit Sync for Elastic Store in Framer 2         |
| 93  | TSSYNC3    | I    | Transmit Sync for Elastic Store in Framer 3         |
| 21  | TSYNC0     | I/O  | Transmit Sync for Framer 0                          |
| 55  | TSYNC1     | I/O  | Transmit Sync for Framer 1                          |
| 89  | TSYNC2     | I/O  | Transmit Sync for Framer 2                          |
| 115 | TSYNC3     | I/O  | Transmit Sync for Framer 3                          |
| 125 | TSYSCLK0   | I    | Transmit System Clock for Elastic Store in Framer 0 |
| 31  | TSYSCLK1   | I    | Transmit System Clock for Elastic Store in Framer 1 |
| 65  | TSYSCLK2   | I    | Transmit System Clock for Elastic Store in Framer 2 |
| 91  | TSYSCLK3   | I    | Transmit System Clock for Elastic Store in Framer 3 |
| 15  | VDD        | —    | Positive Supply Voltage                             |
| 79  | VDD        | —    | Positive Supply Voltage                             |
| 111 | VDD        | —    | Positive Supply Voltage                             |
| 14  | VSS        | —    | Signal Ground                                       |
| 78  | VSS        | —    | Signal Ground                                       |
| 110 | VSS        | —    | Signal Ground                                       |
| 63  | WR*/(R/W*) | I    | Write Input (Read/Write)                            |

### 3. DS21Q44 PIN FUNCTION DESCRIPTION

#### TRANSMIT SIDE PINS

Signal Name: **TCLK**

Signal Description: **Transmit Clock**

Signal Type: **Input**

A 2.048 MHz primary clock. Used to clock data through the transmit side formatter.

Signal Name: **TSER**

Signal Description: **Transmit Serial Data**

Signal Type: **Input**

Transmit NRZ serial data. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYCLK when the transmit side elastic store is enabled.

Signal Name: **TCHCLK**

Signal Description: **Transmit Channel Clock**

Signal Type: **Output**

A 256-kHz clock which pulses high during the LSB of each channel. Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYCLK when the transmit side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name: **TCHBLK**

Signal Description: **Transmit Channel Block**

Signal Type: **Output**

A user programmable output that can be forced high or low during any of the 32 E1 channels.

Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with TSYCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all E1 channels are used such as Fractional E1, 384 kbps (H0), 768 kbps, 1920 bps (H12) or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications, for external per-channel loopback, and for per-channel conditioning. See Section 12 for details.

---

Signal Name: **TSYSCLK**  
 Signal Description: **Transmit System Clock**  
 Signal Type: **Input**

1.544 MHz or 2.048 MHz clock. Only used when the transmit side elastic store function is enabled. Should be tied low in applications that do not use the transmit side elastic store. Can be burst at rates up to 8.192 MHz.

Signal Name: **TLCLK**  
 Signal Description: **Transmit Link Clock**  
 Signal Type: **Output**

4 kHz to 20 kHz demand clock for the TLINK input. See Section 14 for details.

Signal Name: **TLINK**  
 Signal Description: **Transmit Link Data**  
 Signal Type: **Input**

If enabled, this pin will be sampled on the falling edge of TCLK for data insertion into any combination of the Sa bit positions (Sa4 to Sa8). See Section 14 for details.

Signal Name: **TSYNC**  
 Signal Description: **Transmit Sync**  
 Signal Type: **Input /Output**

A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. This pin can also be programmed to output either a frame or multiframe pulse. Always synchronous with TCLK.

Signal Name: **TSSYNC**  
 Signal Description: **Transmit System Sync**  
 Signal Type: **Input**

Only used when the transmit side elastic store is enabled. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. Should be tied low in applications that do not use the transmit side elastic store. Always synchronous with TSYSCLK.

Signal Name: **TSIG**  
 Signal Description: **Transmit Signaling Input**  
 Signal Type: **Input**

When enabled, this input will sample signaling bits for insertion into outgoing PCM E1 data stream. Sampled on the falling edge of TCLK when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled. This function is available when FMS = 0.

Signal Name: **TPOS**  
 Signal Description: **Transmit Positive Data Output**  
 Signal Type: **Output**

Updated on the rising edge of TCLK with the bipolar data out of the transmit side formatter. Can be programmed to source NRZ data via the Output Data Format (TCR1.7) control bit.

Signal Name: **TNEG**  
 Signal Description: **Transmit Negative Data Output**  
 Signal Type: **Output**

Updated on the rising edge of TCLK with the bipolar data out of the transmit side formatter.

## RECEIVE SIDE PINS

Signal Name: **RLINK**

Signal Description: **Receive Link Data**

Signal Type: **Output**

Updated with full recovered E1 data stream on the rising edge of RCLK.

Signal Name: **RLCLK**

Signal Description: **Receive Link Clock**

Signal Type: **Output**

A 4 kHz to 20-kHz clock for the RLINK output. Used for sampling Sa bits.

Signal Name: **RCLK**

Signal Description: **Receive Clock Input**

Signal Type: **Input**

2.048 MHz clock that is used to clock data through the receive side framer.

Signal Name: **RCHCLK**

Signal Description: **Receive Channel Clock**

Signal Type: **Output**

A 256-kHz clock which pulses high during the LSB of each channel. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYCLK when the receive side elastic store is enabled. Useful for parallel to serial conversion of channel data. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name: **RCHBLK**

Signal Description: **Receive Channel Block**

Signal Type: **Output**

A user programmable output that can be forced high or low during any of the 32 E1 channels. Synchronous with RCLK when the receive side elastic store is disabled. Synchronous with RSYCLK when the receive side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD controller in applications where not all E1 channels are used such as Fractional E1, 384 kbps service, 768 kbps, or ISDN-PRI. Also useful for locating individual channels in drop-and-insert applications, for external per-channel loopback, and for per-channel conditioning. See Section 12 for details.

Signal Name: **RSER**

Signal Description: **Receive Serial Data**

Signal Type: **Output**

Received NRZ serial data. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYCLK when the receive side elastic store is enabled.

Signal Name: **RSYNC**

Signal Description: **Receive Sync**

Signal Type: **Input /Output**

An extracted pulse, one RCLK wide, is output at this pin which identifies either frame or CAS/CRC multiframe boundaries. If the receive side elastic store is enabled, then this pin can be enabled to be an input at which a frame or multiframe boundary pulse synchronous with RSYCLK is applied.

---

Signal Name: **RFSYNC**  
 Signal Description: **Receive Frame Sync**  
 Signal Type: **Output**  
 An extracted 8-kHz pulse, one RCLK wide, is output at this pin which identifies frame boundaries.

Signal Name: **RMSYNC**  
 Signal Description: **Receive Multiframe Sync**  
 Signal Type: **Output**  
 An extracted pulse, one RSYSCLK wide, is output at this pin which identifies multiframe boundaries. If the receive side elastic store is disabled, then this output will output multiframe boundaries associated with RCLK. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name: **RSYSCLK**  
 Signal Description: **Receive System Clock**  
 Signal Type: **Input**  
 1.544 MHz or 2.048 MHz clock. Only used when the elastic store function is enabled. Should be tied low in applications that do not use the elastic store. Can be burst at rates up to 8.192 MHz.

Signal Name: **RSIG**  
 Signal Description: **Receive Signaling Output**  
 Signal Type: **Output**  
 Outputs signaling bits in a PCM format. Updated on rising edges of RCLK when the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when the receive side elastic store is enabled. This function is available when FMS = 0.

Signal Name: **RLOS/LOTC**  
 Signal Description: **Receive Loss of Sync / Loss of Transmit Clock**  
 Signal Type: **Output**  
 A dual function output that is controlled by the TCR2.0 control bit. This pin can be programmed to either toggle high when the synchronizer is searching for the frame and multiframe or to toggle high if the TCLK pin has not been toggled for 5 usec. This function is available when FMS = 1 (DS21Q43 emulation).

Signal Name: **CLKSI**  
 Signal Description: **8 MHz Clock Reference**  
 Signal Type: **Input**  
 A 2.048 MHz reference clock used in the generation of 8MCLK. This function is available when FMS = 0.

Signal Name: **8MCLK**  
 Signal Description: **8 MHz Clock**  
 Signal Type: **Output**  
 A 8.192 MHz output clock that is referenced to the clock that is input at the CLKSI pin. This function is available when FMS = 0.

---

Signal Name: **RPOS**  
 Signal Description: **Receive Positive Data Input**  
 Signal Type: **Input**  
 Sampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS and RNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolar violation monitoring circuitry.

Signal Name: **RNEG**  
 Signal Description: **Receive Negative Data Input**  
 Signal Type: **Input**  
 Sampled on the falling edge of RCLK for data to be clocked through the receive side framer. RPOS and RNEG can be tied together for an NRZ interface. Connecting RPOS to RNEG disables the bipolar violation monitoring circuitry.

## PARALLEL CONTROL PORT PINS

Signal Name: **INT\***  
 Signal Description: **Interrupt**  
 Signal Type: **Output**  
 Flags host controller during conditions and change of conditions defined in the Status Registers 1 and 2 and the FDL Status Register. Active low, open drain output.

Signal Name: **FMS**  
 Signal Description: **Framer Mode Select**  
 Signal Type: **Input**  
 Set low to select DS21Q44 feature set. Set high to select DS21Q43 emulation.

Signal Name: **MUX**  
 Signal Description: **Bus Operation**  
 Signal Type: **Input**  
 Set low to select non-multiplexed bus operation. Set high to select multiplexed bus operation.

Signal Name: **D0 TO D7 / AD0 TO AD7**  
 Signal Description: **Data Bus or Address/Data Bus**  
 Signal Type: **Input /Output**  
 In non-multiplexed bus operation (MUX = 0), serves as the data bus. In multiplexed bus operation (MUX = 1), serves as a 8-bit multiplexed address / data bus.

Signal Name: **A0 TO A5, A7**  
 Signal Description: **Address Bus**  
 Signal Type: **Input**  
 In non-multiplexed bus operation (MUX = 0), serves as the address bus. In multiplexed bus operation (MUX = 1), these pins are not used and should be tied low.

Signal Name: **ALE (AS) / A6**  
 Signal Description: **Address Latch Enable (Address Strobe) or A6**  
 Signal Type: **Input**  
 In non-multiplexed bus operation (MUX = 0), serves as address bit 6. In multiplexed bus operation (MUX = 1), serves to demultiplex the bus on a positive-going edge.

Signal Name: **BTS**  
 Signal Description: **Bus Type Select**  
 Signal Type: **Input**

Strap high to select Motorola bus timing; strap low to select Intel bus timing. This pin controls the function of the RD\*(DS\*), ALE(AS), and WR\*(R/W\*) pins. If BTS = 1, then these pins assume the function listed in parenthesis () .

Signal Name: **RD\* (DS\*)**  
 Signal Description: **Read Input (Data Strobe)**  
 Signal Type: **Input**

RD\* and DS\* are active low signals. Note: DS is active high when MUX=1. Refer to bus timing diagrams in section 19 .

Signal Name: **FS0 AND FS1**  
 Signal Description: **Framer Selects**  
 Signal Type: **Input**  
 Selects which of the four framers to be accessed.

Signal Name: **CS\***  
 Signal Description: **Chip Select**  
 Signal Type: **Input**

Must be low to read or write to the device. CS\* is an active low signal.

Signal Name: **WR\* (R/W\*)**  
 Signal Description: **Write Input (Read/Write)**  
 Signal Type: **Input**  
 WR\* is an active low signal.

## TEST ACCESS PORT PINS

Signal Name: **TEST**  
 Signal Description: **3-State Control**  
 Signal Type: **Input**

Set high to 3-state all output and I/O pins (including the parallel control port). Set low for normal operation. Useful in board level testing.

Signal Name: **JTRST**  
 Signal Description: **IEEE 1149.1 Test Reset**  
 Signal Type: **Input**

If FMS = 1: JTAG functionality is not available and JTRST is held LOW internally.

If FMS = 0: JTAG functionality is available and JTRST is pulled up internally by a 10=kilo ohm resistor.

If FMS = 0, and boundary scan is not used this pin should be held low. This signal is used to asynchronously reset the test access port controller. The device enters the DEVICE ID MODE when JTRST is pulled high. The device enters the DEVICE ID MODE when JTRST is pulled high. The device operates as a T1/E1 transceiver if JTRST is pulled low.

---

Signal Name: **JTMS**  
Signal Description: **IEEE 1149.1 Test Mode Select**  
Signal Type: **Input**

This pin is sampled on the rising edge of JTCLK and is used to place the test port into the various defined IEEE 1149.1 states. If not used, this pin should be pulled high. This function is available when FMS = 0.

Signal Name: **JTCLK**  
Signal Description: **IEEE 1149.1 Test Clock Signal**  
Signal Type: **Input**

This signal is used to shift data into JTDI on the rising edge and out of JTDO on the falling edge. If not used, this pin should be tied to VSS. This function is available when FMS = 0.

Signal Name: **JTDI**  
Signal Description: **IEEE 1149.1 Test Data Input**  
Signal Type: **Input**

Test instructions and data are clocked into this pin on the rising edge of JTCLK. If not used, this pin should be pulled high. This function is available when FMS = 0.

Signal Name: **JTDO**  
Signal Description: **IEEE 1149.1 Test Data Output**  
Signal Type: **Output**

Test instructions and data are clocked out of this pin on the falling edge of JTCLK. If not used, this pin should be left unconnected. This function is available when FMS = 0.

## **SUPPLY PINS**

Signal Name: **VDD**  
Signal Description: **Positive Supply**  
Signal Type: **Supply**  
2.97 to 3.63 volts.

Signal Name: **VSS**  
Signal Description: **Signal Ground**  
Signal Type: **Supply**  
0.0 volts.

## 4. DS21Q44 REGISTER MAP

**Table 4-1. REGISTER MAP SORTED BY ADDRESS**

| ADDRESS | R/W | REGISTER NAME                          | REGISTER ABBREVIATION |
|---------|-----|----------------------------------------|-----------------------|
| 00      | R   | BPV or Code Violation Count 1          | VCR1                  |
| 01      | R   | BPV or Code Violation Count 2          | VCR2                  |
| 02      | R   | CRC4 Error Count 1 / FAS Error Count 1 | CRCCR1                |
| 03      | R   | CRC4 Error Count 2                     | CRCCR2                |
| 04      | R   | E-Bit Count 1 / FAS Error Count 2      | EBCR1                 |
| 05      | R   | E-Bit Count 2                          | EBCR2                 |
| 06      | R/W | Status 1                               | SR1                   |
| 07      | R/W | Status 2                               | SR2                   |
| 08      | R/W | Receive Information                    | RIR                   |
| 09      | R/W | Test 2                                 | TEST2 (set to 00h)    |
| 0A      | —   | Not used                               | (set to 00H)          |
| 0B      | —   | Not used                               | (set to 00H)          |
| 0C      | —   | Not used                               | (set to 00H)          |
| 0D      | —   | Not used                               | (set to 00H)          |
| 0E      | —   | Not used                               | (set to 00H)          |
| 0F      | R   | Device ID                              | IDR                   |
| 10      | R/W | Receive Control 1                      | RCR1                  |
| 11      | R/W | Receive Control 2                      | RCR2                  |
| 12      | R/W | Transmit Control 1                     | TCR1                  |
| 13      | R/W | Transmit Control 2                     | TCR2                  |
| 14      | R/W | Common Control 1                       | CCR1                  |
| 15      | R/W | Test 1                                 | TEST1 (set to 00h)    |
| 16      | R/W | Interrupt Mask 1                       | IMR1                  |
| 17      | R/W | Interrupt Mask 2                       | IMR2                  |
| 18      | —   | Not used                               | (set to 00H)          |
| 19      | —   | Not used                               | (set to 00H)          |
| 1A      | R/W | Common Control 2                       | CCR2                  |
| 1B      | R/W | Common Control 3                       | CCR3                  |
| 1C      | R/W | Transmit Sa Bit Control                | TSaCR                 |
| 1D      | R/W | Common Control 6                       | CCR6                  |
| 1E      | R   | Synchronizer Status                    | SSR                   |
| 1F      | R   | Receive Nonalign Frame                 | RNAF                  |
| 20      | R/W | Transmit Align Frame                   | TAF                   |
| 21      | R/W | Transmit Non-Align Frame               | TNAF                  |
| 22      | R/W | Transmit Channel Blocking 1            | TCBR1                 |
| 23      | R/W | Transmit Channel Blocking 2            | TCBR2                 |
| 24      | R/W | Transmit Channel Blocking 3            | TCBR3                 |
| 25      | R/W | Transmit Channel Blocking 4            | TCBR4                 |
| 26      | R/W | Transmit Idle 1                        | TIR1                  |
| 27      | R/W | Transmit Idle 2                        | TIR2                  |
| 28      | R/W | Transmit Idle 3                        | TIR3                  |
| 29      | R/W | Transmit Idle 4                        | TIR4                  |

| ADDRESS | R/W | REGISTER NAME                   | REGISTER ABBREVIATION |
|---------|-----|---------------------------------|-----------------------|
| 2A      | R/W | Transmit Idle Definition        | TIDR                  |
| 2B      | R/W | Receive Channel Blocking 1      | RCBR1                 |
| 2C      | R/W | Receive Channel Blocking 2      | RCBR2                 |
| 2D      | R/W | Receive Channel Blocking 3      | RCBR3                 |
| 2E      | R/W | Receive Channel Blocking 4      | RCBR4                 |
| 2F      | R   | Receive Align Frame             | RAF                   |
| 30      | R   | Receive Signaling 1             | RS1                   |
| 31      | R   | Receive Signaling 2             | RS2                   |
| 32      | R   | Receive Signaling 3             | RS3                   |
| 33      | R   | Receive Signaling 4             | RS4                   |
| 34      | R   | Receive Signaling 5             | RS5                   |
| 35      | R   | Receive Signaling 6             | RS6                   |
| 36      | R   | Receive Signaling 7             | RS7                   |
| 37      | R   | Receive Signaling 8             | RS8                   |
| 38      | R   | Receive Signaling 9             | RS9                   |
| 39      | R   | Receive Signaling 10            | RS10                  |
| 3A      | R   | Receive Signaling 11            | RS11                  |
| 3B      | R   | Receive Signaling 12            | RS12                  |
| 3C      | R   | Receive Signaling 13            | RS13                  |
| 3D      | R   | Receive Signaling 14            | RS14                  |
| 3E      | R   | Receive Signaling 15            | RS15                  |
| 3F      | R   | Receive Signaling 16            | RS16                  |
| 40      | R/W | Transmit Signaling 1            | TS1                   |
| 41      | R/W | Transmit Signaling 2            | TS2                   |
| 42      | R/W | Transmit Signaling 3            | TS3                   |
| 43      | R/W | Transmit Signaling 4            | TS4                   |
| 44      | R/W | Transmit Signaling 5            | TS5                   |
| 45      | R/W | Transmit Signaling 6            | TS6                   |
| 46      | R/W | Transmit Signaling 7            | TS7                   |
| 47      | R/W | Transmit Signaling 8            | TS8                   |
| 48      | R/W | Transmit Signaling 9            | TS9                   |
| 49      | R/W | Transmit Signaling 10           | TS10                  |
| 4A      | R/W | Transmit Signaling 11           | TS11                  |
| 4B      | R/W | Transmit Signaling 12           | TS12                  |
| 4C      | R/W | Transmit Signaling 13           | TS13                  |
| 4D      | R/W | Transmit Signaling 14           | TS14                  |
| 4E      | R/W | Transmit Signaling 15           | TS15                  |
| 4F      | R/W | Transmit Signaling 16           | TS16                  |
| 50      | R/W | Transmit Si Bits Align Frame    | TSiAF                 |
| 51      | R/W | Transmit Si Bits Nonalign Frame | TSiNAF                |
| 52      | R/W | Transmit Remote Alarm Bits      | TRA                   |
| 53      | R/W | Transmit Sa4 Bits               | TSa4                  |
| 54      | R/W | Transmit Sa5 Bits               | TSa5                  |
| 55      | R/W | Transmit Sa6 Bits               | TSa6                  |
| 56      | R/W | Transmit Sa7 Bits               | TSa7                  |

| ADDRESS | R/W | REGISTER NAME                  | REGISTER ABBREVIATION |
|---------|-----|--------------------------------|-----------------------|
| 57      | R/W | Transmit Sa8 Bits              | TSa8                  |
| 58      | R   | Receive Si bits Align Frame    | RSiAF                 |
| 59      | R   | Receive Si bits Nonalign Frame | RSiNAF                |
| 5A      | R   | Receive Remote Alarm Bits      | RRA                   |
| 5B      | R   | Receive Sa4 Bits               | RSa4                  |
| 5C      | R   | Receive Sa5 Bits               | RSa5                  |
| 5D      | R   | Receive Sa6 Bits               | RSa6                  |
| 5E      | R   | Receive Sa7 Bits               | RSa7                  |
| 5F      | R   | Receive Sa8 Bits               | RSa8                  |
| 60      | R/W | Transmit Channel 1             | TC1                   |
| 61      | R/W | Transmit Channel 2             | TC2                   |
| 62      | R/W | Transmit Channel 3             | TC3                   |
| 63      | R/W | Transmit Channel 4             | TC4                   |
| 64      | R/W | Transmit Channel 5             | TC5                   |
| 65      | R/W | Transmit Channel 6             | TC6                   |
| 66      | R/W | Transmit Channel 7             | TC7                   |
| 67      | R/W | Transmit Channel 8             | TC8                   |
| 68      | R/W | Transmit Channel 9             | TC9                   |
| 69      | R/W | Transmit Channel 10            | TC10                  |
| 6A      | R/W | Transmit Channel 11            | TC11                  |
| 6B      | R/W | Transmit Channel 12            | TC12                  |
| 6C      | R/W | Transmit Channel 13            | TC13                  |
| 6D      | R/W | Transmit Channel 14            | TC14                  |
| 6E      | R/W | Transmit Channel 15            | TC15                  |
| 6F      | R/W | Transmit Channel 16            | TC16                  |
| 70      | R/W | Transmit Channel 17            | TC17                  |
| 71      | R/W | Transmit Channel 18            | TC18                  |
| 72      | R/W | Transmit Channel 19            | TC19                  |
| 73      | R/W | Transmit Channel 20            | TC20                  |
| 74      | R/W | Transmit Channel 21            | TC21                  |
| 75      | R/W | Transmit Channel 22            | TC22                  |
| 76      | R/W | Transmit Channel 23            | TC23                  |
| 77      | R/W | Transmit Channel 24            | TC24                  |
| 78      | R/W | Transmit Channel 25            | TC25                  |
| 79      | R/W | Transmit Channel 26            | TC26                  |
| 7A      | R/W | Transmit Channel 27            | TC27                  |
| 7B      | R/W | Transmit Channel 28            | TC28                  |
| 7C      | R/W | Transmit Channel 29            | TC29                  |
| 7D      | R/W | Transmit Channel 30            | TC30                  |
| 7E      | R/W | Transmit Channel 31            | TC31                  |
| 7F      | R/W | Transmit Channel 32            | TC32                  |
| 80      | R/W | Receive Channel 1              | RC1                   |
| 81      | R/W | Receive Channel 2              | RC2                   |
| 82      | R/W | Receive Channel 3              | RC3                   |
| 83      | R/W | Receive Channel 4              | RC4                   |

| ADDRESS | R/W | REGISTER NAME              | REGISTER ABBREVIATION |
|---------|-----|----------------------------|-----------------------|
| 84      | R/W | Receive Channel 5          | RC5                   |
| 85      | R/W | Receive Channel 6          | RC6                   |
| 86      | R/W | Receive Channel 7          | RC7                   |
| 87      | R/W | Receive Channel 8          | RC8                   |
| 88      | R/W | Receive Channel 9          | RC9                   |
| 89      | R/W | Receive Channel 10         | RC10                  |
| 8A      | R/W | Receive Channel 11         | RC11                  |
| 8B      | R/W | Receive Channel 12         | RC12                  |
| 8C      | R/W | Receive Channel 13         | RC13                  |
| 8D      | R/W | Receive Channel 14         | RC14                  |
| 8E      | R/W | Receive Channel 15         | RC15                  |
| 8F      | R/W | Receive Channel 16         | RC16                  |
| 90      | R/W | Receive Channel 17         | RC17                  |
| 91      | R/W | Receive Channel 18         | RC18                  |
| 92      | R/W | Receive Channel 19         | RC19                  |
| 93      | R/W | Receive Channel 20         | RC20                  |
| 94      | R/W | Receive Channel 21         | RC21                  |
| 95      | R/W | Receive Channel 22         | RC22                  |
| 96      | R/W | Receive Channel 23         | RC23                  |
| 97      | R/W | Receive Channel 24         | RC24                  |
| 98      | R/W | Receive Channel 25         | RC25                  |
| 99      | R/W | Receive Channel 26         | RC26                  |
| 9A      | R/W | Receive Channel 27         | RC27                  |
| 9B      | R/W | Receive Channel 28         | RC28                  |
| 9C      | R/W | Receive Channel 29         | RC29                  |
| 9D      | R/W | Receive Channel 30         | RC30                  |
| 9E      | R/W | Receive Channel 31         | RC31                  |
| 9F      | R/W | Receive Channel 32         | RC32                  |
| A0      | R/W | Transmit Channel Control 1 | TCC1                  |
| A1      | R/W | Transmit Channel Control 2 | TCC2                  |
| A2      | R/W | Transmit Channel Control 3 | TCC3                  |
| A3      | R/W | Transmit Channel Control 4 | TCC4                  |
| A4      | R/W | Receive Channel Control 1  | RCC1                  |
| A5      | R/W | Receive Channel Control 2  | RCC2                  |
| A6      | R/W | Receive Channel Control 3  | RCC3                  |
| A7      | R/W | Receive Channel Control 4  | RCC4                  |
| A8      | R/W | Common Control 4           | CCR4                  |
| A9      | R   | Transmit DS0 Monitor       | TDS0M                 |
| AA      | R/W | Common Control 5           | CCR5                  |
| AB      | R   | Receive DS0 Monitor        | RDS0M                 |
| AC      | R/W | Test 3                     | TEST3 (set to 00H)    |
| AD      | —   | Not used                   | (set to 00H)          |
| AE      | —   | Not used                   | (set to 00H)          |
| AF      | —   | Not used                   | (set to 00H)          |
| B0      | R/W | HDLC Control Register      | HCR                   |

| ADDRESS | R/W | REGISTER NAME                        | REGISTER ABBREVIATION |
|---------|-----|--------------------------------------|-----------------------|
| B1      | R/W | HDLC Status Register                 | HSR                   |
| B2      | R/W | HDLC Interrupt Mask Register         | HIMR                  |
| B3      | R/W | Receive HDLC Information Register    | RHIR                  |
| B4      | R/W | Receive HDLC FIFO Register           | RHFR                  |
| B5      | R/W | Interleave Bus Operation Register    | IBO                   |
| B6      | R/W | Transmit HDLC Information Register   | THIR                  |
| B7      | R/W | Transmit HDLC FIFO Register          | THFR                  |
| B8      | R/W | Receive HDLC DS0 Control Register 1  | RDC1                  |
| B9      | R/W | Receive HDLC DS0 Control Register 2  | RDC2                  |
| BA      | R/W | Transmit HDLC DS0 Control Register 1 | TDC1                  |
| BB      | R/W | Transmit HDLC DS0 Control Register 2 | TDC2                  |
| BC      | —   | Not used                             | (set to 00H)          |
| BD      | —   | Not used                             | (set to 00H)          |
| BE      | —   | Not used                             | (set to 00H)          |
| BF      | —   | Not used                             | (set to 00H)          |

## NOTES:

- 1) Test Registers 1, 2, and 3 are used only by the factory; these registers must be cleared (set to all 0's) on power-up initialization to ensure proper operation.
- 2) Register banks CxH, DxH, ExH, and FxH are not accessible.

## 5. PARALLEL PORT

The DS21Q44 is controlled via either a non-multiplexed (MUX = 0) or a multiplexed (MUX = 1) bus by an external microcontroller or microprocessor. The DS21Q44 can operate with either Intel or Motorola bus timing configurations. If the BTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parenthesis (). See the timing diagrams in the A.C. Electrical Characteristics in Section 19 for more details.

## 6. CONTROL, ID, AND TEST REGISTERS

The operation of each framer within the DS21Q44 is configured via a set of ten control registers. Typically, the control registers are only accessed when the system is first powered up. Once a channel in the DS21Q44 has been initialized, the control registers will only need to be accessed when there is a change in the system configuration. There are two Receive Control Register (RCR1 and RCR2), two Transmit Control Registers (TCR1 and TCR2), and six Common Control Registers (CCR1 to CCR6). Each of the ten registers are described in this section.

There is a device Identification Register (IDR) at address 0Fh. The MSB of this read-only register is fixed to a one indicating that the DS21Q44 is present. The T1 pin-for-pin compatible version of the DS21Q44 is the DS21Q42 and it also has an ID register at address 0Fh and the user can read the MSB to determine which chip is present since in the DS21Q42 the MSB will be set to a zero and in the DS21Q44 it will be set to a one. The lower 4 bits of the IDR are used to display the die revision of the chip.

## Power-Up Sequence

The DS21Q44 does not automatically clear its register space on power-up. After the supplies are stable, each of the four framer's register space should be configured for operation by writing to all of the internal registers. This includes setting the Test and all unused registers to 00Hex.

This can be accomplished using a two-pass approach on each framer within the DS21Q44.

- 1) Clear framer's register space by writing 00H to the addresses 00H through 0BFH.
- 2) Program required registers to achieve desired operating mode.

### NOTE:

When emulating the DS21Q43 feature set (FMS = 1), the full address space (00H through 0BFH) must be initialized. DS21Q43 emulation require address pin A7 to be used.

Finally, after the TSYCLK and RSYCLK inputs are stable, the ESR bit should be toggled from a zero to a one (this step can be skipped if the elastic stores are disabled).

## IDR: DEVICE IDENTIFICATION REGISTER (Address=0F Hex)

|      |   |   |   |     |     |     |     | (LSB) |
|------|---|---|---|-----|-----|-----|-----|-------|
|      |   |   |   |     |     |     |     | (MSB) |
| T1E1 | 0 | 0 | 0 | ID3 | ID2 | ID1 | ID0 |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                 |
|--------|----------|--------------------------------------------------------------------------------------|
| T1E1   | IDR.7    | <b>T1 or E1 Chip Determination Bit.</b><br>0=T1 chip<br>1=E1 chip                    |
| ID3    | IDR.3    | <b>Chip Revision Bit 3.</b> MSB of a decimal code that represents the chip revision. |
| ID2    | IDR.1    | <b>Chip Revision Bit 2.</b>                                                          |
| ID1    | IDR.2    | <b>Chip Revision Bit 1.</b>                                                          |
| ID0    | IDR.0    | <b>Chip Revision Bit 0.</b> LSB of a decimal code that represents the chip revision. |

## RCR1: RECEIVE CONTROL REGISTER 1 (Address=10 Hex)

| (MSB)  | RSMF     | RSM                                                                                                                                                                                                          | RSIO | - | - | FRC | SYNCE | (LSB)<br>RESYNC |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---|-----|-------|-----------------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                         |      |   |   |     |       |                 |
| RSMF   | RCR1.7   | <b>RSYNC Multiframe Function.</b> Only used if the RSYNC pin is programmed in the multiframe mode (RCR1.6=1).<br>0 = RSYNC outputs CAS multiframe boundaries<br>1 = RSYNC outputs CRC4 multiframe boundaries |      |   |   |     |       |                 |
| RSM    | RCR1.6   | <b>RSYNC Mode Select.</b><br>0 = frame mode (see the timing in Section 18)<br>1 = multiframe mode (see the timing in Section 18)                                                                             |      |   |   |     |       |                 |
| RSIO   | RCR1.5   | <b>RSYNC I/O Select.</b> (note: this bit must be set to zero when RCR2.1=0).<br>0 = RSYNC is an output (depends on RCR1.6)<br>1 = RSYNC is an input (only valid if elastic store enabled)                    |      |   |   |     |       |                 |
| -      | RCR1.4   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                                                     |      |   |   |     |       |                 |
| -      | RCR1.3   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                                                     |      |   |   |     |       |                 |
| FRC    | RCR1.2   | <b>Frame Resync Criteria.</b><br>0 = resync if FAS received in error 3 consecutive times<br>1 = resync if FAS or bit 2 of non-FAS is received in error 3 consecutive times                                   |      |   |   |     |       |                 |
| SYNCE  | RCR1.1   | <b>Sync Enable.</b><br>0 = auto resync enabled<br>1 = auto resync disabled                                                                                                                                   |      |   |   |     |       |                 |
| RESYNC | RCR1.0   | <b>Resync.</b> When toggled from low to high, a resync is initiated. Must be cleared and set again for a subsequent resync.                                                                                  |      |   |   |     |       |                 |

**Table 6-1. SYNC/RESYNC CRITERIA**

| FRAME OR MULTIFRAME LEVEL | SYNC CRITERIA                                                                             | RESYNC CRITERIA                                                                                                                                         | ITU SPEC.               |
|---------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| FAS                       | FAS present in frame N and N + 2, and FAS not present in frame N + 1                      | Three consecutive incorrect FAS received<br><br>Alternate (RCR1.2=1) the above criteria is met or three consecutive incorrect bit 2 of non-FAS received | G.706<br>4.1.1<br>4.1.2 |
| CRC4                      | Two valid MF alignment words found within 8 ms                                            | 915 or more CRC4 code words out of 1000 received in error                                                                                               | G.706<br>4.2 and 4.3.2  |
| CAS                       | Valid MF alignment word found and previous timeslot 16 contains code other than all zeros | Two consecutive MF alignment words received in error                                                                                                    | G.732 5.2               |

**RCR2: RECEIVE CONTROL REGISTER 2 (Address=11 Hex)**

| (MSB)         |                 |                                                                                                                                                                           |      |      |      |      | (LSB) |
|---------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| Sa8S          | Sa7S            | Sa6S                                                                                                                                                                      | Sa5S | Sa4S | RBCS | RESE | -     |
| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b>                                                                                                                                               |      |      |      |      |       |
| Sa8S          | RCR2.7          | <b>Sa8 Bit Select.</b> Set to one to have RLCLK pulse at the Sa8 bit position; set to zero to force RLCLK low during Sa8 bit position. See Section 18 for timing details. |      |      |      |      |       |
| Sa7S          | RCR2.6          | <b>Sa7 Bit Select.</b> Set to one to have RLCLK pulse at the Sa7 bit position; set to zero to force RLCLK low during Sa7 bit position. See Section 18 for timing details. |      |      |      |      |       |
| Sa6S          | RCR2.5          | <b>Sa6 Bit Select.</b> Set to one to have RLCLK pulse at the Sa6 bit position; set to zero to force RLCLK low during Sa6 bit position. See Section 18 for timing details. |      |      |      |      |       |
| Sa5S          | RCR2.4          | <b>Sa5 Bit Select.</b> Set to one to have RLCLK pulse at the Sa5 bit position; set to zero to force RLCLK low during Sa5 bit position. See Section 18 for timing details. |      |      |      |      |       |
| Sa4S          | RCR2.3          | <b>Sa4 Bit Select.</b> Set to one to have RLCLK pulse at the Sa4 bit position; set to zero to force RLCLK low during Sa4 bit position. See Section 18 for timing details. |      |      |      |      |       |
| RBCS          | RCR2.2          | <b>Receive Side Backplane Clock Select.</b><br>0 = if RSYCLK is 1.544 MHz<br>1 = if RSYCLK is 2.048 MHz                                                                   |      |      |      |      |       |
| RESE          | RCR2.1          | <b>Receive Side Elastic Store Enable.</b><br>0 = elastic store is bypassed<br>1 = elastic store is enabled                                                                |      |      |      |      |       |
| -             | RCR2.0          | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                  |      |      |      |      |       |

**TCR1: TRANSMIT CONTROL REGISTER 1 (Address=12 Hex)**

| (MSB)         |                 |                                                                                                                                                                                         |      |      |      |     | (LSB) |
|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-----|-------|
| ODF           | TFPT            | T16S                                                                                                                                                                                    | TUA1 | TSiS | TSA1 | TSM | TSIO  |
| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b>                                                                                                                                                             |      |      |      |     |       |
| ODF           | TCR1.7          | <b>Output Data Format.</b><br>0 = bipolar data at TPOS and TNEG<br>1 = NRZ data at TPOS; TNEG=0                                                                                         |      |      |      |     |       |
| TFPT          | TCR1.6          | <b>Transmit Timeslot 0 Pass Through.</b><br>0 = FAS bits/Sa bits/Remote Alarm sourced internally from the TAF and TNAF registers<br>1 = FAS bits/Sa bits/Remote Alarm sourced from TSER |      |      |      |     |       |
| T16S          | TCR1.5          | <b>Transmit Timeslot 16 Data Select.</b><br>0 = sample timeslot 16 at TSER pin<br>1 = source timeslot 16 from TS0 to TS15 registers                                                     |      |      |      |     |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                  |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TUA1   | TCR1.4   | <b>Transmit Unframed All Ones.</b><br>0 = transmit data normally<br>1 = transmit an unframed all one's code at TPOS and TNEG                                          |
| TSiS   | TCR1.3   | <b>Transmit International Bit Select.</b><br>0 = sample Si bits at TSER pin<br>1 = source Si bits from TAF and TNAF registers (in this mode, TCR1.6 must be set to 0) |
| TSA1   | TCR1.2   | <b>Transmit Signaling All Ones.</b><br>0 = normal operation<br>1 = force timeslot 16 in every frame to all ones                                                       |
| TSM    | CR1.1    | <b>TSYNC Mode Select.</b><br>0 = frame mode (see the timing in Section 18)<br>1 = CAS and CRC4 multiframe mode (see the timing in Section 18)                         |
| TSIO   | TCR1.0   | <b>TSYNC I/O Select.</b><br>0 = TSYNC is an input<br>1 = TSYNC is an output                                                                                           |

**Note:** See Figure 18–15 for more details about how the Transmit Control Registers affect the operation of the DS21Q44.

## TCR2: TRANSMIT CONTROL REGISTER 2 (Address=13 Hex)

| (MSB)  | Sa8S     | Sa7S                                                                                                                                                  | Sa6S | Sa5S | Sa4S | ODM | AEBE | (LSB) |
|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-----|------|-------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                  |      |      |      |     |      |       |
| Sa8S   | TCR2.7   | <b>Sa8 Bit Select.</b> Set to one to source the Sa8 bit from the TLINK pin; set to zero to not source the Sa8 bit. See Section 18 for timing details. |      |      |      |     |      |       |
| Sa7S   | TCR2.6   | <b>Sa7 Bit Select.</b> Set to one to source the Sa7 bit from the TLINK pin; set to zero to not source the Sa7 bit. See Section 18 for timing details. |      |      |      |     |      |       |
| Sa6S   | TCR2.5   | <b>Sa6 Bit Select.</b> Set to one to source the Sa6 bit from the TLINK pin; set to zero to not source the Sa6 bit. See Section 18 for timing details. |      |      |      |     |      |       |
| Sa5S   | TCR2.4   | <b>Sa5 Bit Select.</b> Set to one to source the Sa5 bit from the TLINK pin; set to zero to not source the Sa5 bit. See Section 18 for timing details. |      |      |      |     |      |       |
| Sa4S   | TCR2.3   | <b>Sa4 Bit Select.</b> Set to one to source the Sa4 bit from the TLINK pin; set to zero to not source the Sa4 bit. See Section 18 for timing details. |      |      |      |     |      |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                   |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ODM    | TCR2.2   | <b>Output Data Mode.</b><br>0 = pulses at TPOS and TNEG are one full TCLK period wide<br>1 = pulses at TPOS0 and TNEG0 are 1/2 TCLK0 period wide       |
| AEBE   | TCR2.1   | <b>Automatic E-Bit Enable.</b><br>0 = E-bits not automatically set in the transmit direction<br>1 = E-bits automatically set in the transmit direction |
| PF     | TCR2.0   | <b>Function of RLOS/LOTC Pin.</b><br>0 = Receive Loss of Sync (RLOS)<br>1 = Loss of Transmit Clock (LOTC)                                              |

## CCR1: COMMON CONTROL REGISTER 1 (Address=14 Hex)

| (MSB) | FLB | THDB3 | TG802 | TCRC4 | RSM | RHDB3 | RG802 | (LSB) |
|-------|-----|-------|-------|-------|-----|-------|-------|-------|
|       |     |       |       |       |     |       |       |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                   |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FLB    | CCR1.7   | <b>Framer Loopback.</b><br>0=loopback disabled<br>1=loopback enabled                                                                                                   |
| THDB3  | CCR1.6   | <b>Transmit HDB3 Enable.</b><br>0=HDB3 disabled<br>1=HDB3 enabled                                                                                                      |
| TG802  | CCR1.5   | <b>Transmit G.802 Enable.</b> See Section 18 for details.<br>0=do not force TCHBLK high during bit 1 of timeslot 26<br>1=force TCHBLK high during bit 1 of timeslot 26 |
| TCRC4  | CCR1.4   | <b>Transmit CRC4 Enable.</b><br>0=CRC4 disabled<br>1=CRC4 enabled                                                                                                      |
| RSM    | CCR1.3   | <b>Receive Signaling Mode Select.</b><br>0=CAS signaling mode<br>1=CCS signaling mode                                                                                  |
| RHDB3  | CCR1.2   | <b>Receive HDB3 Enable.</b><br>0=HDB3 disabled<br>1=HDB3 enabled                                                                                                       |
| RG802  | CCR1.1   | <b>Receive G.802 Enable.</b> See Section 18 for details.<br>0=do not force RCHBLK high during bit 1 of timeslot 26<br>1=force RCHBLK high during bit 1 of timeslot 26  |
| RCRC4  | CCR1.0   | <b>Receive CRC4 Enable.</b><br>0=CRC4 disabled<br>1=CRC4 enabled                                                                                                       |

## FRAMER LOOPBACK

When CCR1.7 is set to a one, the framer will enter a Framer LoopBack (FLB) mode. See Figure 1–1 for more details. This loopback is useful in testing and debugging applications. In FLB, the framer will loop data from the transmit side back to the receive side. When FLB is enabled, the following will occur:

- 1) Data will be transmitted as normal at TPOS and TNEG.
- 2) Data input via RPOS and RNEG will be ignored.
- 3) The RCLK output will be replaced with the TCLK input.

## CCR2: COMMON CONTROL REGISTER 2 (Address=1A Hex)

| (MSB)         |                 |                                                                                                                                                                                                                                                                     |     |       |        |     |     |  | (LSB) |  |
|---------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--------|-----|-----|--|-------|--|
| ECUS          | VCRFS           | AAIS                                                                                                                                                                                                                                                                | ARA | RSERC | LOTCMC | RFF | RFE |  |       |  |
| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b>                                                                                                                                                                                                                                         |     |       |        |     |     |  |       |  |
| ECUS          | CCR2.7          | <b>Error Counter Update Select.</b> See Section 8 for details.<br>0=update error counters once a second<br>1=update error counters every 62.5 ms (500 frames)                                                                                                       |     |       |        |     |     |  |       |  |
| VCRFS         | CCR2.6          | <b>VCR Function Select.</b> See Section 8 for details.<br>0=count BiPolar Violations (BPVs)<br>1=count Code Violations (CVs)                                                                                                                                        |     |       |        |     |     |  |       |  |
| AAIS          | CCR2.5          | <b>Automatic AIS Generation.</b><br>0=disabled<br>1=enabled                                                                                                                                                                                                         |     |       |        |     |     |  |       |  |
| ARA           | CCR2.4          | <b>Automatic Remote Alarm Generation.</b><br>0=disabled<br>1=enabled                                                                                                                                                                                                |     |       |        |     |     |  |       |  |
| RSERC         | CCR2.3          | <b>RSER Control.</b><br>0=allow RSER to output data as received under all conditions<br>1=force RSER to one under loss of frame alignment conditions                                                                                                                |     |       |        |     |     |  |       |  |
| LOTCMC        | CCR2.2          | <b>Loss of Transmit Clock Mux Control.</b> Determines whether the transmit side formatter should switch to the ever present RCLK if the TCLK should fail to transition (see Figure 1–1).<br>0=do not switch to RCLK if TCLK stops<br>1=switch to RCLK if TCLK stops |     |       |        |     |     |  |       |  |
| RFF           | CCR2.1          | <b>Receive Force Freeze.</b> Freezes receive side signaling at RSIG (and RSER if CCR3.3=1); will override Receive Freeze Enable (RFE). See Section 10 for details.<br>0=do not force a freeze event<br>1=force a freeze event                                       |     |       |        |     |     |  |       |  |
| RFE           | CCR2.0          | <b>Receive Freeze Enable.</b> See Section 10 for details.<br>0=no freezing of receive signaling data will occur<br>1=allow freezing of receive signaling data at RSIG (and RSER if CCR3.3=1).                                                                       |     |       |        |     |     |  |       |  |

## AUTOMATIC ALARM GENERATION

The DS21Q44 can be programmed to automatically transmit AIS or Remote Alarm. When automatic AIS generation is enabled (CCR2.5 = 1), the framer monitors the receive side to determine if any of the following conditions are present: loss of receive frame synchronization, AIS alarm (all one's) reception, or loss of receive carrier (or signal). If any one (or more) of the above conditions is present, then the framer will transmit an AIS alarm.

When automatic RAI generation is enabled (CCR2.4 = 1), the framer monitors the receive side to determine if any of the following conditions are present: loss of receive frame synchronization, AIS alarm (all one's) reception, loss of receive carrier or if CRC4 multiframe synchronization (if enabled) cannot be found within 128 ms of FAS synchronization. If any one (or more) of the above conditions is present, then the framer will transmit a RAI alarm. RAI generation conforms to ETS 300 011 specifications and a constant Remote Alarm will be transmitted if the framer cannot find CRC4 multiframe synchronization within 400 ms as per G.706.

It is an illegal state to have both CCR2.4 and CCR2.5 set to one at the same time.

## CCR3: COMMON CONTROL REGISTER 3 (Address=1B Hex)

| (MSB)  |          | (LSB)                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                       |  |  |  |  |  |
| TESE   | CCR3.7   | <b>Transmit Side Elastic Store Enable.</b><br>0=elastic store is bypassed<br>1=elastic store is enabled                                                                                                                                                                    |  |  |  |  |  |
| TCBFS  | CCR3.6   | <b>Transmit Channel Blocking Registers (TCBR) Function Select.</b><br>0=TCBRs define the operation of the TCHBLK output pin<br>1=TCBRs define which signaling bits are to be inserted                                                                                      |  |  |  |  |  |
| TIRFS  | CCR3.5   | <b>Transmit Idle Registers (TIR) Function Select.</b> See Section 11 for details.<br>0=TIRs define in which channels to insert idle code<br>1=TIRs define in which channels to insert data from RSER (i.e., Per Channel Loopback function)                                 |  |  |  |  |  |
| —      | CCR3.4   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                                                                                                                   |  |  |  |  |  |
| RSRE   | CCR3.3   | <b>Receive Side Signaling Re-Insertion Enable.</b> See Section 10 for details.<br>0=do not re-insert signaling bits into the data stream presented at the RSER pin<br>1=re-insert the signaling bits into data stream presented at the RSER pin                            |  |  |  |  |  |
| THSE   | CCR3.2   | <b>Transmit Side Hardware Signaling Insertion Enable.</b> See Section 10 for details.<br>0=do not insert signaling from the TSIG pin into the data stream presented at the TSER pin<br>1=insert signaling from the TSIG pin into the data stream presented at the TSER pin |  |  |  |  |  |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                             |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TBCS   | CCR3.1   | <b>Transmit Side Backplane Clock Select.</b><br>0=if TSYCLK is 1.544 MHz<br>1=if TSYCLK is 2.048 MHz                                                             |
| RCLA   | CCR3.0   | <b>Receive Carrier Loss (RCL) Alternate Criteria.</b><br>0=RCL declared upon 255 consecutive zeros (125 us)<br>1=RCL declared upon 2048 consecutive zeros (1 ms) |

## CCR4: COMMON CONTROL REGISTER 4 (Address=A8 Hex)

| (MSB)  |          |                                                                                                                                                                         |   |      |      |      |      |      | (LSB) |
|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|------|------|------|------|-------|
| RLB    | –        | –                                                                                                                                                                       | – | TCM4 | TCM3 | TCM2 | TCM1 | TCM0 |       |
| SYMBOL | POSITION |                                                                                                                                                                         |   |      |      |      |      |      |       |
| RLB    | CCR4.7   | <b>Remote Loopback.</b><br>0 = loopback disabled<br>1 = loopback enabled                                                                                                |   |      |      |      |      |      |       |
| –      | CCR4.6   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                |   |      |      |      |      |      |       |
| –      | CCR4.5   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                |   |      |      |      |      |      |       |
| TCM4   | CCR4.4   | <b>Transmit Channel Monitor Bit 4.</b> MSB of a channel decode that determines which transmit channel data will appear in the TDS0M register. See Section 9 or details. |   |      |      |      |      |      |       |
| TCM3   | CCR4.3   | <b>Transmit Channel Monitor Bit 3.</b>                                                                                                                                  |   |      |      |      |      |      |       |
| TCM2   | CCR4.2   | <b>Transmit Channel Monitor Bit 2.</b>                                                                                                                                  |   |      |      |      |      |      |       |
| TCM1   | CCR4.1   | <b>Transmit Channel Monitor Bit 1.</b>                                                                                                                                  |   |      |      |      |      |      |       |
| TCM0   | CCR4.0   | <b>Transmit Channel Monitor Bit 0.</b> LSB of the channel decode.                                                                                                       |   |      |      |      |      |      |       |

## CCR5: COMMON CONTROL REGISTER 5 (Address = AA Hex)

| (MSB)   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |      |      |      |  | (LSB) |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|--|-------|
| –       | RESALGN          | TESALGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCM4 | RCM3 | RCM2 | RCM1 | RCM0 |  |       |
| SYMBOL  | POSITION         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |      |      |      |  |       |
| RESALGN | CCR5.7<br>CCR5.6 | <b>Not Assigned.</b> Should be set to zero when written<br><b>Receive Elastic Store Align.</b> Setting this bit from a zero to a one may force the receive elastic store's write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation is already greater or equal to half a frame. If pointer separation is less than half a frame, the command will be executed and data will be disrupted. Should be toggled after RSYCLK has been applied and is stable. Must be cleared and set again for a subsequent align. See Section 13 for details. |      |      |      |      |      |  |       |

| SYMBOL  | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TESALGN | CCR5.5   | <b>Transmit Elastic Store Align.</b> Setting this bit from a zero to a one may force the transmit elastic store's write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation is already greater or equal to half a frame. If pointer separation is less then half a frame, the command will be executed and data will be disrupted. Should be toggled after TSYCLK has been applied and is stable. Must be cleared and set again for a subsequent align. See Section 13 for details. |
| RCM4    | CCR5.4   | <b>Receive Channel Monitor Bit 4.</b> MSB of a channel decode that determines which receive channel data will appear in the RDS0M register. See Section 9 for details.                                                                                                                                                                                                                                                                                                                                                                   |
| RCM3    | CCR5.3   | <b>Receive Channel Monitor Bit 3.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RCM2    | CCR5.2   | <b>Receive Channel Monitor Bit 2.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RCM1    | CCR5.1   | <b>Receive Channel Monitor Bit 1.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RCM0    | CCR5.0   | <b>Receive Channel Monitor Bit 0.</b> LSB of the channel decode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## CCR6: COMMON CONTROL REGISTER 6 (Address=1D Hex)

| (MSB) |   |   |   |   |         | (LSB) |      |
|-------|---|---|---|---|---------|-------|------|
| —     | — | — | — | — | TCLKSRC | RESR  | TESR |

| SYMBOL  | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                  |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| —       | CCR6.7   | <b>Not Assigned.</b> Should be set to zero when written                                                                                                                                                                                                                                                               |
| —       | CCR6.6   | <b>Not Assigned.</b> Should be set to zero when written                                                                                                                                                                                                                                                               |
| —       | CCR6.5   | <b>Not Assigned.</b> Should be set to zero when written                                                                                                                                                                                                                                                               |
| —       | CCR6.4   | <b>Not Assigned.</b> Should be set to zero when written                                                                                                                                                                                                                                                               |
| —       | CCR6.3   | <b>Not Assigned.</b> Should be set to zero when written                                                                                                                                                                                                                                                               |
| TCLKSRC | CCR6.2   | <b>Transmit Clock Source Select.</b> This function allows the user to internally select RCLK as the clock source for the transmit side formatter.<br>0 = Transmit side formatter clocked with signal applied at TCLK pin. LOTC Mux function is operational (TCR1.7)<br>1 = Transmit side formatter clocked with RCLK. |
| RESR    | CCR6.1   | <b>Receive Elastic Store Reset.</b> Setting this bit from a zero to a one will force the receive elastic store to a depth of one frame. Receive data is lost during the reset. Should be toggled after RSYCLK has been applied and is stable. Do not leave this bit set high.                                         |
| TESR    | CCR6.0   | <b>Transmit Elastic Store Reset.</b> Setting this bit from a zero to a one will force the transmit elastic store to a depth of one frame. Transmit data is lost during the reset. Should be toggled after TSYCLK has been applied and is stable. Do not leave this bit set high.                                      |

## 7. STATUS AND INFORMATION REGISTERS

There is a set of seven registers per framer that contain information on the current real time status of a framer in the DS21Q44, Status Register 1 (SR1), Status Register 2 (SR2), Receive Information Register (RIR), Synchronizer status Register (SSR) and a set of three registers for the onboard HDLC controller. The specific details on the four registers pertaining to the HDLC controller are covered in Section 15 but they operate the same as the other status registers in the DS21Q44 and this operation is described below.

When a particular event has occurred (or is occurring), the appropriate bit in one of these four registers will be set to a one. All of the bits in SR1, SR2, and RIR1 registers operate in a latched fashion. The Synchronizer status Register contents are not latched. This means that if an event or an alarm occurs and a bit is set to a one in any of the registers, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again (or in the case of the RSA1, RSA0, RDMA, RUA1, RRA, RCL, and RLOS alarms, the bit will remain set if the alarm is still present).

The user will always precede a read of any of the SR1, SR2 and RIR registers with a write. The byte written to the register will inform the framer which bits the user wishes to read and have cleared. The user will write a byte to one of these registers, with a one in the bit positions he or she wishes to read and a zero in the bit positions he or she does not wish to obtain the latest information on. When a one is written to a bit location, the read register will be updated with the latest information. When a zero is written to a bit position, the read register will not be updated and the previous value will be held. A write to the status and information registers will be immediately followed by a read of the same register. The read result should be logically AND'ed with the mask byte that was just written and this value should be written back into the same register to insure that bit does indeed clear. This second write step is necessary because the alarms and events in the status registers occur asynchronously in respect to their access via the parallel port. This write-read-write scheme allows an external microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the DS21Q44 with higher-order software languages.

The SSR register operates differently than the other three. It is a read only register and it reports the status of the synchronizer in real time. This register is not latched and it is not necessary to precede a read of this register with a write.

The SR1, SR2, and HSR registers have the unique ability to initiate a hardware interrupt via the INT\* output pin. Each of the alarms and events in the SR1, SR2, and HSR can be either masked or unmasked from the interrupt pin via the Interrupt Mask Register 1 (IMR1), Interrupt Mask Register 2 (IMR2), and HDLC Interrupt Mask Register (HIMR) respectively. The HIMR register is covered in Section 15.

The interrupts caused by four of the alarms in SR1 (namely RUA1, RRA, RCL, and RLOS) act differently than the interrupts caused by other alarms and events in SR1 and SR2 (namely RSA1, RDMA, RSA0, RSLIP, RMF, RAF, TMF, SEC, TAF, LOTC, RCMF, and TSLIP). These four alarm interrupts will force the INT\* pin low whenever the alarm changes state (i.e., the alarm goes active or inactive according to the set/clear criteria in Table 7-1). The INT\* pin will be allowed to return high (if no other interrupts are present) when the user reads the alarm bit that caused the interrupt to occur. If the alarm is still present, the register bit will remain set.

The event caused interrupts will force the INT\* pin low when the event occurs. The INT\* pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

**ISR: INTERRUPT STATUS REGISTER** (Any address from 0C0 Hex to 0FF Hex)

| (MSB)  |          |                                                                                                                           |  | (LSB) |  |  |  |  |  |  |  |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------|--|-------|--|--|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                      |  |       |  |  |  |  |  |  |  |
| F3HDLC | ISR.7    | <b>FRAMER 3 HDLC CONTROLLER INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending. |  |       |  |  |  |  |  |  |  |
| F3SR   | ISR.6    | <b>FRAMER 3 SR1 or SR2 INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending.      |  |       |  |  |  |  |  |  |  |
| F2HDLC | ISR.5    | <b>FRAMER 2 HDLC CONTROLLER INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending. |  |       |  |  |  |  |  |  |  |
| F2SR   | ISR.4    | <b>FRAMER 2 SR1 or SR2 INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending.      |  |       |  |  |  |  |  |  |  |
| F1HDLC | ISR.3    | <b>FRAMER 1 HDLC CONTROLLER INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending. |  |       |  |  |  |  |  |  |  |
| F1SR   | ISR.2    | <b>FRAMER 1 SR1 or SR2 INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending.      |  |       |  |  |  |  |  |  |  |
| F0HDLC | ISR.1    | <b>FRAMER 0 HDLC CONTROLLER INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending. |  |       |  |  |  |  |  |  |  |
| F0SR   | ISR.0    | <b>FRAMER 0 SR1 or SR2 INTERRUPT REQUEST.</b><br>0 = No interrupt request pending.<br>1 = Interrupt request pending.      |  |       |  |  |  |  |  |  |  |

## RIR: RECEIVE INFORMATION REGISTER (Address=08 Hex)

| (MSB)  |          | (LSB)                                                                                                                        |  |  |  |  |  |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                         |  |  |  |  |  |
| TESF   | RIR.7    | <b>Transmit Side Elastic Store Full.</b> Set when the transmit side elastic store buffer fills and a frame is deleted.       |  |  |  |  |  |
| TESE   | RIR.6    | <b>Transmit Side Elastic Store Empty.</b> Set when the transmit side elastic store buffer empties and a frame is repeated.   |  |  |  |  |  |
| LORC   | RIR.5    | <b>Loss of Receive Clock.</b> Set when the RCLK pin has not transitioned for at least 2 $\mu$ s (3 $\mu$ s $\pm$ 1 $\mu$ s). |  |  |  |  |  |
| RESF   | RIR.4    | <b>Receive Side Elastic Store Full.</b> Set when the receive side elastic store buffer fills and a frame is deleted.         |  |  |  |  |  |
| RESE   | RIR.3    | <b>Receive Side Elastic Store Empty.</b> Set when the receive side elastic store buffer empties and a frame is repeated.     |  |  |  |  |  |
| CRCRC  | RIR.2    | <b>CRC Resync Criteria Met.</b> Set when 915/1000 code words are received in error.                                          |  |  |  |  |  |
| FASRC  | RIR.1    | <b>FAS Resync Criteria Met.</b> Set when 3 consecutive FAS words are received in error.                                      |  |  |  |  |  |
| CASRC  | RIR.0    | <b>CAS Resync Criteria Met.</b> Set when 2 consecutive CAS MF alignment words are received in error.                         |  |  |  |  |  |

## SSR: SYNCHRONIZER STATUS REGISTER (Address=1E Hex)

| (MSB)  |          | (LSB)                                                                                               |  |  |  |  |  |
|--------|----------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                |  |  |  |  |  |
| CSC5   | SSR.7    | <b>CRC4 Sync Counter Bit 5.</b> MSB of the 6-bit counter.                                           |  |  |  |  |  |
| CSC4   | SSR.6    | <b>CRC4 Sync Counter Bit 4.</b>                                                                     |  |  |  |  |  |
| CSC3   | SSR.5    | <b>CRC4 Sync Counter Bit 3.</b>                                                                     |  |  |  |  |  |
| CSC2   | SSR.4    | <b>CRC4 Sync Counter Bit 2.</b>                                                                     |  |  |  |  |  |
| CSC0   | SSR.3    | <b>CRC4 Sync Counter Bit 0.</b> LSB of the 6-bit counter. The next to LSB is not accessible.        |  |  |  |  |  |
| FASSA  | SSR.2    | <b>FAS Sync Active.</b> Set while the synchronizer is searching for alignment at the FAS level.     |  |  |  |  |  |
| CASSA  | SSR.1    | <b>CAS MF Sync Active.</b> Set while the synchronizer is searching for the CAS MF alignment word.   |  |  |  |  |  |
| CRC4SA | SSR.0    | <b>CRC4 MF Sync Active.</b> Set while the synchronizer is searching for the CRC4 MF alignment word. |  |  |  |  |  |

## CRC4 SYNC COUNTER

The CRC4 Sync Counter increments each time the 8 ms CRC4 multiframe search times out. The counter is cleared when the framer has successfully obtained synchronization at the CRC4 level. The counter can also be cleared by disabling the CRC4 mode (CCR1.0=0). This counter is useful for determining the amount of time the framer has been searching for synchronization at the CRC4 level. ITU G.706 suggests that if synchronization at the CRC4 level cannot be obtained within 400 ms, then the search should be abandoned and proper action taken. The CRC4 Sync Counter will rollover.

## SR1: STATUS REGISTER 1 (Address=06 Hex)

| (MSB)  |          | (LSB)                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| RSA1   | SR1.7    | <b>Receive Signaling All Ones / Signaling Change.</b> Set when over a full MF, the content of timeslot 16 contains less than three zeros. This alarm is not disabled in the CCS signaling mode. A change in the contents of RS1 through RS16 from one multiframe to the next will cause RSA1 and RSA0 to be set. |  |  |  |  |  |
| RDMA   | SR1.6    | <b>Receive Distant MF Alarm.</b> Set when bit-6 of timeslot 16 in frame 0 has been set for two consecutive multiframe. This alarm is not disabled in the CCS signaling mode.                                                                                                                                     |  |  |  |  |  |
| RSA0   | SR1.5    | <b>Receive Signaling All Zeros / Signaling Change.</b> Set when over a full MF, timeslot 16 contains all zeros. A change in the contents of RS1 through RS16 from one multiframe to the next will cause RSA1 and RSA0 to be set.                                                                                 |  |  |  |  |  |
| RSLIP  | SR1.4    | <b>Receive Side Elastic Store Slip.</b> Set when the elastic store has either repeated or deleted a frame of data.                                                                                                                                                                                               |  |  |  |  |  |
| RUA1   | SR1.3    | <b>Receive Unframed All Ones.</b> Set when an unframed all ones code is received at RPOS and RNEG.                                                                                                                                                                                                               |  |  |  |  |  |
| RRA    | SR1.2    | <b>Receive Remote Alarm.</b> Set when a remote alarm is received at RPOS and RNEG.                                                                                                                                                                                                                               |  |  |  |  |  |
| RCL    | SR1.1    | <b>Receive Carrier Loss.</b> Set when 255 (or 2048 if CCR3.0=1) consecutive zeros have been detected at RPOS and RNEG.                                                                                                                                                                                           |  |  |  |  |  |
| RLOS   | SR1.0    | <b>Receive Loss of Sync.</b> Set when the device is not synchronized to the receive E1 stream.                                                                                                                                                                                                                   |  |  |  |  |  |

**Table 7-1. ALARM CRITERIA**

| ALARM                                             | SET CRITERIA                                                                      | CLEAR CRITERIA                                                                    | ITU SPEC.        |
|---------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|
| <b>RSA1</b><br>(receive signaling all 1's)        | Over 16 consecutive frames (one full MF) timeslot 16 contains less than three 0's | Over 16 consecutive frames (one full MF) timeslot 16 contains three or more 0's   | G.732<br>4.2     |
| <b>RSA0</b><br>(receive signaling all 0's)        | Over 16 consecutive frames (one full MF) timeslot 16 contains all 0's             | Over 16 consecutive frames (one full MF) timeslot 16 contains at least a single 1 | G.732<br>5.2     |
| <b>RDMA</b><br>(receive distant multiframe alarm) | Bit 6 in timeslot 16 of frame 0 set to 1 for two consecutive MF                   | Bit 6 in timeslot 16 of frame 0 set to 0 for two consecutive MF                   | O.162<br>2.1.5   |
| <b>RUA1</b><br>(receive unframed all 1's)         | Less than three 0's in two frames (512 bits)                                      | More than two 0's in two frames (512 bits)                                        | O.162<br>1.6.1.2 |
| <b>RRA</b><br>(receive remote alarm)              | Bit 3 of nonalign frame set to one for three consecutive occasions                | Bit 3 of nonalign frame set to 0 for three consecutive occasions                  | O.162<br>2.1.4   |
| <b>RCL</b><br>(receive carrier loss)              | 255 (or 2048) consecutive 0's received                                            | In 255 bit times, at least 32 1's are received                                    | G.775/<br>G.962  |

**SR2: STATUS REGISTER 2 (Address=07 Hex)**

| (MSB)  | RMF      | RAF                                                                                                                                                                                      | TMF | SEC | TAF | LOTC | RCMF | (LSB) | TSLIP |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|------|-------|-------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                     |     |     |     |      |      |       |       |
| RMF    | SR2.7    | <b>Receive CAS Multiframe.</b> Set every 2 ms (regardless if CAS signaling is enabled or not) on receive multiframe boundaries. Used to alert the host that signaling data is available. |     |     |     |      |      |       |       |
| RAF    | SR2.6    | <b>Receive Align Frame.</b> Set every 250 $\mu$ s at the beginning of align frames. Used to alert the host that Si and Sa bits are available in the RAF and RNAF registers.              |     |     |     |      |      |       |       |
| TMF    | SR2.5    | <b>Transmit Multiframe.</b> Set every 2 ms (regardless if CRC4 is enabled) on transmit multiframe boundaries. Used to alert the host that signaling data needs to be updated.            |     |     |     |      |      |       |       |
| SEC    | SR2.4    | <b>One Second Timer.</b> Set on increments of one second based on RCLK. If CCR2.7=1, then this bit will be set every 62.5 ms instead of once a second.                                   |     |     |     |      |      |       |       |
| TAF    | SR2.3    | <b>Transmit Align Frame.</b> Set every 250 $\mu$ s at the beginning of align frames. Used to alert the host that the TAF and TNAF registers need to be updated.                          |     |     |     |      |      |       |       |
| LOTC   | SR2.2    | <b>Loss of Transmit Clock.</b> Set when the TCLK pin has not transitioned for one channel time (or 3.9 $\mu$ s). Will force the LOTC pin high if enabled via TCR2.0.                     |     |     |     |      |      |       |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| RCMF   | SR2.1    | <b>Receive CRC4 Multiframe.</b> Set on CRC4 multiframe boundaries; will continue to be set every 2 ms on an arbitrary boundary if CRC4 is disabled. |
| TSLIP  | SR2.0    | <b>Transmit Elastic Store Slip.</b> Set when the elastic store has either repeated or deleted a frame of data.                                      |

## IMR1: INTERRUPT MASK REGISTER 1 (Address=16 Hex)

| (MSB)           | RSA1 | RDMA | RSA0 | RSLIP | RUA1 | RRA                                                                                                 | RCL | (LSB) |
|-----------------|------|------|------|-------|------|-----------------------------------------------------------------------------------------------------|-----|-------|
| <b>SYMBOL</b>   |      |      |      |       |      |                                                                                                     |     |       |
| <b>POSITION</b> |      |      |      |       |      | <b>NAME AND DESCRIPTION</b>                                                                         |     |       |
| RSA1            |      |      |      |       |      | <b>Receive Signaling All Ones / Signaling Change.</b><br>0=interrupt masked<br>1=interrupt enabled  |     |       |
| RDMA            |      |      |      |       |      | <b>Receive Distant MF Alarm.</b><br>0=interrupt masked<br>1=interrupt enabled                       |     |       |
| RSA0            |      |      |      |       |      | <b>Receive Signaling All Zeros / Signaling Change.</b><br>0=interrupt masked<br>1=interrupt enabled |     |       |
| RSLIP           |      |      |      |       |      | <b>Receive Elastic Store Slip Occurrence.</b><br>0=interrupt masked<br>1=interrupt enabled          |     |       |
| RUA1            |      |      |      |       |      | <b>Receive Unframed All Ones.</b><br>0=interrupt masked<br>1=interrupt enabled                      |     |       |
| RRA             |      |      |      |       |      | <b>Receive Remote Alarm.</b><br>0=interrupt masked<br>1=interrupt enabled                           |     |       |
| RCL             |      |      |      |       |      | <b>Receive Carrier Loss.</b><br>0=interrupt masked<br>1=interrupt enabled                           |     |       |
| RLOS            |      |      |      |       |      | <b>Receive Loss of Sync.</b><br>0=interrupt masked<br>1=interrupt enabled                           |     |       |

## IMR2: INTERRUPT MASK REGISTER 2 (Address=17 Hex)

| (MSB)  |          | (LSB)                                                                                            |  |  |  |  |  |  |
|--------|----------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                             |  |  |  |  |  |  |
| RMF    | IMR2.7   | <b>Receive CAS Multiframe.</b><br>0=interrupt masked<br>1=interrupt enabled                      |  |  |  |  |  |  |
| RAF    | IMR2.6   | <b>Receive Align Frame.</b><br>0=interrupt masked<br>1=interrupt enabled                         |  |  |  |  |  |  |
| TMF    | IMR2.5   | <b>Transmit Multiframe.</b><br>0=interrupt masked<br>1=interrupt enabled                         |  |  |  |  |  |  |
| SEC    | IMR2.4   | <b>One Second Timer.</b><br>0=interrupt masked<br>1=interrupt enabled                            |  |  |  |  |  |  |
| TAF    | IMR2.3   | <b>Transmit Align Frame.</b><br>0=interrupt masked<br>1=interrupt enabled                        |  |  |  |  |  |  |
| LOTC   | IMR2.2   | <b>Loss Of Transmit Clock.</b><br>0=interrupt masked<br>1=interrupt enabled                      |  |  |  |  |  |  |
| RCMF   | IMR2.1   | <b>Receive CRC4 Multiframe.</b><br>0=interrupt masked<br>1=interrupt enabled                     |  |  |  |  |  |  |
| TSLIP  | IMR2.0   | <b>Transmit Side Elastic Store Slip Occurrence.</b><br>0=interrupt masked<br>1=interrupt enabled |  |  |  |  |  |  |

## 8. ERROR COUNT REGISTERS

There are a set of four counters in each framer that record bipolar or code violations, errors in the CRC4 SMF code words, E bits as reported by the far end, and word errors in the FAS. Each of these four counters are automatically updated on either one second boundaries (CCR2.7=0) or every 62.5 ms (CCR2.7=1) as determined by the timer in Status Register 2 (SR2.4). Hence, these registers contain performance data from either the previous second or the previous 62.5 ms. The user can use the interrupt from the one second timer to determine when to read these registers. The user has a full second (or 62.5 ms) to read the counters before the data is lost. All four counters will saturate at their respective maximum counts and they will not rollover.

### BPV or Code Violation Counter

Violation Count Register 1 (VCR1) is the most significant word and VCR2 is the least significant word of a 16-bit counter that records either BiPolar Violations (BPVs) or Code Violations (CVs). If CCR2.6=0, then the VCR counts bipolar violations. Bipolar violations are defined as consecutive marks of the same polarity. In this mode, if the HDB3 mode is set for the receive side via CCR1.2, then HDB3 code words are not counted as BPVs. If CCR2.6=1, then the VCR counts code violations as defined in ITU O.161. Code violations are defined as consecutive bipolar violations of the same polarity. In most applications,

the framer should be programmed to count BPVs when receiving AMI code and to count CVs when receiving HDB3 code. This counter increments at all times and is not disabled by loss of sync conditions. The counter saturates at 65,535 and will not rollover. The bit error rate on a E1 line would have to be greater than  $10^{**} - 2$  before the VCR would saturate.

**VCR1: UPPER BIPOLEAR VIOLATION COUNT REGISTER 1 (Address=00 Hex)**  
**VCR2: LOWER BIPOLEAR VIOLATION COUNT REGISTER 2 (Address=01 Hex)**

| (MSB) |     |     |     |     |     |    |    | (LSB) |  |
|-------|-----|-----|-----|-----|-----|----|----|-------|--|
| V15   | V14 | V13 | V12 | V11 | V10 | V9 | V8 | VCR1  |  |
| V7    | V6  | V5  | V4  | V3  | V2  | V1 | V0 | VCR2  |  |

| SYMBOL | POSITION | NAME AND DESCRIPTION                          |
|--------|----------|-----------------------------------------------|
| V15    | VCR1.7   | <b>MSB of the 16-bit code violation count</b> |
| V0     | VCR2.0   | <b>LSB of the 10-bit code violation count</b> |

**CRC4 Error Counter**

CRC4 Count Register 1 (CRCCR1) is the most significant word and CRCCR2 is the least significant word of a 10-bit counter that records word errors in the Cyclic Redundancy Check 4 (CRC4). Since the maximum CRC4 count in a one second period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC4 level; it will continue to count if loss of multiframe sync occurs at the CAS level.

**CRCCR1: CRC4 COUNT REGISTER 1 (Address=02 Hex)**  
**CRCCR2: CRC4 COUNT REGISTER 2 (Address=03 Hex)**

| (MSB)    |          |          |          |          |          |          |          | (LSB)  |      |
|----------|----------|----------|----------|----------|----------|----------|----------|--------|------|
| (note 1) | CRC9   | CRC8 |
| CRC7     | CRC6     | CRC5     | CRC4     | CRC3     | CRC2     | CRC1     | CRC0     | CRCCR1 |      |

| SYMBOL | POSITION | NAME AND DESCRIPTION                      |
|--------|----------|-------------------------------------------|
| CRC9   | CRCCR1.1 | <b>MSB of the 10-Bit CRC4 error count</b> |
| CRC0   | CRCCR2.0 | <b>LSB of the 10-Bit CRC4 error count</b> |

**NOTES:**

- 1) The upper 6 bits of CRCCR1 at address 02 are the most significant bits of the 12-bit FAS error counter.

**E-Bit Counter**

E-bit Count Register 1 (EBCR1) is the most significant word and EBCR2 is the least significant word of a 10-bit counter that records Far End Block Errors (FEBE) as reported in the first bit of frames 13 and 15 on E1 lines running with CRC4 multiframe. These count registers will increment once each time the received E-bit is set to zero. Since the maximum E-bit count in a one second period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC4 level; it will continue to count if loss of multiframe sync occurs at the CAS level.

**EBCR1: E-BIT COUNT REGISTER 1 (Address=04 Hex)****EBCR2: E-BIT COUNT REGISTER 2 (Address=05 Hex)**

| (MSB)    |          |          |          |          |          | (LSB) |     |
|----------|----------|----------|----------|----------|----------|-------|-----|
| (note 1) | EB9   | EB8 |
| EB7      | EB6      | EB5      | EB4      | EB3      | EB2      | EB1   | EB0 |

**SYMBOL**      **POSITION**      **NAME AND DESCRIPTION**

|     |         |                                            |
|-----|---------|--------------------------------------------|
| EB9 | EBCR1.1 | <b>MSB of the 10-Bit E-Bit Error Count</b> |
| EB0 | EBCR2.0 | <b>LSB of the 10-Bit E-Bit Error Count</b> |

**NOTES:**

- 1) The upper 6 bits of EBCR1 at address 04 are the least significant bits of the 12-bit FAS error counter.

**FAS Error Counter**

FAS Count Register 1 (FASCR1) is the most significant word and FASCR2 is the least significant word of a 12-bit counter that records word errors in the Frame Alignment Signal in timeslot 0. This counter is disabled when RLOS is high. FAS errors will not be counted when the framer is searching for FAS alignment and/or synchronization at either the CAS or CRC4 multiframe level. Since the maximum FAS word error count in a one second period is 4000, this counter cannot saturate.

**FASCR1: FAS ERROR COUNT REGISTER 1 (Address=02 Hex)****FASCR2: FAS ERROR COUNT REGISTER 2 (Address=04 Hex)**

| (MSB) |       |      |      |      |      | (LSB)    |          |
|-------|-------|------|------|------|------|----------|----------|
| FAS11 | FAS10 | FAS9 | FAS8 | FAS7 | FAS6 | (note 2) | (note 2) |
| FAS5  | FAS4  | FAS3 | FAS2 | FAS1 | FAS0 | (note 1) | (note 1) |

**SYMBOL**      **POSITION**      **NAME AND DESCRIPTION**

|       |          |                                          |
|-------|----------|------------------------------------------|
| FAS11 | FASCR1.7 | <b>MSB of the 12-Bit FAS Error Count</b> |
| FAS0  | FASCR2.2 | <b>LSB of the 12-Bit FAS Error Count</b> |

**NOTES:**

- 1) The lower 2 bits of FASCR1 at address 02 are the most significant bits of the 10-bit CRC4 error counter.
- 2) The lower 2 bits of FASCR2 at address 04 are the most significant bits of the 10-bit E-Bit counter.

## 9. DS0 MONITORING FUNCTION

Each framer in the DS21Q44 has the ability to monitor one DS0 64 kbps channel in the transmit direction and one DS0 channel in the receive direction at the same time. In the transmit direction the user will determine which channel is to be monitored by properly setting the TCM0 to TCM4 bits in the CCR4 register. In the receive direction, the RCM0 to RCM4 bits in the CCR5 register need to be properly set. The DS0 channel pointed to by the TCM0 to TCM4 bits will appear in the Transmit DS0 Monitor (TDS0M) register and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the Receive DS0 (RDS0M) register. The TCM4 to TCM0 and RCM4 to RCM0 bits should be programmed with the decimal decode of the appropriate E1 channel. Channels 1 through 32 map to register values 0 through 31. For example, if DS0 channel 6 (timeslot 5) in the transmit direction and DS0 channel 15 (timeslot 14) in the receive direction needed to be monitored, then the following values would be programmed into CCR4 and CCR5:

|          |          |
|----------|----------|
| TCM4 = 0 | RCM4 = 0 |
| TCM3 = 0 | RCM3 = 1 |
| TCM2 = 1 | RCM2 = 1 |
| TCM1 = 0 | RCM1 = 1 |
| TCM0 = 1 | RCM0 = 0 |

## CCR4: COMMON CONTROL REGISTER 4 (Address=A8 Hex)

[Repeated here from section 6 for convenience]

| (MSB)  | RLB      | -                                                                                                                                                                        | - | TCM4 | TCM3 | TCM2 | TCM1 | (LSB)<br>TCM0 |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|------|------|------|---------------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                     |   |      |      |      |      |               |
| RLB    | CCR4.7   | <b>Remote Loopback.</b><br>0 = loopback disabled<br>1 = loopback enabled                                                                                                 |   |      |      |      |      |               |
| -      | CCR4.6   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                 |   |      |      |      |      |               |
| -      | CCR4.5   | <b>Not Assigned.</b> Should be set to zero when written.                                                                                                                 |   |      |      |      |      |               |
| TCM4   | CCR4.4   | <b>Transmit Channel Monitor Bit 4.</b> MSB of a channel decode that determines which transmit channel data will appear in the TDS0M register. See Section 9 for details. |   |      |      |      |      |               |
| TCM3   | CCR4.3   | <b>Transmit Channel Monitor Bit 3.</b>                                                                                                                                   |   |      |      |      |      |               |
| TCM2   | CCR4.2   | <b>Transmit Channel Monitor Bit 2.</b>                                                                                                                                   |   |      |      |      |      |               |
| TCM1   | CCR4.1   | <b>Transmit Channel Monitor Bit 1.</b>                                                                                                                                   |   |      |      |      |      |               |
| TCM0   | CCR4.0   | <b>Transmit Channel Monitor Bit 0.</b> LSB of the channel decode.                                                                                                        |   |      |      |      |      |               |

## TDS0M: TRANSMIT DS0 MONITOR REGISTER (Address=A9 Hex)

|    |  |    |  |    |  |    |  | (MSB) |  |    |  |    |  |    |  |  | (LSB) |
|----|--|----|--|----|--|----|--|-------|--|----|--|----|--|----|--|--|-------|
| B1 |  | B2 |  | B3 |  | B4 |  | B5    |  | B6 |  | B7 |  | B8 |  |  |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                     |
|--------|----------|------------------------------------------------------------------------------------------|
| B1     | TDS0M.7  | <b>Transmit DS0 Channel Bit 1.</b> MSB of the DS0 channel (first bit to be transmitted). |
| B2     | TDS0M.6  | <b>Transmit DS0 Channel Bit 2.</b>                                                       |
| B3     | TDS0M.5  | <b>Transmit DS0 Channel Bit 3.</b>                                                       |
| B4     | TDS0M.4  | <b>Transmit DS0 Channel Bit 4.</b>                                                       |
| B5     | TDS0M.3  | <b>Transmit DS0 Channel Bit 5.</b>                                                       |
| B6     | TDS0M.2  | <b>Transmit DS0 Channel Bit 6.</b>                                                       |
| B7     | TDS0M.1  | <b>Transmit DS0 Channel Bit 7.</b>                                                       |
| B8     | TDS0M.0  | <b>Transmit DS0 Channel Bit 8.</b> LSB of the DS0 channel (last bit to be transmitted).  |

## CCR5: COMMON CONTROL REGISTER 5 (Address=AA Hex)

[Repeated here from section 6 for convenience]

|   |  |         |  |         |  |      |  | (MSB) |  |      |  |      |  |      |  |  | (LSB) |
|---|--|---------|--|---------|--|------|--|-------|--|------|--|------|--|------|--|--|-------|
| - |  | RESALGN |  | TESALGN |  | RCM4 |  | RCM3  |  | RCM2 |  | RCM1 |  | RCM0 |  |  |       |

| SYMBOL  | POSITION         | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESALGN | CCR5.7<br>CCR5.6 | <b>Not Assigned.</b> Should be set to zero when written<br><b>Receive Elastic Store Align.</b> Setting this bit from a zero to a one may force the receive elastic store's write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation is already greater or equal to half a frame. If pointer separation is less then half a frame, the command will be executed and data will be disrupted. Should be toggled after RSYCLK has been applied and is stable. Must be cleared and set again for a subsequent align. See Section 13 for details. |
| TESALGN | CCR5.5           | <b>Transmit Elastic Store Align.</b> Setting this bit from a zero to a one may force the transmit elastic store's write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation is already greater or equal to half a frame. If pointer separation is less then half a frame, the command will be executed and data will be disrupted. Should be toggled after TSYCLK has been applied and is stable. Must be cleared and set again for a subsequent align. See Section 13 for details.                                                          |
| RCM4    | CCR5.4           | <b>Receive Channel Monitor Bit 4.</b> MSB of a channel decode that determines which receive channel data will appear in the RDS0M register. See Section 9 for details.                                                                                                                                                                                                                                                                                                                                                                                                                            |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                             |
|--------|----------|------------------------------------------------------------------|
| RCM3   | CCR5.3   | <b>Receive Channel Monitor Bit 3.</b>                            |
| RCM2   | CCR5.2   | <b>Receive Channel Monitor Bit 2.</b>                            |
| RCM1   | CCR5.1   | <b>Receive Channel Monitor Bit 1.</b>                            |
| RCM0   | CCR5.0   | <b>Receive Channel Monitor Bit 0.</b> LSB of the channel decode. |

## RDS0M: RECEIVE DS0 MONITOR REGISTER (Address = AB Hex)

| (MSB) _____ (LSB) |    |    |    |    |    |    |    |
|-------------------|----|----|----|----|----|----|----|
| B1                | B2 | B3 | B4 | B5 | B6 | B7 | B8 |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                 |
|--------|----------|--------------------------------------------------------------------------------------|
| B1     | RDS0M.7  | <b>Receive DS0 Channel Bit 1.</b> MSB of the DS0 channel (first bit to be received). |
| B2     | RDS0M.6  | <b>Receive DS0 Channel Bit 2.</b>                                                    |
| B3     | RDS0M.5  | <b>Receive DS0 Channel Bit 3.</b>                                                    |
| B4     | RDS0M.4  | <b>Receive DS0 Channel Bit 4.</b>                                                    |
| B5     | RDS0M.3  | <b>Receive DS0 Channel Bit 5.</b>                                                    |
| B6     | RDS0M.2  | <b>Receive DS0 Channel Bit 6.</b>                                                    |
| B7     | RDS0M.1  | <b>Receive DS0 Channel Bit 7.</b>                                                    |
| B8     | RDS0M.0  | <b>Receive DS0 Channel Bit 8.</b> LSB of the DS0 channel (last bit to be received).  |

## 10. SIGNALING OPERATION

Each framer in the DS21Q44 contains provisions for both processor based (i.e., software based) signaling bit access and for hardware based access. Both the processor based access and the hardware based access can be used simultaneously if necessary. The processor based signaling is covered in Section 10.1 and the hardware based signaling is covered in Section 10.2.

### 10.1 Processor-Based Signaling

The Channel Associated Signaling (CAS) bits embedded in the E1 stream can be extracted from the receive stream and inserted into the transmit stream by the framer. Each of the 30 voice channels has four signaling bits (A/B/C/D) associated with it. The numbers in parenthesis () are the voice channel associated with a particular signaling bit. The voice channel numbers have been assigned as described in the ITU documents. Please note that this is different than the channel numbering scheme (1 to 32) that is used in the rest of the data sheet. For example, voice channel 1 is associated with timeslot 1 (Channel 2) and voice Channel 30 is associated with timeslot 31 (Channel 32). There is a set of 16 registers for the receive side (RS1 to RS16) and 16 registers on the transmit side (TS1 to TS16). The signaling registers are detailed below.

## RS1 TO RS16: RECEIVE SIGNALING REGISTERS (Address=30 to 3F Hex)

| (MSB) |       |       |       | (LSB) |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | X     | Y     | X     | X     |
| A(1)  | B(1)  | C(1)  | D(1)  | A(16) | B(16) | C(16) | D(16) |
| A(2)  | B(2)  | C(2)  | D(2)  | A(17) | B(17) | C(17) | D(17) |
| A(3)  | B(3)  | C(3)  | D(3)  | A(18) | B(18) | C(18) | D(18) |
| A(4)  | B(4)  | C(4)  | D(4)  | A(19) | B(19) | C(19) | D(19) |
| A(5)  | B(5)  | C(5)  | D(5)  | A(20) | B(20) | C(20) | D(20) |
| A(6)  | B(6)  | C(6)  | D(6)  | A(21) | B(21) | C(21) | D(21) |
| A(7)  | B(7)  | B(7)  | B(7)  | B(22) | B(22) | B(22) | B(22) |
| A(8)  | B(8)  | C(8)  | D(8)  | A(23) | B(23) | C(23) | D(23) |
| A(9)  | B(9)  | C(9)  | D(9)  | A(24) | B(24) | C(24) | D(24) |
| A(10) | B(10) | C(10) | D(10) | A(25) | B(25) | C(25) | D(25) |
| A(11) | B(11) | C(11) | D(11) | A(26) | B(26) | C(26) | D(26) |
| A(12) | B(12) | C(12) | D(12) | A(27) | B(27) | C(27) | D(27) |
| A(13) | B(13) | C(13) | D(13) | A(28) | B(28) | C(28) | D(28) |
| A(14) | B(14) | C(14) | D(14) | A(29) | B(29) | C(29) | D(29) |
| A(15) | B(15) | C(15) | D(15) | A(30) | B(30) | C(30) | D(30) |

### SYMBOL POSITION NAME AND DESCRIPTION

|       |           |                                                      |
|-------|-----------|------------------------------------------------------|
| X     | RS1.0/1/3 | Spare Bits.                                          |
| Y     | RS1.2     | Remote Alarm Bit (integrated and reported in SR1.6). |
| A(1)  | RS2.7     | Signaling Bit A for Channel 1                        |
| D(30) | RS16.0    | Signaling Bit D for Channel 30.                      |

Each Receive Signaling Register (RS1 to RS16) reports the incoming signaling from two timeslots. The bits in the Receive Signaling Registers are updated on multiframe boundaries so the user can utilize the Receive Multiframe Interrupt in the Receive Status Register 2 (SR2.7) to know when to retrieve the signaling bits. The user has a full 2 ms to retrieve the signaling bits before the data is lost. The RS registers are updated under all conditions. Their validity should be qualified by checking for synchronization at the CAS level. In CCS signaling mode, RS1 to RS16 can also be used to extract signaling information. Via the SR2.7 bit, the user will be informed when the signaling registers have been loaded with data. The user has 2 ms to retrieve the data before it is lost. The signaling data reported in RS1 to RS16 is also available at the RSIG and RSER pins.

Three status bits in Status Register 1 (SR1) monitor the contents of registers RS1 through RS16. Status monitored includes all zeros detection, all ones detection and a change in register contents. The Receive Signaling All Zeros status bit (SR1.5) is set when over a full multi-frame, RS1 through RS16 contain all zeros. The Receive Signaling All Ones status bit (SR1.7) is set when over a full multi-frame, RS1 through RS16 contain less than three zeros. A change in the contents of RS1 through RS16 from one multiframe to the next will cause RSA1 (SR1.7) and RSA0 (SR1.5) status bits to be set at the same time.

The user can enable the INT\* pin to toggle low upon detection of a change in signaling by setting either the IMR1.7 or IMR1.5 bit. Once a signaling change has been detected, the user has at least 1.75 ms to read the data out of the RS1 to RS16 registers before the data will be lost.

## TS1 TO TS16: TRANSMIT SIGNALING REGISTERS (Address=40 to 4F Hex)

| (MSB) |       |       |       | (LSB) |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | X     | Y     | X     | X     |
| A(1)  | B(1)  | C(1)  | D(1)  | A(16) | B(16) | C(16) | D(16) |
| A(2)  | B(2)  | C(2)  | D(2)  | A(17) | B(17) | C(17) | D(17) |
| A(3)  | B(3)  | C(3)  | D(3)  | A(18) | B(18) | C(18) | D(18) |
| A(4)  | B(4)  | C(4)  | D(4)  | A(19) | B(19) | C(19) | D(19) |
| A(5)  | B(5)  | C(5)  | D(5)  | A(20) | B(20) | C(20) | D(20) |
| A(6)  | B(6)  | C(6)  | D(6)  | A(21) | B(21) | C(21) | D(21) |
| A(7)  | B(7)  | B(7)  | B(7)  | B(22) | B(22) | B(22) | B(22) |
| A(8)  | B(8)  | C(8)  | D(8)  | A(23) | B(23) | C(23) | D(23) |
| A(9)  | B(9)  | C(9)  | D(9)  | A(24) | B(24) | C(24) | D(24) |
| A(10) | B(10) | C(10) | D(10) | A(25) | B(25) | C(25) | D(25) |
| A(11) | B(11) | C(11) | D(11) | A(26) | B(26) | C(26) | D(26) |
| A(12) | B(12) | C(12) | D(12) | A(27) | B(27) | C(27) | D(27) |
| A(13) | B(13) | C(13) | D(13) | A(28) | B(28) | C(28) | D(28) |
| A(14) | B(14) | C(14) | D(14) | A(29) | B(29) | C(29) | D(29) |
| A(15) | B(15) | C(15) | D(15) | A(30) | B(30) | C(30) | D(30) |

### SYMBOL POSITION NAME AND DESCRIPTION

|       |           |                                                      |
|-------|-----------|------------------------------------------------------|
| X     | TS1.0/1/3 | Spare Bits.                                          |
| Y     | TS1.2     | Remote Alarm Bit (integrated and reported in SR1.6). |
| A(1)  | TS2.7     | Signaling Bit A for Channel 1                        |
| D(30) | TS16.0    | Signaling Bit D for Channel 30.                      |

Each Transmit Signaling Register (TS1 to TS16) contains the CAS bits for two timeslots that will be inserted into the outgoing stream if enabled to do so via TCR1.5. On multiframe boundaries, the framer will load the values present in the Transmit Signaling Register into an outgoing signaling shift register that is internal to the device. The user can utilize the Transmit Multiframe bit in Status Register 2 (SR2.5) to know when to update the signaling bits. The bit will be set every 2 ms and the user has 2 ms to update the TSR's before the old data will be retransmitted. ITU specifications recommend that the ABCD signaling not be set to all zeros because they will emulate a CAS multiframe alignment word.

The TS1 register is special because it contains the CAS multiframe alignment word in its upper nibble. The upper nibble must always be set to 0000 or else the terminal at the far end will lose multiframe synchronization. If the user wishes to transmit a multiframe alarm to the far end, then the TS1.2 bit should be set to a one. If no alarm is to be transmitted, then the TS1.2 bit should be cleared. The three remaining bits in TS1 are the spare bits. If they are not used, they should be set to one. In CCS signaling mode, TS1 to TS16 can also be used to insert signaling information. Via the SR2.5 bit, the user will be informed when the signaling registers need to be loaded with data. The user has 2 ms to load the data before the old data will be retransmitted.

Via the CCR3.6 bit, the user has the option to use the Transmit Channel Blocking Registers (TCBRs) to determine on a channel by channel basis, which signaling bits are to be inserted via the TSRs (the corresponding bit in the TCBRs=1) and which are to be sourced from the TSER or TSIG pin (the corresponding bit in the TCBRs=0). See the Transmit Data Flow diagram in Section 18 for more details.

## 10.2 Hardware-Based Signaling

### RECEIVE SIDE

In the receive side of the hardware based signaling, there are two operating modes for the signaling buffer; signaling extraction and signaling re-insertion. Signaling extraction involves pulling the signaling bits from the receive data stream and buffering them over a four multiframe buffer and outputting them in a serial PCM fashion on a channel-by-channel basis at the RSIG output. This mode is always enabled. In this mode, the receive elastic store may be enabled or disabled. If the receive elastic store is enabled, then the backplane clock (RSYSCLK) must be 2.048 MHz. The ABCD signaling bits are output on RSIG in the lower nibble of each channel. The RSIG data is updated once a multiframe (2 ms) unless a freeze is in effect. See the timing diagrams in Section 18 for some examples.

The other hardware based signaling operating mode called signaling re-insertion can be invoked by setting the RSRE control bit high (CCR3.3=1). In this mode, the user will provide a multiframe sync at the RSYNC pin and the signaling data be re-aligned at the RSER output according to this applied multiframe boundary. in this mode, the elastic store must be enabled the backplane clock must be 2.048 MHz.

The signaling data in the two multiframe buffer will be frozen in a known good state upon either a loss of synchronization (OOF event), carrier loss, or frame slip. To allow this freeze action to occur, the RFE control bit (CCR2.0) should be set high. The user can force a freeze by setting the RFF control bit (CCR2.1) high. Setting the RFF bit high causes the same freezing action as if a loss of synchronization, carrier loss, or slip has occurred.

The 2 multiframe buffer provides an approximate 1 multiframe delay in the signaling bits provided at the RSIG pin (and at the RSER pin if RSRE=1 via CCR3.3). When freezing is enabled (RFE=1), the signaling data will be held in the last known good state until the corrupting error condition subsides. When the error condition sub-sides, the signaling data will be held in the old state for an additional 3 ms to 5 ms before being allowed to be updated with new signaling data.

### TRANSMIT SIDE

Via the THSE control bit (CCR3.2), the DS21Q44 can be set up to take the signaling data presented at the TSIG pin and insert the signaling data into the PCM data stream that is being input at the TSER pin. The hardware signaling insertion capabilities of each framer are available whether the transmit side elastic store is enabled or disabled. If the transmit side elastic store is enabled, the backplane clock (TSYSCLK) must be 2.048 MHz.

When hardware signaling insertion is enabled on a framer (THSE=1), then the user must enable the Transmit Channel Blocking Register Function Select (TCBFS) control bit (CCR3.6=1). This is needed so that the CAS multiframe alignment word, multiframe remote alarm, and spare bits can be added to timeslot 16 in frame 0 of the multiframe. The TS1 register should be programmed with the proper information. If CCR3.6=1, then a zero in the TCBRs implies that signaling data is to be sourced from TSER (or TSIG if CCR3.2=1) and a one implies that signaling data for that channel is to be sourced from the Transmit Signaling (TS) registers. See definition below.

## TCBR1/TCBR2/TCBR3/TCBR4: DEFINITION WHEN CCR3.6=1

| (MSB) |      |      |      |      |      |       |      | (LSB)      |
|-------|------|------|------|------|------|-------|------|------------|
| CH20  | CH4  | CH19 | CH3  | CH18 | CH2  | CH17* | CH1* | TCBR1 (22) |
| CH24  | CH8  | CH23 | CH7  | CH22 | CH6  | CH21  | CH5  | TCBR2 (23) |
| CH28  | CH12 | CH27 | CH11 | CH26 | CH10 | CH25  | CH9  | TCBR3 (24) |
| CH32  | CH16 | CH31 | CH15 | CH30 | CH14 | CH29  | CH13 | TCBR4 (25) |

### NOTE:

\*=CH1 and CH17 should be set to one to allow the internal TS1 register to create the CAS Multiframe Alignment Word and Spare/Remote Alarm bits.

The user can also take advantage of this functionality to intermix signaling data from the TSIG pin and from the internal Transmit Signaling Registers (TS1 to TS16). As an example, assume that the user wishes to source all the signaling data except for voice channels 5 and 10 from the TSIG pin. In this application, the following bits and registers would be programmed as follows:

#### CONTROL BITS

THSE=1 (CCR3.2)  
TCBFS=1 (CCR3.6)  
T16S=1(TCR1.5)

#### REGISTER VALUES

TS1=0Bh (MF alignment word, remote alarm etc.)  
TCBR1=03h (source timeslot 16, frame 1 data)  
TCBR2=01h (source voice Channel 5 signaling data from TS6)  
TCBR3=04h (source voice Channel 10 signaling data from TS11)  
TCBR4=00h

## 11. PER-CHANNEL CODE GENERATION AND LOOPBACK

Each framer in the DS21Q44 can replace data on a channel-by-channel basis in both the transmit and receive directions. The transmit direction is from the backplane to the E1 line and is covered in Section 11.1. The receive direction is from the E1 line to the backplane and is covered in Section 11.2.

### 11.1 Transmit Side Code Generation

In the transmit direction there are two methods by which channel data from the backplane can be overwritten with data generated by the framer. The first method which is covered in Section 11.1.1 was a feature contained in the original DS21Q43 while the second method which is covered in Section 11.1.2 is a new feature of the DS21Q44.

#### 11.1.1 Simple Idle Code Insertion and Per-Channel Loopback

The first method involves using the Transmit Idle Registers (TIR1/2/3/4) to determine which of the 32 E1 channels should be overwritten with the code placed in the Transmit Idle Definition Register (TIDR). This method allows the same 8-bit code to be placed into any of the 32 E1 channels. If this method is used, then the CCR3.5 control bit must be set to zero.

Each of the bit position in the Transmit Idle Registers (TIR1/TIR2/TIR3/TIR4) represent a DS0 channel in the outgoing frame. When these bits are set to a one, the corresponding channel will transmit the Idle Code contained in the Transmit Idle Definition Register (TIDR).

The Transmit Idle Registers (TIRs) have an alternate function that allow them to define a Per-Channel LoopBack (PCLB). If the TIRFS control bit (CCR3.5) is set to one, then the TIRs will determine which channels (if any) from the backplane should be replaced with the data from the receive side or in other words, off of the E1 line. If this mode is enabled, then transmit and receive clocks and frame syncs must be synchronized. One method to accomplish this would be to tie RCLK to TCLK and RF\_SYNC to TSYNC. There are no restrictions on which channels can be looped back or on how many channels can be looped back.

## TIR1/TIR2/TIR3: TRANSMIT IDLE REGISTERS (Address=26 to 29 Hex)

[Also used for Per-Channel Loopback]

| (MSB) |      |      |      |      |      |      |      | (LSB)     |  |  |  |  |  |  |  |
|-------|------|------|------|------|------|------|------|-----------|--|--|--|--|--|--|--|
| CH8   | CH7  | CH6  | CH5  | CH4  | CH3  | CH2  | CH1  | TIR1 (26) |  |  |  |  |  |  |  |
| CH16  | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9  | TIR2 (27) |  |  |  |  |  |  |  |
| CH24  | CH23 | CH22 | CH21 | CH20 | CH19 | CH18 | CH17 | TIR3 (28) |  |  |  |  |  |  |  |
| CH32  | CH31 | CH30 | CH29 | CH28 | CH27 | CH26 | CH25 | TIR4 (29) |  |  |  |  |  |  |  |

| SYMBOLS  | POSITIONS    | NAME AND DESCRIPTION                                                                                                                                                         |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH1 - 32 | TIR1.0 - 4.7 | <b>Transmit Idle Code Insertion Control Bits.</b><br>0 = do not insert the Idle Code in the TIDR into this channel<br>1 = insert the Idle Code in the TIDR into this channel |

### NOTES:

If CCR3.5=1, then a zero in the TIRs implies that channel data is to be sourced from TSER and a one implies that channel data is to be sourced from the output of the receive side framer (i.e., Per-Channel Loopback; see Figure 1-1).

## TIDR: TRANSMIT IDLE DEFINITION REGISTER (Address=2A Hex)

| (MSB)  |          |                                                      |        |          |                                                     |        |          | (LSB)                |        |          |                      |        |          |                      |  |
|--------|----------|------------------------------------------------------|--------|----------|-----------------------------------------------------|--------|----------|----------------------|--------|----------|----------------------|--------|----------|----------------------|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                 | SYMBOL | POSITION | NAME AND DESCRIPTION                                | SYMBOL | POSITION | NAME AND DESCRIPTION | SYMBOL | POSITION | NAME AND DESCRIPTION | SYMBOL | POSITION | NAME AND DESCRIPTION |  |
| TIDR7  | TIDR.7   | MSB of the Idle Code (this bit is transmitted first) | TIDR0  | TIDR.0   | LSB of the Idle Code (this bit is transmitted last) |        |          |                      |        |          |                      |        |          |                      |  |
|        |          |                                                      |        |          |                                                     |        |          |                      |        |          |                      |        |          |                      |  |

### 11.1.2 Per-Channel Code Insertion

The second method involves using the Transmit Channel Control Registers (TCC1/2/3/4) to determine which of the 32 E1 channels should be overwritten with the code placed in the Transmit Channel Registers (TC1 to TC32). This method is more flexible than the first in that it allows a different 8-bit code to be placed into each of the 32 E1 channels.

**TC1 TO TC32: TRANSMIT CHANNEL REGISTERS** (Address=60 to 7F Hex)

(for brevity, only channel one is shown; see Table 4-1 for other register address)

| (MSB) (LSB) |    |    |    |    |    |    |    |
|-------------|----|----|----|----|----|----|----|
| C7          | C6 | C5 | C4 | C3 | C2 | C1 | C0 |

**SYMBOL POSITION NAME AND DESCRIPTION**

|    |       |                                                 |
|----|-------|-------------------------------------------------|
| C7 | TC1.7 | MSB of the Code (this bit is transmitted first) |
| C0 | TC1.0 | LSB of the Code (this bit is transmitted last)  |

**TCC1/TCC2/TCC3/TCC4: TRANSMIT CHANNEL CONTROL REGISTER**

(Address=A0 to A3 Hex)

| (MSB) (LSB) |      |      |      |      |      |      |      |
|-------------|------|------|------|------|------|------|------|
| CH8         | CH7  | CH6  | CH5  | CH4  | CH3  | CH2  | CH1  |
| CH16        | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9  |
| CH24        | CH23 | CH22 | CH21 | CH20 | CH19 | CH18 | CH17 |
| CH32        | CH31 | CH30 | CH29 | CH28 | CH27 | CH26 | CH25 |

**SYMBOL POSITION NAME AND DESCRIPTION**

|          |              |                                                                                                                                                                                                |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH1 - 32 | TCC1.0 - 4.7 | <b>Transmit Code Insertion Control Bits</b><br>0 = do not insert data from the TC register into the transmit data stream<br>1 = insert data from the TC register into the transmit data stream |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**11.2 Receive Side Code Generation**

On the receive side, the Receive Channel Control Registers (RCC1/2/3/4) are used to determine which of the 32 E1 channels off of the E1 line and going to the backplane should be overwritten with the code placed in the Receive Channel Registers (RC1 to RC32). This method allows a different 8-bit code to be placed into each of the 32 E1 channels.

**RC1 TO RC32: RECEIVE CHANNEL REGISTERS** (Address=80 to 9F Hex)

(for brevity, only channel one is shown; see Table 4-1 for other register address)

| (MSB) (LSB) |    |    |    |    |    |    |    |
|-------------|----|----|----|----|----|----|----|
| C7          | C6 | C5 | C4 | C3 | C2 | C1 | C0 |

**SYMBOL POSITION NAME AND DESCRIPTION**

|    |       |                                                           |
|----|-------|-----------------------------------------------------------|
| C7 | RC1.7 | MSB of the Code (this bit is sent first to the backplane) |
| C0 | RC1.0 | LSB of the Code (this bit is sent last to the backplane)  |

## RCC1/RCC2/RCC3/RCC4: RECEIVE CHANNEL CONTROL REGISTER

(Address = A4 to A7 Hex)

| (MSB) |      |      |      |      |      |      |      | (LSB) |  |  |  |  |  |  |  |
|-------|------|------|------|------|------|------|------|-------|--|--|--|--|--|--|--|
| CH8   | CH7  | CH6  | CH5  | CH4  | CH3  | CH2  | CH1  |       |  |  |  |  |  |  |  |
| CH16  | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9  |       |  |  |  |  |  |  |  |
| CH24  | CH23 | CH22 | CH21 | CH20 | CH19 | CH18 | CH17 |       |  |  |  |  |  |  |  |
| CH32  | CH31 | CH30 | CH29 | CH28 | CH27 | CH26 | CH25 |       |  |  |  |  |  |  |  |

| SYMBOL   | POSITION     | NAME AND DESCRIPTION                                                                                                                                                                                       |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH1 - 32 | RCC1.0 - 4.7 | <p><b>Receive Code Insertion Control Bits</b></p> <p>0 = do not insert data from the RC register into the receive data stream</p> <p>1 = insert data from the RC register into the receive data stream</p> |

## 12. CLOCK BLOCKING REGISTERS

The Receive Channel blocking Registers (RCBR1 / RCBR2 / RCBR3 / RCBR4) and the Transmit Channel Blocking Registers (TCBR1 / TCBR2 / TCBR3 / TCBR4) control RCHBLK and TCHBLK pins respectively. (The RCHBLK and TCHBLK pins are user programmable outputs that can be forced either high or low during individual channels). These outputs can be used to block clocks to a USART or LAPD controller in ISDN-PRI applications. When the appropriate bits are set to a one, the RCHBLK and TCHBLK pin will be held high during the entire corresponding channel time. See the timing in Section 18 for an example. The TCBRs have alternate mode of use. Via the CCR3.6 bit, the user has the option to use the TCBRs to determine on a channel by channel basis, which signaling bits are to be inserted via the TSRs (the corresponding bit in the TCBRs=1) and which are to be sourced from the TSER or TSIG pins (the corresponding bit in the TCBR=0). See the timing in Section 18 for an example.

## RCBR1/RCBR2/RCBR3/RCBR4: RECEIVE CHANNEL BLOCKING REGISTERS (Address=2B to 2E Hex)

| (MSB) |      |      |      |      |      |      |      | (LSB) |  |  |  |  |  |  |  |
|-------|------|------|------|------|------|------|------|-------|--|--|--|--|--|--|--|
| CH8   | CH7  | CH6  | CH5  | CH4  | CH3  | CH2  | CH1  |       |  |  |  |  |  |  |  |
| CH16  | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9  |       |  |  |  |  |  |  |  |
| CH24  | CH23 | CH22 | CH21 | CH20 | CH19 | CH18 | CH17 |       |  |  |  |  |  |  |  |
| CH32  | CH31 | CH30 | CH29 | CH28 | CH27 | CH26 | CH25 |       |  |  |  |  |  |  |  |

| SYMBOLS  | POSITIONS     | NAME AND DESCRIPTION                                                                                                                                                                      |
|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH1 - 32 | RCBR1.0 - 4.7 | <p><b>Receive Channel Blocking Control Bits.</b></p> <p>0 = force the RCHBLK pin to remain low during this channel time</p> <p>1 = force the RCHBLK pin high during this channel time</p> |

## TCBR1/TCBR2/TCBR3/TCBR4: TRANSMIT CHANNEL BLOCKING REGISTERS (Address=22 to 25 Hex)

| (MSB) |      |      |      |      |      |      |      | (LSB)      |
|-------|------|------|------|------|------|------|------|------------|
| CH8   | CH7  | CH6  | CH5  | CH4  | CH3  | CH2  | CH1  | TCBR1 (22) |
| CH16  | CH15 | CH14 | CH13 | CH12 | CH11 | CH10 | CH9  | TCBR2 (23) |
| CH24  | CH23 | CH22 | CH21 | CH20 | CH19 | CH18 | CH17 | TCBR3 (24) |
| CH32  | CH31 | CH30 | CH29 | CH28 | CH27 | CH26 | CH25 | TCBR4 (25) |

| SYMBOLS  | POSITIONS     | NAME AND DESCRIPTION                                                                                                                                                        |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH1 - 32 | TCBR1.0 - 4.7 | <b>Transmit Channel Blocking Control Bits.</b><br>0 = force the TCHBLK pin to remain low during this channel time<br>1 = force the TCHBLK pin high during this channel time |

### NOTE:

If CCR3.6=1, then a zero in the TCBRs implies that signaling data is to be sourced from TSER (or TSIG if CCR3.2=1) and a one implies that signaling data for that channel is to be sourced from the Transmit Signaling (TS) registers. See definition below.

## TCBR1/TCBR2/TCBR3/TCBR4: DEFINITION WHEN CCR3.6=1

| (MSB) |      |      |      |      |      |       |      | (LSB)      |
|-------|------|------|------|------|------|-------|------|------------|
| CH20  | CH4  | CH19 | CH3  | CH18 | CH2  | CH17* | CH1* | TCBR1 (22) |
| CH24  | CH8  | CH23 | CH7  | CH22 | CH6  | CH21  | CH5  | TCBR2 (23) |
| CH28  | CH12 | CH27 | CH11 | CH26 | CH10 | CH25  | CH9  | TCBR3 (24) |
| CH32  | CH16 | CH31 | CH15 | CH30 | CH14 | CH29  | CH13 | TCBR4 (25) |

\*=CH1 and CH17 should be set to one to allow the internal TS1 register to create the CAS Multiframe Alignment Word and Spare/Remote Alarm bits.

## 13. ELASTIC STORES OPERATION

Each framer in the DS21Q44 contains dual two-frame (512 bits) elastic stores, one for the receive direction, and one for the transmit direction. These elastic stores have two main purposes. First, they can be used to rate convert the E1 data stream to 1.544 Mbps (or a multiple of 1.544 Mbps) which is the T1 rate. Secondly, they can be used to absorb the differences in frequency and phase between the E1 data stream and an asynchronous (i.e., not frequency locked) backplane clock which can be 1.544 MHz or 2.048 MHz. The backplane clock can burst at rates up to 8.192 MHz. Both elastic stores contain full controlled slip capability which is necessary for this second purpose. Both elastic stores within a framer are fully independent and no restrictions apply to the sourcing of the various clocks that are applied to them. The transmit side elastic store can be enabled whether the receive elastic store is enabled or disabled and vice versa. Also, each elastic store can interface to either a 1.544 MHz or 2.048 MHz backplane without regard to the backplane rate the other elastic store is interfacing.

Two mechanisms are available to the user for resetting the elastic stores. The Elastic Store Reset (CCR6.0 & CCR6.1) function forces the elastic stores to a depth of one frame unconditionally. Data is lost during the reset. The second method, the Elastic Store Align (CCR5.5 & CCR5.6) forces the elastic store depth to a minimum depth of half a frame only if the current pointer separation is already less than half a frame. If a realignment occurs data is lost. In both mechanisms, independent resets are provided for both the receive and transmit elastic stores.

### 13.1 Receive Side

If the receive side elastic store is enabled (RCR2.1=1), then the user must provide either a 1.544 MHz (RCR2.2 =0) or 2.048 MHz (RCR2.2=1) clock at the RSYCLK pin. The user has the option of either providing a frame/multiframe sync at the RSYNC pin (RCR1.5=1) or having the RSYNC pin provide a pulse on frame/multiframe boundaries (RCR1.5=0). If the user wishes to obtain pulses at the frame boundary, then RCR1.6 must be set to zero and if the user wishes to have pulses occur at the multiframe boundary, then RCR1.6 must be set to one. The DS21Q44 will always indicate frame boundaries via the RFSYNC output whether the elastic store is enabled or not. If the elastic store is enabled, then either CAS (RCR1.7=0) or CRC4 (RCR1.7=1) multiframe boundaries will be indicated via the RMSYNC output. If the user selects to apply a 1.544 MHz clock to the RSYCLK pin, then every fourth channel of the received E1 data will be deleted and a F-bit position (which will be forced to one) will be inserted. Hence Channels 1, 5, 9, 13, 17, 21, 25, and 29 (timeslots 0, 4, 8, 12, 16, 20, 24, and 28) will be deleted from the received E1 data stream. Also, in 1.544 MHz applications, the RCHBLK output will not be active in Channels 25 through 32 (or in other words, RCBR4 is not active). See Section 18 for timing details. If the 512-bit elastic buffer either fills or empties, a controlled slip will occur. If the buffer empties, then a full frame of data (256 bits) will be repeated at RSER and the SR1.4 and RIR.3 bits will be set to a one. If the buffer fills, then a full frame of data will be deleted and the SR1.4 and RIR.4 bits will be set to a one.

### 13.2 Transmit Side

The operation of the transmit elastic store is very similar to the receive side. The transmit side elastic store is enabled via CCR3.7. A 1.544 MHz (CCR3.1=0) or 2.048 MHz (CCR3.1=1) clock can be applied to the TSYCLK input. The TSYCLK can be a bursty clock with rates up to 8.192 MHz. If the user selects to apply a 1.544 MHz clock to the TSYCLK pin, then the data sampled at TSER will be ignored every fourth channel. Hence Channels 1, 5, 9, 13, 17, 21, 25, and 29 (timeslots 0, 4, 8, 12, 16, 20, 24, and 28) will be ignored. The user must supply a 8-kHz frame sync pulse to the TSSYNC input. See Section 18 for timing details. Controlled slips in the transmit elastic store are reported in the SR2.0 bit and the direction of the slip is reported in the RIR.6 and RIR.7 bits.

## 14. ADDITIONAL (Sa) AND INTERNATIONAL (Si) BIT OPERATION

Each framer in the DS21Q44 provides for access to both the Sa and the Si bits via three different methods. The first is via a hardware scheme using the RLINK/RCLK and TLINK/ TLCLK pins. The first method is discussed in Section 14.1. The second involves using the internal RAF/RNAF and TAF/TNAF registers and is discussed in Section 14.2. The third method which is covered in Section 14.3 involves an expanded version of the second method and is one of the features added to the DS21Q44 from the original DS21Q43 definition.

## 14.1 Hardware Scheme

On the receive side, all of the received data is reported at the RLINK pin. Via RCR2, the user can control the RLCLK pin to pulse during any combination of Sa bits. This allows the user to create a clock that can be used to capture the needed Sa bits. If RSYNC is programmed to output a frame boundary, it will identify the Si bits. See Section 18 for detailed timing.

On the transmit side, the individual Sa bits can be either sourced from the internal TNAF register (see Section 14.2 for details) or from the external TLINK pin. Via TCR2, the framer can be programmed to source any combination of the additional bits from the TLINK pin. If the user wishes to pass the Sa bits through the framer without them being altered, then the device should be set up to source all five Sa bits via the TLINK pin and the TLINK pin should be tied to the TSER pin. Si bits can be inserted through the TSER pin via the clearing of the TCR1.3 bit. Please see the timing diagrams and the transmit data flow diagram in Section 18 for examples.

## 14.2 Internal Register Scheme Based On Double-Frame

On the receive side, the RAF and RNAF registers will always report the data as it received in the Additional and International bit locations. The RAF and RNAF registers are updated with the setting of the Receive Align Frame bit in Status Register 2 (SR2.6). The host can use the SR2.6 bit to know when to read the RAF and RNAF registers. It has 250 us to retrieve the data before it is lost.

On the transmit side, data is sampled from the TAF and TNAF registers with the setting of the Transmit Align Frame bit in Status Register 2 (SR2.3). The host can use the SR2.3 bit to know when to update the TAF and TNAF registers. It has 250 us to update the data or else the old data will be retransmitted. Data in the Si bit position will be overwritten if the framer is programmed: (1) to source the Si bits from the TSER pin, (2) in the CRC4 mode, or (3) have automatic E-bit insertion enabled. Data in the Sa bit position will be overwritten if any of the TCR2.3 to TCR2.7 bits are set to one (please see Section 14.1 for details). Please see the register descriptions for TCR1 and TCR2 and the Transmit Data Flow diagram in Section 14 for more details.

### RAF: RECEIVE ALIGN FRAME REGISTER (Address=2F Hex)

| (MSB) |   |   |   |   |   |   |   |  | (LSB) |
|-------|---|---|---|---|---|---|---|--|-------|
| Si    | 0 | 0 | 1 | 1 | 0 | 1 | 1 |  |       |

| SYMBOL | POSITION | NAME AND DESCRIPTION               |
|--------|----------|------------------------------------|
| Si     | RAF.7    | <b>International Bit.</b>          |
| 0      | RAF.6    | <b>Frame Alignment Signal Bit.</b> |
| 0      | RAF.5    | <b>Frame Alignment Signal Bit.</b> |
| 1      | RAF.4    | <b>Frame Alignment Signal Bit.</b> |
| 1      | RAF.3    | <b>Frame Alignment Signal Bit.</b> |
| 0      | RAF.2    | <b>Frame Alignment Signal Bit.</b> |
| 1      | RAF.1    | <b>Frame Alignment Signal Bit</b>  |
| 1      | RAF.0    | <b>Frame Alignment Signal Bit.</b> |

**RNAF: RECEIVE NON-ALIGN FRAME REGISTER (Address=1F Hex)**

| (MSB) |   | (LSB) |     |     |     |     |     |
|-------|---|-------|-----|-----|-----|-----|-----|
| Si    | 1 | A     | Sa4 | Sa5 | Sa6 | Sa7 | Sa8 |

**SYMBOL**      **POSITION**      **NAME AND DESCRIPTION**

|     |        |                                        |
|-----|--------|----------------------------------------|
| Si  | RNAF.7 | <b>International Bit.</b>              |
| 1   | RNAF.6 | <b>Frame Non-Alignment Signal Bit.</b> |
| A   | RNAF.5 | <b>Remote Alarm.</b>                   |
| Sa4 | RNAF.4 | <b>Additional Bit 4.</b>               |
| Sa5 | RNAF.3 | <b>Additional Bit 5.</b>               |
| Sa6 | RNAF.2 | <b>Additional Bit 6.</b>               |
| Sa7 | RNAF.1 | <b>Additional Bit 7.</b>               |
| Sa8 | RNAF.0 | <b>Additional Bit 8.</b>               |

**TAF: TRANSMIT ALIGN FRAME REGISTER (Address=20 Hex)**

| (MSB) |   | (LSB) |   |   |   |   |   |
|-------|---|-------|---|---|---|---|---|
| Si    | 0 | 0     | 1 | 1 | 0 | 1 | 1 |

[Must be programmed with the 7 bit FAS word; the DS21Q44 does not automatically set these bits]

**SYMBOL**      **POSITION**      **NAME AND DESCRIPTION**

|    |       |                                    |
|----|-------|------------------------------------|
| Si | TAF.7 | <b>International Bit.</b>          |
| 0  | TAF.6 | <b>Frame Alignment Signal Bit.</b> |
| 0  | TAF.5 | <b>Frame Alignment Signal Bit.</b> |
| 1  | TAF.4 | <b>Frame Alignment Signal Bit.</b> |
| 1  | TAF.3 | <b>Frame Alignment Signal Bit.</b> |
| 0  | TAF.2 | <b>Frame Alignment Signal Bit.</b> |
| 1  | TAF.1 | <b>Frame Alignment Signal Bit.</b> |
| 1  | TAF.0 | <b>Frame Alignment Signal Bit.</b> |

## TNAF: TRANSMIT NONALIGN FRAME REGISTER (Address=21 Hex)

| (MSB) | Si | 1 | A | Sa4 | Sa5 | Sa6 | Sa7 | Sa8 | (LSB) |
|-------|----|---|---|-----|-----|-----|-----|-----|-------|
|-------|----|---|---|-----|-----|-----|-----|-----|-------|

[Bit 2 must be programmed to one; the DS21Q44 does not automatically set this bit]

| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b> |
|---------------|-----------------|-----------------------------|
|---------------|-----------------|-----------------------------|

|     |        |                                                   |
|-----|--------|---------------------------------------------------|
| Si  | TNAF.7 | <b>International Bit.</b>                         |
| 1   | TNAF.6 | <b>Frame Non-Alignment Signal Bit.</b>            |
| A   | TNAF.5 | <b>Remote Alarm (used to transmit the alarm).</b> |
| Sa4 | TNAF.4 | <b>Additional Bit 4.</b>                          |
| Sa5 | TNAF.3 | <b>Additional Bit 5.</b>                          |
| Sa6 | TNAF.2 | <b>Additional Bit 6.</b>                          |
| Sa7 | TNAF.1 | <b>Additional Bit 7.</b>                          |
| Sa8 | TNAF.0 | <b>Additional Bit 8.</b>                          |

### 14.3 Internal Register Scheme Based on CRC4 Multiframe

On the receive side, there is a set of eight registers (RSiAF, RSiNAF, RRA, RSa4 to RSa8) that report the Si and Sa bits as they are received. These registers are updated with the setting of the Receive CRC4 Multiframe bit in Status Register 2 (SR2.1). The host can use the SR2.1 bit to know when to read these registers. The user has 2 ms to retrieve the data before it is lost. The MSB of each register is the first received. Please see the register descriptions below and the Transmit Data Flow diagram in Section 18 for more details. On the transmit side, there is also a set of eight registers (TSiAF, TSiNAF, TRA, TSa4 to TSa8) that via the Transmit Sa Bit Control Register (TSaCR), can be programmed to insert both Si and Sa data. Data is sampled from these registers with the setting of the Transmit Multiframe bit in Status Register 2 (SR2.5). The host can use the SR2.5 bit to know when to update these registers. It has 2 ms to update the data or else the old data will be retransmitted. The MSB of each register is the first bit transmitted. Please see the register descriptions below and the Transmit Data Flow diagram in Section 18 for more details.

| REGISTER NAME | ADDRESS (HEX) | FUNCTION                                                   |
|---------------|---------------|------------------------------------------------------------|
| RSiAF         | 58            | The eight Si bits in the align frame.                      |
| RSiNAF        | 59            | The eight Si bits in the non-align frame.                  |
| RRA           | 5A            | The eight reportings of the receive remote alarm (RA).     |
| RSa4          | 5B            | The eight Sa4 reported in each CRC4 multiframe.            |
| RSa5          | 5C            | The eight Sa5 reported in each CRC4 multiframe.            |
| RSa6          | 5D            | The eight Sa6 reported in each CRC4 multiframe.            |
| RSa7          | 5E            | The eight Sa7 reported in each CRC4 multiframe.            |
| RSa8          | 5F            | The eight Sa8 reported in each CRC4 multiframe.            |
| TSiAF         | 50            | The eight Si bits to be inserted into the align frame.     |
| TSiNAF        | 51            | The eight Si bits to be inserted into the non-align frame. |
| TRA           | 52            | The eight settings of remote alarm (RA).                   |
| TSa4          | 53            | The eight Sa4 settings in each CRC4 multiframe.            |
| TSa5          | 54            | The eight Sa5 settings in each CRC4 multiframe.            |
| TSa6          | 55            | The eight Sa6 settings in each CRC4 multiframe.            |
| TSa7          | 56            | The eight Sa7 settings in each CRC4 multiframe.            |
| TSa8          | 57            | The eight Sa8 settings in each CRC4 multiframe.            |

## TSaCR: TRANSMIT Sa BIT CONTROL REGISTER (Address=1C Hex)

| (MSB) | SiAF | SiNAF | RA | Sa4 | Sa5 | Sa6 | Sa7 | (LSB)<br>Sa8 |
|-------|------|-------|----|-----|-----|-----|-----|--------------|
|       |      |       |    |     |     |     |     |              |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                        |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SiAF   | TSaCR.7  | <b>International Bit in Align Frame Insertion Control Bit.</b><br>0=do not insert data from the TSiAF register into the transmit data stream.<br>1=insert data from the TSiAF register into the transmit data stream.       |
| SiNAF  | TSaCR.6  | <b>International Bit in Non-Align Frame Insertion Control Bit.</b><br>0=do not insert data from the TSiNAF register into the transmit data stream.<br>1=insert data from the TSiNAF register into the transmit data stream. |
| RA     | TSaCR.5  | <b>Remote Alarm Insertion Control Bit.</b><br>0=do not insert data from the TRA register into the transmit data stream.<br>1=insert data from the TRA register into the transmit data stream.                               |
| Sa4    | TSaCR.4  | <b>Additional Bit 4 Insertion Control Bit.</b><br>0=do not insert data from the TSa4 register into the transmit data stream.<br>1=insert data from the TSa4 register into the transmit data stream.                         |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sa5    | TSaCR.3  | <b>Additional Bit 5 Insertion Control Bit.</b><br>0=do not insert data from the TSa5 register into the transmit data stream.<br>1=insert data from the TSa5 register into the transmit data stream. |
| Sa6    | TSaCR.2  | <b>Additional Bit 6 Insertion Control Bit.</b><br>0=do not insert data from the TSa6 register into the transmit data stream.<br>1=insert data from the TSa6 register into the transmit data stream. |
| Sa7    | TSaCR.1  | <b>Additional Bit 7 Insertion Control Bit.</b><br>0=do not insert data from the TSa7 register into the transmit data stream.<br>1=insert data from the TSa7 register into the transmit data stream. |
| Sa8    | TSaCR.0  | <b>Additional Bit 8 Insertion Control Bit.</b><br>0=do not insert data from the TSa8 register into the transmit data stream.<br>1=insert data from the TSa8 register into the transmit data stream. |

## 15. HDLC CONTROLLER FOR THE SA BITS OR DS0

Each framer in the DS21Q44 has the ability to extract/insert data from/ into the Sa bit positions (Sa4 to Sa8) or from/to any multiple of DS0 channels. Each framer contains a complete HDLC controller and this operation is covered in Section 15.1.

### 15.1 General Overview

Each framer contains a complete HDLC controller with 64-byte buffers in both the transmit and receive directions. The HDLC controller performs all the necessary overhead for generating and receiving a HDLC formatted message.

The HDLC controller automatically generates and detects flags, generates and checks the CRC check sum, generates and detects abort sequences, stuffs and destuffs zeros (for transparency), and byte aligns to the HDLC data stream.

There are eleven registers that the host will use to operate and control the operation of the HDLC controller. A brief description of the registers is shown in Table 15-1.

**Table 15-1. HDLC CONTROLLER REGISTER LIST**

| NAME                                        | FUNCTION                                                        |
|---------------------------------------------|-----------------------------------------------------------------|
| HDLC Control Register (HCR)                 | general control over the HDLC controller                        |
| HDLC Status Register (HSR)                  | key status information for both transmit and receive directions |
| HDLC Interrupt Mask Register (HIMR)         | allows/stops status bits to/from causing an interrupt           |
| Receive HDLC Information Register (RHIR)    | status information on receive HDLC controller                   |
| Receive HDLC FIFO Register (RHFR)           | access to 64-byte HDLC FIFO in receive direction                |
| Receive HDLC DS0 Control Register 1 (RDC1)  | controls the HDLC function when used on DS0 channels            |
| Receive HDLC DS0 Control Register 2 (RDC2)  |                                                                 |
| Transmit HDLC Information Register (THIR)   | status information on transmit HDLC controller                  |
| Transmit HDLC FIFO Register (THFR)          | access to 64-byte HDLC FIFO in transmit direction               |
| Transmit HDLC DS0 Control Register 1 (TDC1) | controls the HDLC function when used on DS0 channels            |
| Transmit HDLC DS0 Control Register 2 (TDC2) |                                                                 |

## 15.2 HDLC Status Registers

Three of the HDLC controller registers (HSR, RHIR, and THIR) provide status information. When a particular event has occurred (or is occurring), the appropriate bit in one of these three registers will be set to a one. Some of the bits in these three status registers are latched and some are real time bits that are not latched. Section 15.4 contains register descriptions that list which bits are latched and which are not. With the latched bits, when an event occurs and a bit is set to a one, it will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. The real time bits report the current instantaneous conditions that are occurring and the history of these bits is not latched.

Like the other status registers in the framer, the user will always proceed a read of any of the three registers with a write. The byte written to the register will inform the framer which of the latched bits the user wishes to read and have cleared (the real time bits are not affected by writing to the status register). The user will write a byte to one of these registers, with a one in the bit positions he or she wishes to read and a zero in the bit positions he or she does not wish to obtain the latest information on. When a one is written to a bit location, the read register will be updated with current value and it will be cleared. When a zero is written to a bit position, the read register will not be updated and the previous value will be held. A write to the status and information registers will be immediately followed by a read of the same register. The read result should be logically AND'ed with the mask byte that was just written and this value should be written back into the same register to insure that bit does indeed clear. This second write step is necessary because the alarms and events in the status registers occur asynchronously in respect to their access via the parallel port. This write-read-write (for polled driven access) or write-read (for interrupt driven access) scheme allows an external microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the DS21Q44 with higher-order software languages.

Like the SR1 and SR2 status registers, the HSR register has the unique ability to initiate a hardware interrupt via the INT\* output pin. Each of the events in the HSR can be either masked or unmasked from the interrupt pin via the HDLC Interrupt Mask Register (HIMR). Interrupts will force the INT\* pin low when the event occurs. The INT\* pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

## 15.3 Basic Operation Details

As a basic guideline for interpreting and sending HDLC messages, the following sequences can be applied:

### Receive a HDLC Message

- 1) Enable RPS interrupts.
- 2) Wait for interrupt to occur.
- 3) Disable RPS interrupt and enable either RPE, RNE, or RHALF interrupt.
- 4) Read RHIR to obtain REMPTY status.
  - a) If REMPTY = 0, then record OBYTE, CBYTE, and POK bits and then read the FIFO
    - a1) If CBYTE = 0, then skip to Step 5.
    - a2) If CBYTE = 1, then skip to Step 7.
  - b) If REMPTY=1, then skip to Step 6.
- 5) Repeat Step 4.
- 6) Wait for interrupt, skip to Step 4.
- 7) If POK = 0, then discard whole packet; if POK = 1, accept the packet.
- 8) Disable RPE, RNE, or RHALF interrupt, enable RPS interrupt and return to Step 1.

### Transmit a HDLC Message

- 1) Make sure HDLC controller is done sending any previous messages and is current sending flags by checking that the FIFO is empty by reading the TEMPTY status bit in the THIR register.
- 2) Enable either the THALF or TNF interrupt.
- 3) Read THIR to obtain TFULL status.
  - a) If TFULL = 0, then write a byte into the FIFO and skip to next step (special case occurs when the last byte is to be written, in this case set TEOM = 1 before writing the byte and then skip to Step 6).
  - b) If TFULL = 1, then skip to Step 5.
- 4) Repeat Step 3.
- 5) Wait for interrupt, skip to Step 3.
- 6) Disable THALF or TNF interrupt and enable TMEND interrupt.
- 7) Wait for an interrupt, then read TUDR status bit to make sure packet was transmitted correctly.

## 15.4 HDLC Register Description

### HCR: HDLC CONTROL REGISTER (Address=B0 Hex)

|        |          | (MSB)                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  | (LSB) |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|-------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |       |
| —      | HCR.7    | <b>Not Assigned.</b> Should be set to zero.                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |       |
| RHR    | HCR.6    | <b>Receive HDLC Reset.</b> A 0 to 1 transition will reset the receive HDLC controller. Must be cleared and set again for a subsequent reset.                                                                                                                                            |  |  |  |  |  |  |  |       |
| TFS    | HCR.5    | <b>Transmit Flag/Idle Select.</b><br>0 = 7Eh.<br>1 = FFh.                                                                                                                                                                                                                               |  |  |  |  |  |  |  |       |
| THR    | HCR.4    | <b>Transmit HDLC Reset.</b> A 0 to 1 transition will reset the transmit HDLC controller. Must be cleared and set again for a subsequent reset.                                                                                                                                          |  |  |  |  |  |  |  |       |
| TABT   | HCR.3    | <b>Transmit Abort.</b> A 0 to 1 transition will cause the FIFO contents to be dumped and one FEh abort to be sent followed by 7Eh or FFh flags/idle until a new packet is initiated by writing new data into the FIFO. Must be cleared and set again for a subsequent abort to be sent. |  |  |  |  |  |  |  |       |
| TEOM   | HCR.2    | <b>Transmit End of Message.</b> Should be set to a one just before the last data byte of a HDLC packet is written into the transmit FIFO at THFR. The HDLC controller will clear this bit when the last byte has been transmitted.                                                      |  |  |  |  |  |  |  |       |
| TZSD   | HCR.1    | <b>Transmit Zero Stuffer Defeat.</b> Overrides internal enable.<br>0 = enable the zero stuffer (normal operation).<br>1 = disable the zero stuffer.                                                                                                                                     |  |  |  |  |  |  |  |       |
| TCRCD  | HCR.0    | <b>Transmit CRC Defeat.</b><br>0 = enable CRC generation (normal operation).<br>1 = disable CRC generation.                                                                                                                                                                             |  |  |  |  |  |  |  |       |

## HSR: HDLC STATUS REGISTER (Address=B1 Hex)

| (MSB)  |          | (LSB)                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| —      | HSR.7    | <b>Not Assigned.</b> Should be set to zero.                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| RPE    | HSR.6    | <b>Receive Packet End.</b> Set when the HDLC controller detects either the finish of a valid message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC checking error, or an overrun condition, or an abort has been seen. The setting of this bit prompts the user to read the RHIR register for details. |  |  |  |  |  |
| RPS    | HSR.5    | <b>Receive Packet Start.</b> Set when the HDLC controller detects an opening byte. The setting of this bit prompts the user to read the RHIR register for details.                                                                                                                                                                                       |  |  |  |  |  |
| RHALF  | HSR.4    | <b>Receive FIFO Half Full.</b> Set when the receive 64-byte FIFO fills beyond the half way point. The setting of this bit prompts the user to read the RHIR register for details.                                                                                                                                                                        |  |  |  |  |  |
| RNE    | HSR.3    | <b>Receive FIFO Not Empty.</b> Set when the receive 64-byte FIFO has at least one byte available for a read. The setting of this bit prompts the user to read the RHIR register for details.                                                                                                                                                             |  |  |  |  |  |
| THALF  | HSR.2    | <b>Transmit FIFO Half Empty.</b> Set when the transmit 64-byte FIFO empties beyond the half way point. The setting of this bit prompts the user to read the THIR register for details.                                                                                                                                                                   |  |  |  |  |  |
| TNF    | HSR.1    | <b>Transmit FIFO Not Full.</b> Set when the transmit 64-byte FIFO has at least one byte available. The setting of this bit prompts the user to read the THIR register for details.                                                                                                                                                                       |  |  |  |  |  |
| TMEND  | HSR.0    | <b>Transmit Message End.</b> Set when the transmit HDLC controller has finished sending a message. The setting of this bit prompts the user to read the THIR register for details.                                                                                                                                                                       |  |  |  |  |  |

**Note:** The RPE, RPS, and TMEND bits are latched and are cleared when read.

**HIMR: HDLC INTERRUPT MASK REGISTER (Address=B2 Hex)**

| (MSB)         |                 |                                                                                     |       |     |       |     |       | (LSB)                       |  |
|---------------|-----------------|-------------------------------------------------------------------------------------|-------|-----|-------|-----|-------|-----------------------------|--|
| —             | RPE             | RPS                                                                                 | RHALF | RNE | THALF | TNF | TMEND |                             |  |
| <b>SYMBOL</b> | <b>POSITION</b> |                                                                                     |       |     |       |     |       | <b>NAME AND DESCRIPTION</b> |  |
| —             | HIMR.7          | <b>Not Assigned.</b> Should be set to zero.                                         |       |     |       |     |       |                             |  |
| RPE           | HIMR.6          | <b>Receive Packet End.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.       |       |     |       |     |       |                             |  |
| RPS           | HIMR.5          | <b>Receive Packet Start.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.     |       |     |       |     |       |                             |  |
| RHALF         | HIMR.4          | <b>Receive FIFO Half Full.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.   |       |     |       |     |       |                             |  |
| RNE           | HIMR.3          | <b>Receive FIFO Not Empty.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.   |       |     |       |     |       |                             |  |
| THALF         | HIMR.2          | <b>Transmit FIFO Half Empty.</b><br>0 = interrupt masked.<br>1 = interrupt enabled. |       |     |       |     |       |                             |  |
| TNF           | HIMR.1          | <b>Transmit FIFO Not Full.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.   |       |     |       |     |       |                             |  |
| TMEND         | HIMR.0          | <b>Transmit Message End.</b><br>0 = interrupt masked.<br>1 = interrupt enabled.     |       |     |       |     |       |                             |  |

## RHIR: RECEIVE HDLC INFORMATION REGISTER (Address=B3 Hex)

| (MSB)         |                 |                                                                                                                                                                                                        |     | (LSB) |     |       |       |
|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|-------|-------|
| RABT          | RCRCE           | ROVR                                                                                                                                                                                                   | RVM | REMPY | POK | CBYTE | OBYTE |
| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b>                                                                                                                                                                            |     |       |     |       |       |
| RABT          | RHIR.7          | <b>Abort Sequence Detected.</b> Set whenever the HDLC controller sees 7 or more ones in a row.                                                                                                         |     |       |     |       |       |
| RCRCE         | RHIR.6          | <b>CRC Error.</b> Set when the CRC checksum is in error.                                                                                                                                               |     |       |     |       |       |
| ROVR          | RHIR.5          | <b>Overrun.</b> Set when the HDLC controller has attempted to write a byte into an already full receive FIFO.                                                                                          |     |       |     |       |       |
| RVM           | RHIR.4          | <b>Valid Message.</b> Set when the HDLC controller has detected and checked a complete HDLC packet.                                                                                                    |     |       |     |       |       |
| REMPY         | RHIR.3          | <b>Empty.</b> A real-time bit that is set high when the receive FIFO is empty.                                                                                                                         |     |       |     |       |       |
| POK           | RHIR.2          | <b>Packet OK.</b> Set when the byte available for reading in the receive FIFO at RHFR is the last byte of a valid message (and hence no abort was seen, no overrun occurred, and the CRC was correct). |     |       |     |       |       |
| CBYTE         | RHIR.1          | <b>Closing Byte.</b> Set when the byte available for reading in the receive FIFO at RFDL is the last byte of a message (whether the message was valid or not).                                         |     |       |     |       |       |
| OBYTE         | RHIR.0          | <b>Opening Byte.</b> Set when the byte available for reading in the receive FIFO at RHFR is the first byte of a message.                                                                               |     |       |     |       |       |

**Note:** The RABT, RCRCE, ROVR, and RVM bits are latched and are cleared when read.

## RHFR: RECEIVE HDLC FIFO REGISTER (Address=B4 Hex)

| (MSB)         |                 |                                                         |       | (LSB) |       |       |       |
|---------------|-----------------|---------------------------------------------------------|-------|-------|-------|-------|-------|
| HDLC7         | HDLC6           | HDLC5                                                   | HDLC4 | HDLC3 | HDLC2 | HDLC1 | HDLC0 |
| <b>SYMBOL</b> | <b>POSITION</b> | <b>NAME AND DESCRIPTION</b>                             |       |       |       |       |       |
| HDLC7         | RHFR.7          | <b>HDLC Data Bit 7.</b> MSB of a HDLC packet data byte. |       |       |       |       |       |
| HDLC6         | RHFR.6          | <b>HDLC Data Bit 6.</b>                                 |       |       |       |       |       |
| HDLC5         | RHFR.5          | <b>HDLC Data Bit 5.</b>                                 |       |       |       |       |       |
| HDLC4         | RHFR.4          | <b>HDLC Data Bit 4.</b>                                 |       |       |       |       |       |
| HDLC3         | RHFR.3          | <b>HDLC Data Bit 3.</b>                                 |       |       |       |       |       |
| HDLC2         | RHFR.2          | <b>HDLC Data Bit 2.</b>                                 |       |       |       |       |       |
| HDLC1         | RHFR.1          | <b>HDLC Data Bit 1.</b>                                 |       |       |       |       |       |
| HDLC0         | RHFR.0          | <b>HDLC Data Bit 0.</b> LSB of a HDLC packet data byte. |       |       |       |       |       |

**THIR: TRANSMIT HDLC INFORMATION REGISTER (Address=B6 Hex)**

|               |  |  |  |  |  |  | (MSB)           |                                                                                                                      |                                                    |   | (LSB) |       |                             |      |
|---------------|--|--|--|--|--|--|-----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---|-------|-------|-----------------------------|------|
|               |  |  |  |  |  |  | —               | —                                                                                                                    | —                                                  | — | —     | EMPTY | TFULL                       | TUDR |
| <b>SYMBOL</b> |  |  |  |  |  |  | <b>POSITION</b> |                                                                                                                      |                                                    |   |       |       | <b>NAME AND DESCRIPTION</b> |      |
|               |  |  |  |  |  |  | —               | THIR.7                                                                                                               | <b>Not Assigned.</b> Could be any value when read. |   |       |       |                             |      |
|               |  |  |  |  |  |  | —               | THIR.6                                                                                                               | <b>Not Assigned.</b> Could be any value when read. |   |       |       |                             |      |
|               |  |  |  |  |  |  | —               | THIR.5                                                                                                               | <b>Not Assigned.</b> Could be any value when read. |   |       |       |                             |      |
|               |  |  |  |  |  |  | —               | THIR.4                                                                                                               | <b>Not Assigned.</b> Could be any value when read. |   |       |       |                             |      |
|               |  |  |  |  |  |  | —               | THIR.3                                                                                                               | <b>Not Assigned.</b> Could be any value when read. |   |       |       |                             |      |
| TEMPTY        |  |  |  |  |  |  | THIR.2          | <b>Transmit FIFO Empty.</b> A real-time bit that is set high when the FIFO is empty.                                 |                                                    |   |       |       |                             |      |
| TFULL         |  |  |  |  |  |  | THIR.1          | <b>Transmit FIFO Full.</b> A real-time bit that is set high when the FIFO is full.                                   |                                                    |   |       |       |                             |      |
| TUDR          |  |  |  |  |  |  | THIR.0          | <b>Transmit FIFO Underrun.</b> Set when the transmit FIFO unwantedly empties out and an abort is automatically sent. |                                                    |   |       |       |                             |      |

**Note:** The TUDR bit is latched and are cleared when read.

**THFR: TRANSMIT HDLC FIFO REGISTER (Address=B7 Hex)**

|               |  |  |  |  |  |  |  | (MSB)           |        |                                                         |       |       | (LSB) |                             |       |
|---------------|--|--|--|--|--|--|--|-----------------|--------|---------------------------------------------------------|-------|-------|-------|-----------------------------|-------|
|               |  |  |  |  |  |  |  | HDLC7           | HDLC6  | HDLC5                                                   | HDLC4 | HDLC3 | HDLC2 | HDLC1                       | HDLC0 |
| <b>SYMBOL</b> |  |  |  |  |  |  |  | <b>POSITION</b> |        |                                                         |       |       |       | <b>NAME AND DESCRIPTION</b> |       |
|               |  |  |  |  |  |  |  | HDLC7           | THFR.7 | <b>HDLC Data Bit 7.</b> MSB of a HDLC packet data byte. |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC6           | THFR.6 | <b>HDLC Data Bit 6.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC5           | THFR.5 | <b>HDLC Data Bit 5.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC4           | THFR.4 | <b>HDLC Data Bit 4.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC3           | THFR.3 | <b>HDLC Data Bit 3.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC2           | THFR.2 | <b>HDLC Data Bit 2.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC1           | THFR.1 | <b>HDLC Data Bit 1.</b>                                 |       |       |       |                             |       |
|               |  |  |  |  |  |  |  | HDLC0           | THFR.0 | <b>HDLC Data Bit 0.</b> LSB of a HDLC packet data byte. |       |       |       |                             |       |

**RDC1: RECEIVE HDLC DS0 CONTROL REGISTER 1 (Address=B8 Hex)**

| (MSB) (LSB) |          |                                                                                                                                                                                                                                                                                                                                   |     |     |     |     |     |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| SYMBOL      | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                              |     |     |     |     |     |
| RHS         | RSaDS    | RDS0M                                                                                                                                                                                                                                                                                                                             | RD4 | RD3 | RD2 | RD1 | RD0 |
| RHS         | RDC1.7   | <b>Receive HDLC source</b><br>0 = Sa bits defined by RCR2.3 to RCR2.7.<br>1 = Sa bits or DS0 channels defined by RDC1 (see bits defined below).                                                                                                                                                                                   |     |     |     |     |     |
| RSaDS       | RDC1.6   | <b>Receive Sa Bit / DS0 Select.</b><br>0 = route Sa bits to the HDLC controller. RD0 to RD4 defines which Sa bits are to be routed. RD4 corresponds to Sa4, RD3 to Sa5, RD2 to Sa6, RD1 to Sa7 and RD0 to Sa8.<br>1 = route DS0 channels into the HDLC controller. RDC1.5 is used to determine how the DS0 channels are selected. |     |     |     |     |     |
| RDS0M       | RDC1.5   | <b>DS0 Selection Mode.</b><br>0 = utilize the RD0 to RD4 bits to select which single DS0 channel to use.<br>1 = utilize the RCHBLK control registers to select which DS0 channels to use.                                                                                                                                         |     |     |     |     |     |
| RD4         | RDC1.4   | <b>DS0 Channel Select Bit 4.</b> MSB of the DS0 channel select.                                                                                                                                                                                                                                                                   |     |     |     |     |     |
| RD3         | RDC1.3   | <b>DS0 Channel Select Bit 3.</b>                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |
| RD2         | RDC1.2   | <b>DS0 Channel Select Bit 2.</b>                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |
| RD1         | RDC1.1   | <b>DS0 Channel Select Bit 1.</b>                                                                                                                                                                                                                                                                                                  |     |     |     |     |     |
| RD0         | RDC1.0   | <b>DS0 Channel Select Bit 0.</b> LSB of the DS0 channel select.                                                                                                                                                                                                                                                                   |     |     |     |     |     |

**RDC2: RECEIVE HDLC DS0 CONTROL REGISTER 2 (Address=B9 Hex)**

| (MSB)  | RDB8     | RDB7                                                                                           | RDB6 | RDB5 | RDB4 | RDB3 | RDB2 | (LSB) | RDB1 |
|--------|----------|------------------------------------------------------------------------------------------------|------|------|------|------|------|-------|------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                           |      |      |      |      |      |       |      |
| RDB8   | RDC2.7   | <b>DS0 Bit 8 Suppress Enable.</b> MSB of the DS0. Set to one to stop this bit from being used. |      |      |      |      |      |       |      |
| RDB7   | RDC2.6   | <b>DS0 Bit 7 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB6   | RDC2.5   | <b>DS0 Bit 6 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB5   | RDC2.4   | <b>DS0 Bit 5 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB4   | RDC2.3   | <b>DS0 Bit 4 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB3   | RDC2.2   | <b>DS0 Bit 3 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB2   | RDC2.1   | <b>DS0 Bit 2 Suppress Enable.</b> Set to one to stop this bit from being used.                 |      |      |      |      |      |       |      |
| RDB1   | RDC2.0   | <b>DS0 Bit 1 Suppress Enable.</b> LSB of the DS0. Set to one to stop this bit from being used. |      |      |      |      |      |       |      |

**TDC1: TRANSMIT HDLC DS0 CONTROL REGISTER 1 (Address = BA Hex)**

| (MSB)  | THE      | TSaDS                                                                                                                                                                                                                                                                                                                                                                              | TDS0M | TD4 | TD3 | TD2 | TD1 | (LSB) | TD0 |
|--------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-----|-----|-------|-----|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                                                                                                                                                                                                               |       |     |     |     |     |       |     |
| THE    | TDC1.7   | <b>Transmit HDLC Enable.</b><br>0 = disable HDLC controller (no data inserted by HDLC controller into the transmit data stream)<br>1 = enable HDLC controller to allow insertion of HDLC data into either the Sa position or multiple DS0 channels as defined by TDC1 (see bit definitions below).                                                                                 |       |     |     |     |     |       |     |
| TSaDS  | TDC1.6   | <b>Transmit Sa Bit / DS0 Select.</b> This bit is ignored if TDC1.7 is set to zero.<br>0 = route Sa bits from the HDLC controller. TD0 to TD4 defines which Sa bits are to be routed. TD4 corresponds to Sa4, TD3 to Sa5, TD2 to Sa6, TD1 to Sa7 and TD0 to Sa8.<br>1 = route DS0 channels from the HDLC controller. TDC1.5 is used to determine how the DS0 channels are selected. |       |     |     |     |     |       |     |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                                                                                      |
|--------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDS0M  | TDC1.5   | <b>DS0 Selection Mode.</b><br>0 = utilize the TD0 to TD4 bits to select which single DS0 channel to use.<br>1 = utilize the TCHBLK control registers to select which DS0 channels to use. |
| TD4    | TDC1.4   | <b>DS0 Channel Select Bit 4.</b> MSB of the DS0 channel select.                                                                                                                           |
| TD3    | TDC1.3   | <b>DS0 Channel Select Bit 3.</b>                                                                                                                                                          |
| TD2    | TDC1.2   | <b>DS0 Channel Select Bit 2.</b>                                                                                                                                                          |
| TD1    | TDC1.1   | <b>DS0 Channel Select Bit 1.</b>                                                                                                                                                          |
| TD0    | TDC1.0   | <b>DS0 Channel Select Bit 0.</b> LSB of the DS0 channel select.                                                                                                                           |

## TDC2: TRANSMIT HDLC DS0 CONTROL REGISTER 2 (Address = BB Hex)

| (MSB) | (LSB) |      |      |      |      |      |      |  |
|-------|-------|------|------|------|------|------|------|--|
| TDB8  | TDB7  | TDB6 | TDB5 | TDB4 | TDB3 | TDB2 | TDB1 |  |

| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                           |
|--------|----------|------------------------------------------------------------------------------------------------|
| TDB8   | TDC2.7   | <b>DS0 Bit 8 Suppress Enable.</b> MSB of the DS0. Set to one to stop this bit from being used. |
| TDB7   | TDC2.6   | <b>DS0 Bit 7 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB6   | TDC2.5   | <b>DS0 Bit 6 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB5   | TDC2.4   | <b>DS0 Bit 5 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB4   | TDC2.3   | <b>DS0 Bit 4 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB3   | TDC2.2   | <b>DS0 Bit 3 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB2   | TDC2.1   | <b>DS0 Bit 2 Suppress Enable.</b> Set to one to stop this bit from being used.                 |
| TDB1   | TDC2.0   | <b>DS0 Bit 1 Suppress Enable.</b> LSB of the DS0. Set to one to stop this bit from being used. |

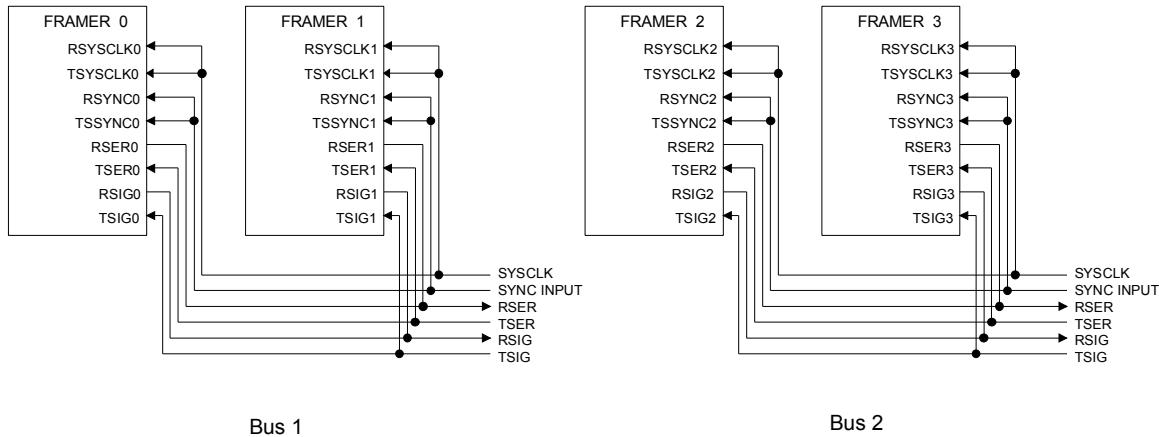
## 16. INTERLEAVED PCM BUS OPERATION

In many architectures, the outputs of individual framers are combined into higher speed serial buses to simplify transport across the system. The DS21Q44 can be configured to allow each framer's data and signaling busses to be multiplexed into higher speed data and signaling busses eliminating external hardware saving board space and cost.

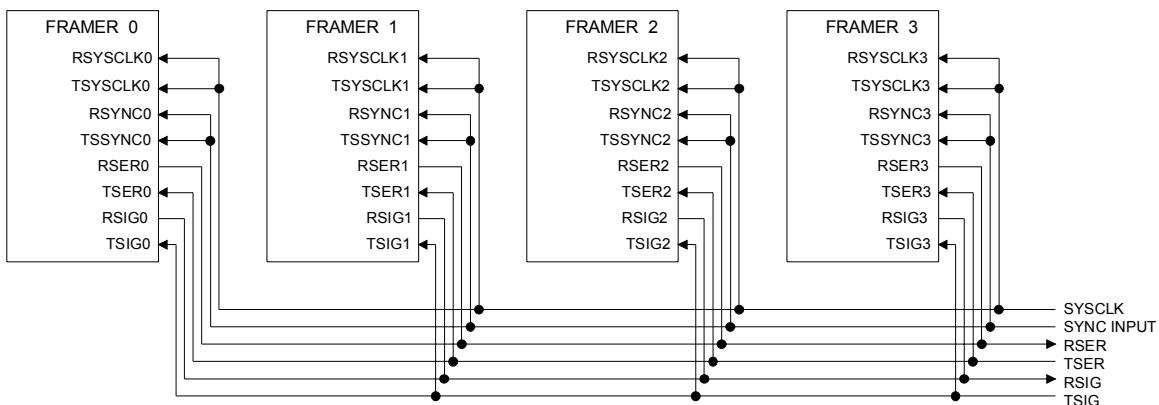
The interleaved PCM bus option supports two bus speeds and interleave modes. The 4.096 MHz bus speed allows two framers to share a common bus. The 8.192 MHz bus speed allows all four of the DS21Q44's framers to share a common bus. Framers can interleave their data either on byte or frame boundaries. Framers that share a common bus must be configured through software and require several device pins to be connected together externally (see figures 16-1 & 16-2). Each framer's elastic stores must be enabled and configured for 2.048 MHz operation. The signal RSYNC must be configured as an input on each framer.

For all bus configurations, one framer will be configured as the master device and the remaining framers on the shared bus will be configured as slave devices. Refer to the IBO register description below for more detail. In the 4.096 MHz bus configuration there is one master and one slave per bus. Figure 18-1 shows the DS21Q44 configured to support two 4.096 MHz buses. Bus 1 consists of framers 0 and 1. Bus 2 consists of framers 2 and 3. Framers 0 and 2 are programmed as master devices. Framers 1 and 3 are programmed as slave devices. In the 8.192 MHz bus configuration there is one master and three slaves. Figure 18-2 shows the DS21Q44 configured to support a 8.192 MHz bus. Framer 0 is programmed as the master device. Framers 1, 2 and 3 are programmed as slave devices. Consult timing diagrams in section 18 for additional information.

When using the frame interleave mode, all framers that share an interleaved bus must have receive signals (RPOS & RNEG) that are synchronous with each other. The received signals must originate from the same clock reference. This restriction does not apply in the byte interleave mode.


## IBO: INTERLEAVE BUS OPERATION REGISTER (Address = B5 Hex)

| (MSB)  | IBO.7    | IBO.6                                                                                                                     | IBO.5 | IBO.4 | IBOEN | INTSEL | MSEL0 | MSEL1 | (LSB) |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|-------|-------|-------|
| SYMBOL | POSITION | NAME AND DESCRIPTION                                                                                                      |       |       |       |        |       |       |       |
| —      | IBO.7    | <b>Not Assigned.</b> Should be set to 0.                                                                                  |       |       |       |        |       |       |       |
| —      | IBO.6    | <b>Not Assigned.</b> Should be set to 0.                                                                                  |       |       |       |        |       |       |       |
| —      | IBO.5    | <b>Not Assigned.</b> Should be set to 0.                                                                                  |       |       |       |        |       |       |       |
| —      | IBO.4    | <b>Not Assigned.</b> Should be set to 0.                                                                                  |       |       |       |        |       |       |       |
| IBOEN  | IBO.3    | <b>Interleave Bus Operation Enable</b><br>0 = Interleave Bus Operation disabled.<br>1 = Interleave Bus Operation enabled. |       |       |       |        |       |       |       |
| INTSEL | IBO.2    | <b>Interleave Type Select</b><br>0 = Byte interleave.<br>1 = Frame interleave.                                            |       |       |       |        |       |       |       |
| MSEL0  | IBO.1    | <b>Master Device Bus Select Bit 0</b> See table 16-1.                                                                     |       |       |       |        |       |       |       |
| MSEL1  | IBO.0    | <b>Master Device Bus Select Bit 1</b> See table 16-1.                                                                     |       |       |       |        |       |       |       |


**Table 16-1. MASTER DEVICE BUS SELECT**

| MSEL1 | MSEL0 | FUNCTION                                                |
|-------|-------|---------------------------------------------------------|
| 0     | 0     | Slave device                                            |
| 0     | 1     | Master device with 1 slave device (4.096 MHz bus rate)  |
| 1     | 0     | Master device with 3 slave devices (8.192 MHz bus rate) |
| 1     | 1     | Reserved                                                |

## Figure 16-1. 4.096MHz INTERLEAVED BUS EXTERNAL PIN CONNECTION EXAMPLE



## Figure 16-2. 8.192MHz INTERLEAVED BUS EXTERNAL PIN CONNECTION EXAMPLE



## 17. JTAG-BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT

### 17.1 Description

The DS21Q44 IEEE 1149.1 design supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public instructions included with this design are HIGHZ, CLAMP, and IDCODE. See Figure 17-1 for a block diagram. The DS21Q44 contains the following items which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

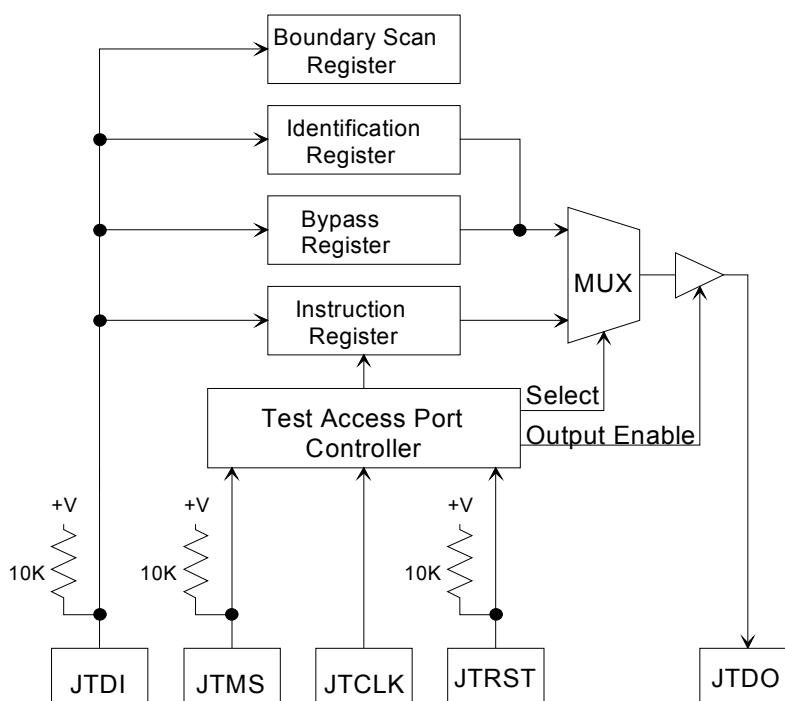
Test Access Port (TAP)

TAP Controller

Instruction Register

Bypass Register

Boundary Scan Register


Device Identification Register

The JTAG feature is only available when the DS21Q44 feature set is selected (FMS = 0). The JTAG feature is disabled when the DS21Q44 is configured for emulation of the DS21Q43 (FMS = 1).

Details on Boundary Scan Architecture and the Test Access Port can be found in IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.

The Test Access Port has the necessary interface pins; JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin descriptions for details.

**Figure 17-1. BOUNDARY SCAN ARCHITECTURE**



## 17.2 TAP Controller State Machine

This section covers the details on the operation of the Test Access Port (TAP) Controller State Machine. Please see Figure 17.2 for details on each of the states described below.

### TAP Controller

The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK.

### Test-Logic-Reset

Upon power-up of the DS21Q44, the TAP Controller will be in the Test-Logic-Reset state. The Instruction register will contain the IDCODE instruction. All system logic of the DS21Q44 will operate normally.

### Run-Test-Idle

The Run-Test-Idle is used between scan operations or during specific tests. The Instruction register and Test registers will remain idle.

### Select-DR-Scan

All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the controller into the Capture-DR state and will initiate a scan sequence. JTMS HIGH during a rising edge on JTCLK moves the controller to the Select-IR

### Capture-DR

Data may be parallel-loaded into the Test Data registers selected by the current instruction. If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the Test register will remain at its current value. On the rising edge of JTCLK, the controller will go to the Shift-DR state if JTMS is low or it will go to the Exit1-DR state if JTMS is high.

### Shift-DR

The Test Data register selected by the current instruction will be connected between JTDI and JTDO and will shift data one stage towards its serial output on each rising edge of JTCLK. If a Test Register selected by the current instruction is not placed in the serial path, it will maintain its previous state.

### Exit1-DR

While in this state, a rising edge on JTCLK with JTMS high will put the controller in the Update-DR state, and terminate the scanning process. A rising edge on JTCLK with JTMS low will put the controller in the Pause-DR state.

### Pause-DR

Shifting of the test registers is halted while in this state. All Test registers selected by the current instruction will retain their previous state. The controller will remain in this state while JTMS is low. A rising edge on JTCLK with JTMS high will put the controller in the Exit2-DR state.

## Exit2-DR

While in this state, a rising edge on JTCLK with JTMS high will put the controller in the Update-DR state and terminate the scanning process. A rising edge on JTCLK with JTMS low will enter the Shift-DR state.

## Update-DR

A falling edge on JTCLK while in the Update-DR state will latch the data from the shift register path of the Test registers into the data output latches. This prevents changes at the parallel output due to changes in the shift register. A rising edge on JTCLK with JTMS low, will put the controller in the Run-Test-Idle state. With JTMS high, the controller will enter the Select-DR-Scan state.

## Select-IR-Scan

All test registers retain their previous state. The instruction register will remain unchanged during this state. With JTMS low, a rising edge of JTCLK moves the controller into the Capture-IR state and will initiate a scan sequence for the Instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the Test-Logic-Reset state.

## Capture-IR

The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller will enter the Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller will enter the Shift-IR state.

## Shift-IR

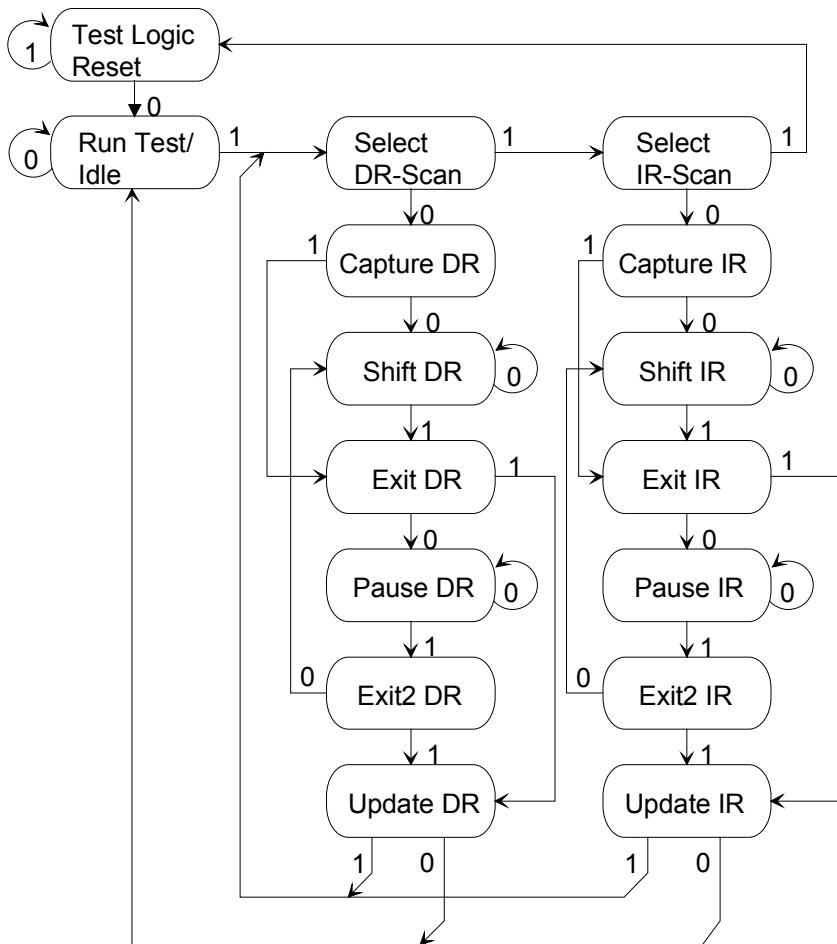
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one stage for every rising edge of JTCLK towards the serial output. The parallel registers, as well as all Test registers remain at their previous states. A rising edge on JTCLK with JTMS high will move the controller to the Exit1-IR state. A rising edge on JTCLK with JTMS low will keep the controller in the Shift-IR state while moving data one stage thorough the instruction shift register.

## Exit1-IR

A rising edge on JTCLK with JTMS low will put the controller in the Pause-IR state. If JTMS is high on the rising edge of JTCLK, the controller will enter the Update-IR state and terminate the scanning process.

## Pause-IR

Shifting of the instruction shift register is halted temporarily. With JTMS high, a rising edge on JTCLK will put the controller in the Exit2-IR state. The controller will remain in the Pause-IR state if JTMS is low during a rising edge on JTCLK.


## Exit2-IR

A rising edge on JTCLK with JTMS low will put the controller in the Update-IR state. The controller will loop back to Shift-IR if JTMS is high during a rising edge of JTCLK in this state.

## Update-IR

The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising edge on JTCLK with JTMS low, will put the controller in the Run-Test-Idle state. With JTMS high, the controller will enter the Select-DR-Scan state.

**Figure 17-2. TAP CONTROLLER STATE MACHINE**



## 17.3 Instruction Register and Instructions

The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the TAP controller enters the Shift-IR state, the instruction shift register will be connected between JTDI and JTDO. While in the Shift-IR state, a rising edge on JTCLK with JTMS low will shift the data one stage towards the serial output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high will move the controller to the Update-IR state. The falling edge of that same JTCLK will latch the data in the instruction shift register to the instruction parallel output. Instructions supported by the DS21Q44 with their respective operational binary codes are shown in Table 17-1.

**Table 17-1. INSTRUCTION CODES FOR THE DS21Q44  
IEEE 1149.1 ARCHITECTURE**

| INSTRUCTION    | SELECTED REGISTER     | INSTRUCTION CODE |
|----------------|-----------------------|------------------|
| SAMPLE/PRELOAD | Boundary Scan         | 010              |
| BYPASS         | Bypass                | 111              |
| EXTEST         | Boundary Scan         | 000              |
| CLAMP          | Bypass                | 011              |
| HIGHZ          | Bypass                | 100              |
| IDCODE         | Device Identification | 001              |

## SAMPLE/PRELOAD

A mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The digital I/Os of the DS21Q44 can be sampled at the boundary scan register without interfering with the normal operation of the device by using the Capture-DR state. SAMPLE/PRELOAD also allows the DS21Q44 to shift data into the boundary scan register via JTDI using the Shift-DR state.

## EXTEST

EXTEST allows testing of all interconnections to the DS21Q44. When the EXTEST instruction is latched in the instruction register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output pins will be driven. The boundary scan register will be connected between JTDI and JTDO. The Capture-DR will sample all digital inputs into the boundary scan register.

## BYPASS

When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device's normal operation.

## IDCODE

When the IDCODE instruction is latched into the parallel instruction register, the Identification Test register is selected. The device identification code will be loaded into the Identification register on the rising edge of JTCLK following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register's parallel output. The ID code will always have a '1' in the LSB position. The next 11 bits identify the manufacturer's JEDEC number and number of continuation bytes followed by 16 bits for the device and 4 bits for the version. See Table 17-2. Table 17-3 lists the device ID codes for the DS21Q42 and DS21Q44 devices.

**Table 17-2. ID CODE STRUCTURE**

| CONTENTS | MSB                          |                               | LSB     |
|----------|------------------------------|-------------------------------|---------|
|          | Version<br>(Contact Factory) | Device ID<br>(See Table 17-3) |         |
| LENGTH   | 4 bits                       | 16 bits                       | 11 bits |

**Table 17-3. DEVICE ID CODES**

| DEVICE  | 16-BIT NUMBER |
|---------|---------------|
| DS21Q42 | 0000h         |
| DS21Q44 | 0001h         |

**HIGH-Z**

All digital outputs of the DS21Q44 will be placed in a high impedance state. The BYPASS register will be connected between JTDI and JTDO.

**CLAMP**

All digital outputs of the DS21Q44 will output data from the boundary scan parallel output while connecting the bypass register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.

**17.4 Test Registers**

IEEE 1149.1 requires a minimum of two test registers; the bypass register and the boundary scan register. An optional test register has been included with the DS21Q44 design. This test register is the identification register and is used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.

**Boundary Scan Register**

This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells and is 126 bits in length. Table 17-4 shows all of the cell bit locations and definitions.

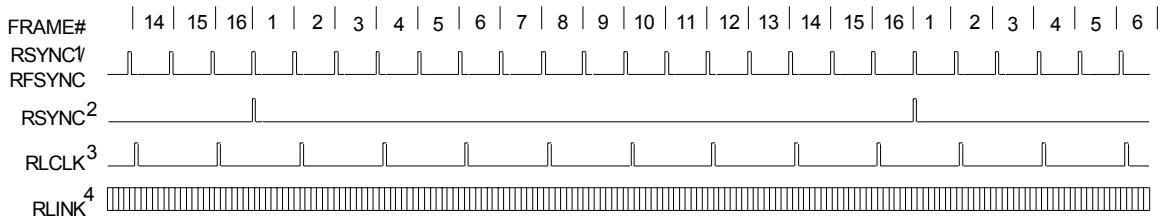
**Bypass Register**

This is a single 1-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ instructions, which provides a short path between JTDI and JTDO.

**Identification Register**

The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.

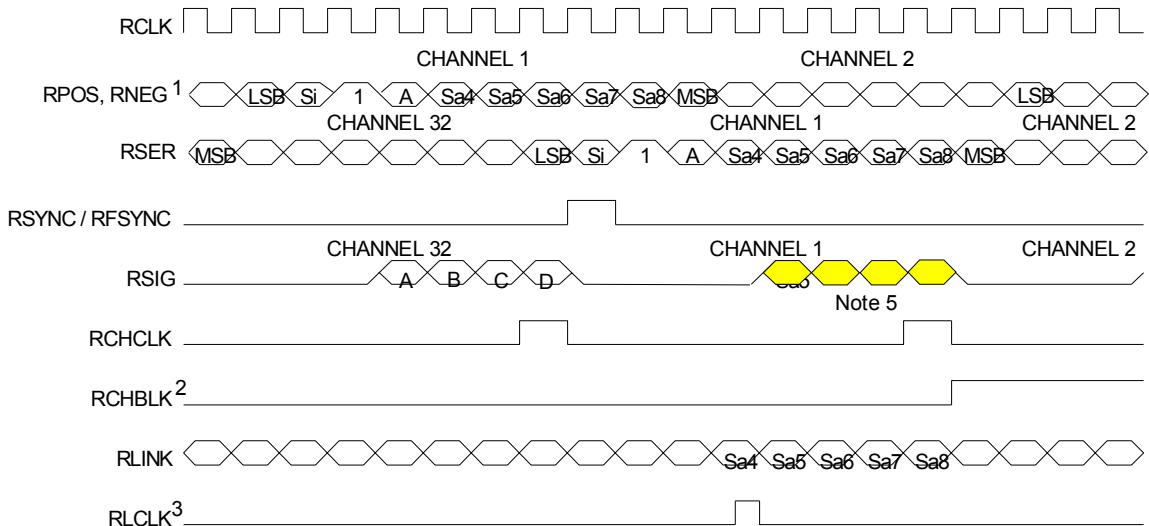
**Table 17-4. BOUNDARY SCAN REGISTER DESCRIPTION**


| PIN | SCAN REGISTER BIT | SYMBOL      | TYPE | CONTROL BIT DESCRIPTION                     |
|-----|-------------------|-------------|------|---------------------------------------------|
| 1   | 81                | TCHBLK0     | O    |                                             |
| 2   | 80                | TPOS0       | O    |                                             |
| 3   | 79                | TNEG0       | O    |                                             |
| 4   | 78                | RLINK0      | O    |                                             |
| 5   | 77                | RLCLK0      | O    |                                             |
| 6   | 76                | RCLK0       | I    |                                             |
| 7   | 75                | RNEG0       | I    |                                             |
| 8   | 74                | RPOS0       | I    |                                             |
| 9   | 73                | RSIG0       | O    |                                             |
| 10  | 72                | RCHBLK0     | O    |                                             |
| 11  | 71                | RSYSCLK0    | I    |                                             |
| —   | 70                | RSYNC0.cntl | —    | 0 = RSYNC0 an input<br>1 = RSYNC0 an output |
| 12  | 69                | RSYNC0      | I/O  |                                             |
| 13  | 68                | RSER0       | O    |                                             |
| 14  | —                 | VSS         | —    |                                             |
| 15  | —                 | VDD         | —    |                                             |
| 16  | 67                | SPARE1      | —    |                                             |
| 17  | 66                | RFSYNC0     | O    |                                             |
| 18  | —                 | JTRST       | I    |                                             |
| 19  | 65                | TCLK0       | I    |                                             |
| 20  | 64                | TLCLK0      | O    |                                             |
| —   | 63                | TSYNC0.cntl | —    | 0 = TSYNC0 an input<br>1 = TSYNC0 an output |
| 21  | 62                | TSYNC0      | I/O  |                                             |
| 22  | 61                | TLINK0      | I    |                                             |
| 23  | 60                | A0          | I    |                                             |
| 24  | 59                | A1          | I    |                                             |
| 25  | 58                | A2          | I    |                                             |
| 26  | 57                | A3          | I    |                                             |
| 27  | 56                | A4          | I    |                                             |
| 28  | 55                | A5          | I    |                                             |
| 29  | 54                | A6/ALE (AS) | I    |                                             |
| 30  | 53                | INT*        | O    |                                             |
| 31  | 52                | TSYSCLK1    | I    |                                             |
| 32  | 51                | TSER1       | I    |                                             |
| 33  | 50                | TSSYNC1     | I    |                                             |
| 34  | 49                | TSIG1       | I    |                                             |
| 35  | 48                | TCHBLK1     | O    |                                             |
| 36  | 47                | TPOS1       | O    |                                             |
| 37  | 46                | TNEG1       | O    |                                             |
| 38  | 45                | RLINK1      | O    |                                             |
| 39  | 44                | RLCLK1      | O    |                                             |
| 40  | 43                | RCLK1       | I    |                                             |
| 41  | 42                | RNEG1       | I    |                                             |
| 42  | 41                | RPOS1       | I    |                                             |
| 43  | 40                | RSIG1       | O    |                                             |
| 44  | 39                | RCHBLK1     | O    |                                             |

| PIN | SCAN REGISTER BIT | SYMBOL      | TYPE | CONTROL BIT DESCRIPTION                     |
|-----|-------------------|-------------|------|---------------------------------------------|
| 45  | 38                | RSYCLK1     | I    |                                             |
| 46  | 37                | A7          | I    |                                             |
| 47  | 36                | FMS         | I    |                                             |
| —   | 35                | RSYNC1.cntl | —    | 0 = RSYNC1 an input<br>1 = RSYNC1 an output |
| 48  | 34                | RSYNC1      | I/O  |                                             |
| 49  | 33                | RSER1       | O    |                                             |
| 50  | -                 | JTMS        | I    |                                             |
| 51  | 32                | RFSYNC1     | O    |                                             |
| 52  | -                 | JTCLK       | I    |                                             |
| 53  | 31                | TCLK1       | I    |                                             |
| 54  | 30                | TLCLK1      | O    |                                             |
| —   | 29                | TSYNC1.cntl | —    | 0 = TSYNC1 an input<br>1 = TSYNC1 an output |
| 55  | 28                | TSYNC1      | I/O  |                                             |
| 56  | 27                | TLINK1      | I    |                                             |
| 57  | 26                | TEST        | I    |                                             |
| 58  | 25                | FS0         | I    |                                             |
| 59  | 24                | FS1         | I    |                                             |
| 60  | 23                | CS*         | I    |                                             |
| 61  | 22                | BTS         | I    |                                             |
| 62  | 21                | RD*/(DS*)   | I    |                                             |
| 63  | 20                | WR*/(R/W*)  | I    |                                             |
| 64  | 19                | MUX         | I    |                                             |
| 65  | 18                | TSYCLK2     | I    |                                             |
| 66  | 17                | TSER2       | I    |                                             |
| 67  | 16                | TSSYNC2     | I    |                                             |
| 68  | 15                | TSIG2       | I    |                                             |
| 69  | 14                | TCHBLK2     | O    |                                             |
| 70  | 13                | TPOS2       | O    |                                             |
| 71  | 12                | TNEG2       | O    |                                             |
| 72  | 11                | RLINK2      | O    |                                             |
| 73  | 10                | RLCLK2      | O    |                                             |
| 74  | 9                 | RCLK2       | I    |                                             |
| 75  | 8                 | RNEG2       | I    |                                             |
| 76  | 7                 | RPOS2       | I    |                                             |
| 77  | 6                 | RSIG2       | O    |                                             |
| 78  | -                 | VSS         | -    |                                             |
| 79  | -                 | VDD         | -    |                                             |
| 80  | 5                 | RCHBLK2     | O    |                                             |
| 81  | 4                 | RSYCLK2     | I    |                                             |
| —   | 3                 | RSYNC2.cntl | —    | 0 = RSYNC2 an input<br>1 = RSYNC2 an output |
| 82  | 2                 | RSYNC2      | I/O  |                                             |
| 83  | 1                 | RSER2       | O    |                                             |
| 84  | —                 | JTDI        | I    |                                             |
| 85  | 0                 | RFSYNC2     | O    |                                             |
| 86  | —                 | JTDO        | O    |                                             |
| 87  | 125               | TCLK2       | I    |                                             |

| PIN | SCAN REGISTER BIT | SYMBOL      | TYPE | CONTROL BIT DESCRIPTION                                             |
|-----|-------------------|-------------|------|---------------------------------------------------------------------|
| 88  | 124               | TLCLK2      | O    |                                                                     |
| —   | 123               | TSYNC2.cntl | —    | 0 = TSYNC2 an input<br>1 = TSYNC2 an output                         |
| 89  | 122               | TSYNC2      | I/O  |                                                                     |
| 90  | 121               | TLINK2      | I    |                                                                     |
| 91  | 120               | TSYSCLK3    | I    |                                                                     |
| 92  | 119               | TSER3       | I    |                                                                     |
| 93  | 118               | TSSYNC3     | I    |                                                                     |
| 94  | 117               | TSIG3       | I    |                                                                     |
| 95  | 116               | TCHBLK3     | O    |                                                                     |
| 96  | 115               | TPOS3       | O    |                                                                     |
| 97  | 114               | TNEG3       | O    |                                                                     |
| 98  | 113               | RLINK3      | O    |                                                                     |
| 99  | 112               | RLCLK3      | O    |                                                                     |
| 100 | 111               | RCLK3       | I    |                                                                     |
| 101 | 110               | RNEG3       | I    |                                                                     |
| 102 | 109               | RPOS3       | I    |                                                                     |
| 103 | 108               | RSIG3       | O    |                                                                     |
| 104 | 107               | RCHBLK3     | O    |                                                                     |
| 105 | 106               | RSYSCLK3    | I    |                                                                     |
| —   | 105               | RSYNC3.cntl | —    | 0 = RSYNC3 an input<br>1 = RSYNC3 an output                         |
| 106 | 104               | RSYNC3      | I/O  |                                                                     |
| 107 | 103               | RSER3       | O    |                                                                     |
| 108 | 102               | 8MCLK       | O    |                                                                     |
| 109 | 101               | RFSYNC3     | O    |                                                                     |
| 110 | —                 | VSS         | -    |                                                                     |
| 111 | —                 | VDD         | -    |                                                                     |
| 112 | 100               | CLKSI       | I    |                                                                     |
| 113 | 99                | TCLK3       | I    |                                                                     |
| 114 | 98                | TLCLK3      | O    |                                                                     |
| —   | 97                | TSYNC3.cntl | —    | 0 = TSYNC3 an input<br>1 = TSYNC3 an output                         |
| 115 | 96                | TSYNC3      | I/O  |                                                                     |
| 116 | 95                | TLINK3      | I    |                                                                     |
| —   | 94                | BUS.cntl    | —    | 0 = D0-D7 or AD0-AD7 are inputs<br>1 = D0-D7 or AD0-AD7 are outputs |
| 117 | 93                | D0 or AD0   | I/O  |                                                                     |
| 118 | 92                | D1 or AD1   | I/O  |                                                                     |
| 119 | 91                | D2 or AD2   | I/O  |                                                                     |
| 120 | 90                | D3 or AD3   | I/O  |                                                                     |
| 121 | 89                | D4 or AD4   | I/O  |                                                                     |
| 122 | 88                | D5 or AD5   | I/O  |                                                                     |
| 123 | 87                | D6 or AD6   | I/O  |                                                                     |
| 124 | 86                | D7 or AD7   | I/O  |                                                                     |
| 125 | 85                | TSYSCLK0    | I    |                                                                     |
| 126 | 84                | TSER0       | I    |                                                                     |
| 127 | 83                | TSSYNC0     | I    |                                                                     |
| 128 | 82                | TSIG0       | I    |                                                                     |

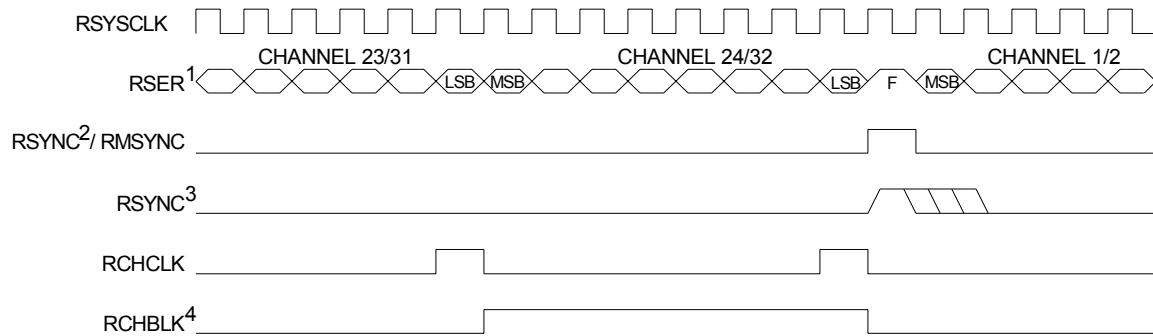
## 18. TIMING DIAGRAMS


**Figure 18-1. RECEIVE SIDE TIMING**



Notes:

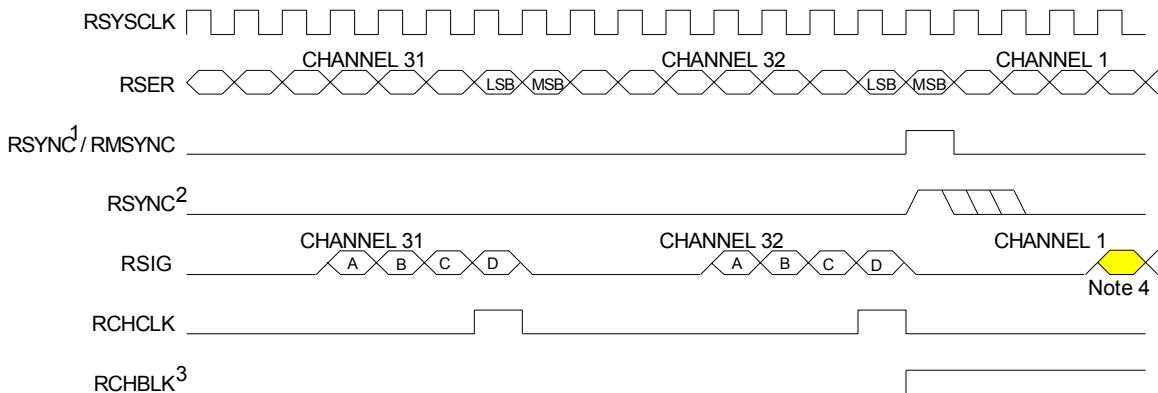
1. RSYNC in the frame mode (RCR1.6 = 0)
2. RSYNC in the multiframe mode (RCR1.6 = 1)
3. RLCLK is programmed to output just the Sa4 bit
4. RLINK will always output all five Sa bits as well as the rest of the receive data stream
5. This diagram assumes the CAS MF begins with the FAS word


**Figure 18-2. RECEIVE SIDE BOUNDARY TIMING (With Elastic Store Disabled)**



Notes:

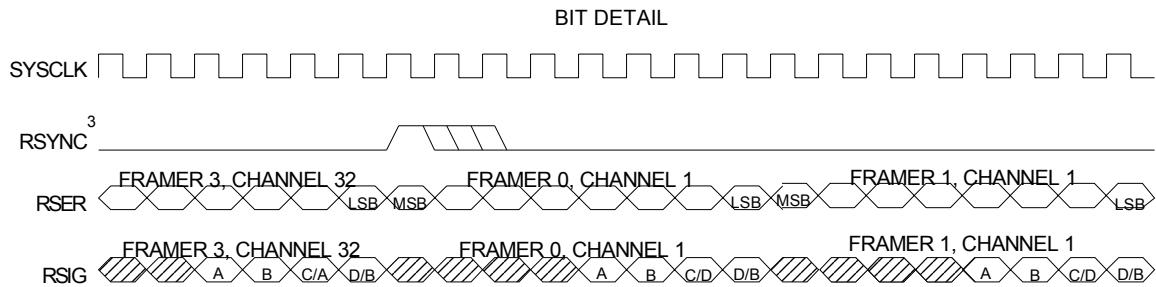
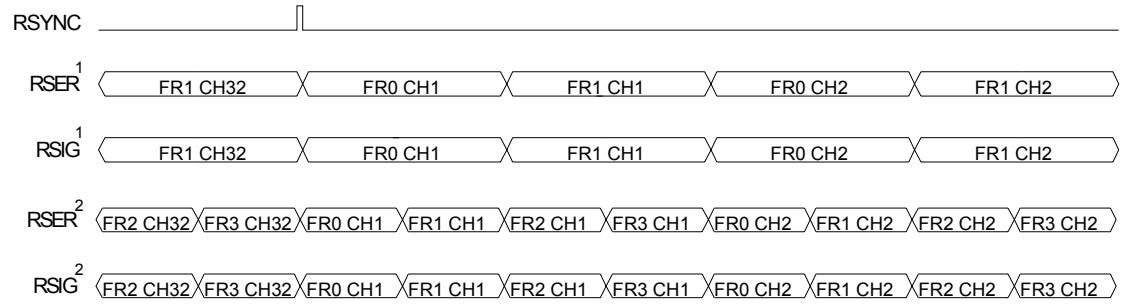
1. There is a 6 RCLK delay from RPOS, RNEG to RSER
2. RCHBLK is programmed to block channel 2
3. RLINK is programmed to output the Sa4 bit
4. Shown is a non-align frame boundary
5. RSIG normally contains the CAS multiframe alignment nibble (0000) in Channel 1


**Figure 18-3. RECEIVE SIDE 1.544 MHz BOUNDARY TIMING (With Elastic Store Enabled)**



Notes:

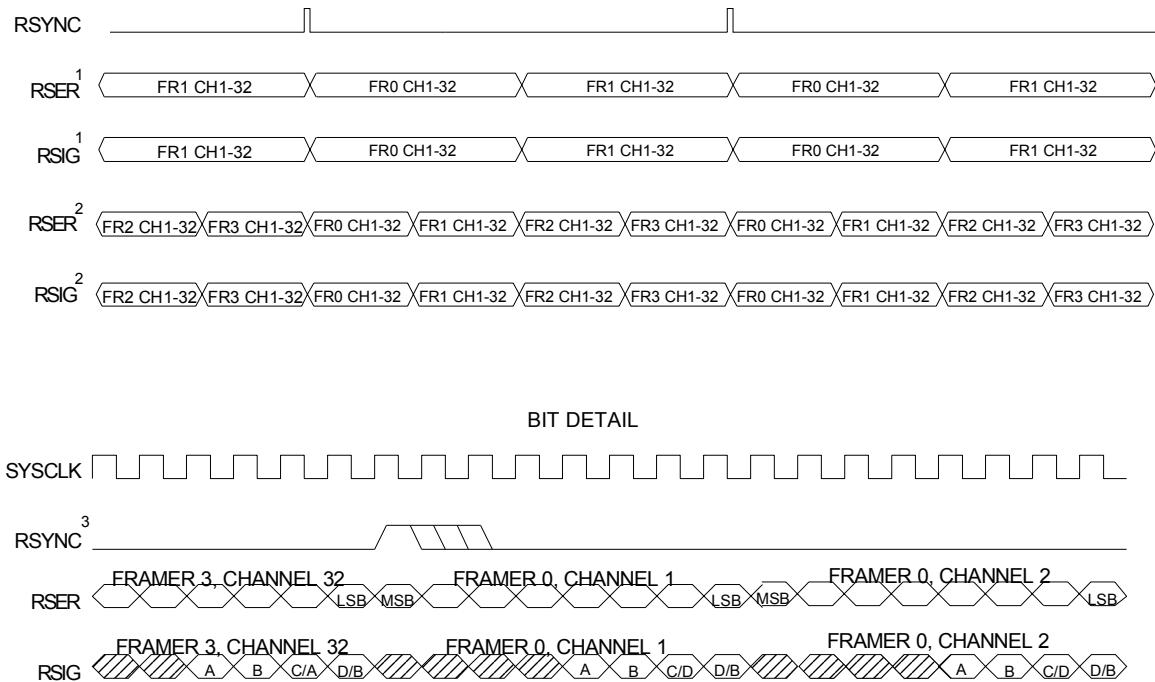
1. Data from the E1 channels 1, 5, 9, 13, 17, 21, 25, and 29 is dropped (channel 2 from the E1 link is mapped to channel 1 of the T1 link, etc.) and the F-bit position is added (forced to one)
2. RSYNC is in the output mode (RCR1.5 = 0)
3. RSYNC is in the input mode (RCR1.5 = 1)
4. RCHBLK is programmed to block channel 24



**Figure 18-4. RECEIVE SIDE 2.048 MHz BOUNDARY TIMING (With Elastic Store Enabled)**



Notes:

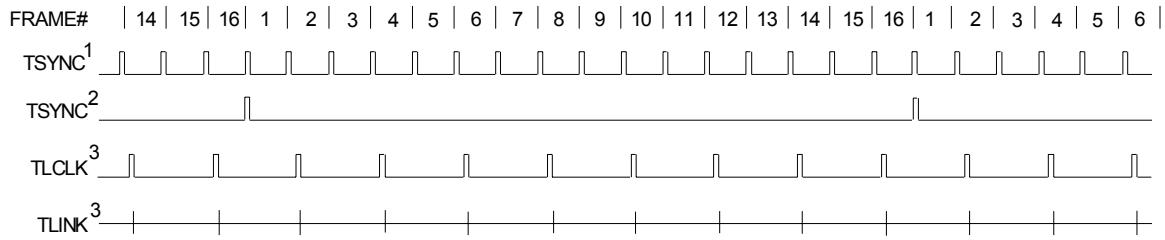
1. RSYNC is in the output mode (RCR1.5 = 0)
2. RSYNC is in the input mode (RCR1.5 = 1)
3. RCHBLK is programmed to block channel 1
4. RSIG normally contains the CAS multiframe alignment nibble (0000) in Channel 1


## Figure 18-5. RECEIVE SIDE, INTERLEAVED BUS OPERATION BYTE MODE TIMING



Notes:

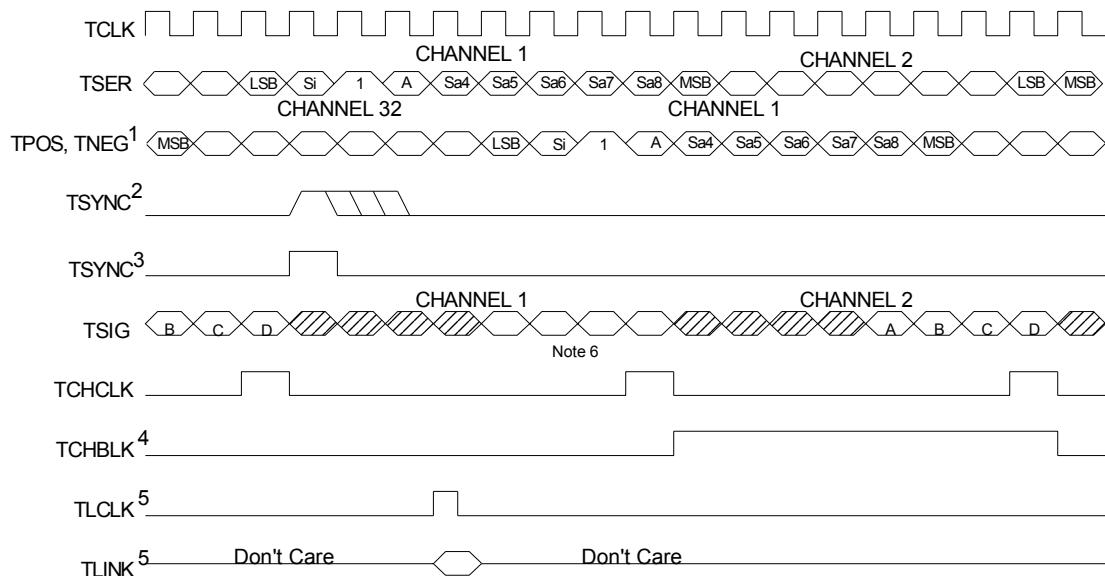
1. 4.096 MHz bus configuration.
2. 8.192 MHz bus configuration.
3. RSYNC is in the input mode (RCR1.5 = 1).


## Figure 18-6. RECEIVE SIDE, INTERLEAVED BUS OPERATION FRAME MODE TIMING



Notes:

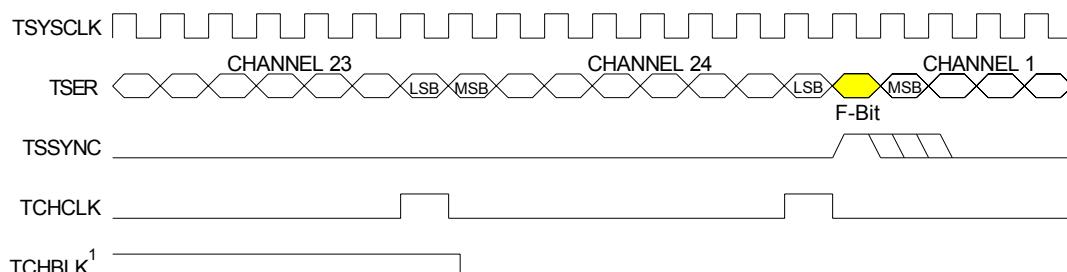
1. 4.096 MHz bus configuration.
2. 8.192 MHz bus configuration.
3. RSYNC is in the input mode (RCR1.5 = 1).


## Figure 18-7. TRANSMIT SIDE TIMING



Notes:

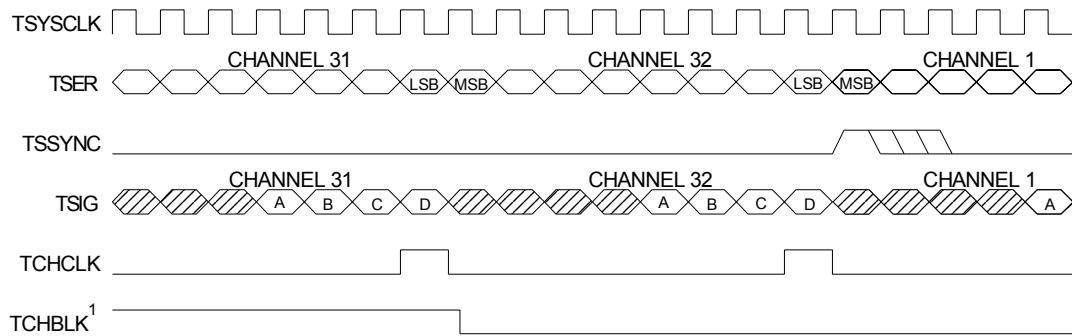
1. TSYNC in the frame mode (TCR1.1 = 0)
2. TSYNC in the multiframe mode (TCR1.1 = 1)
3. TLINK is programmed to source just the Sa4 bit
4. This diagram assumes both the CAS MF and the CRC4 begin with the align frame


## Figure 18-8. TRANSMIT SIDE BOUNDARY TIMING (With Elastic Store Disabled)



Notes:

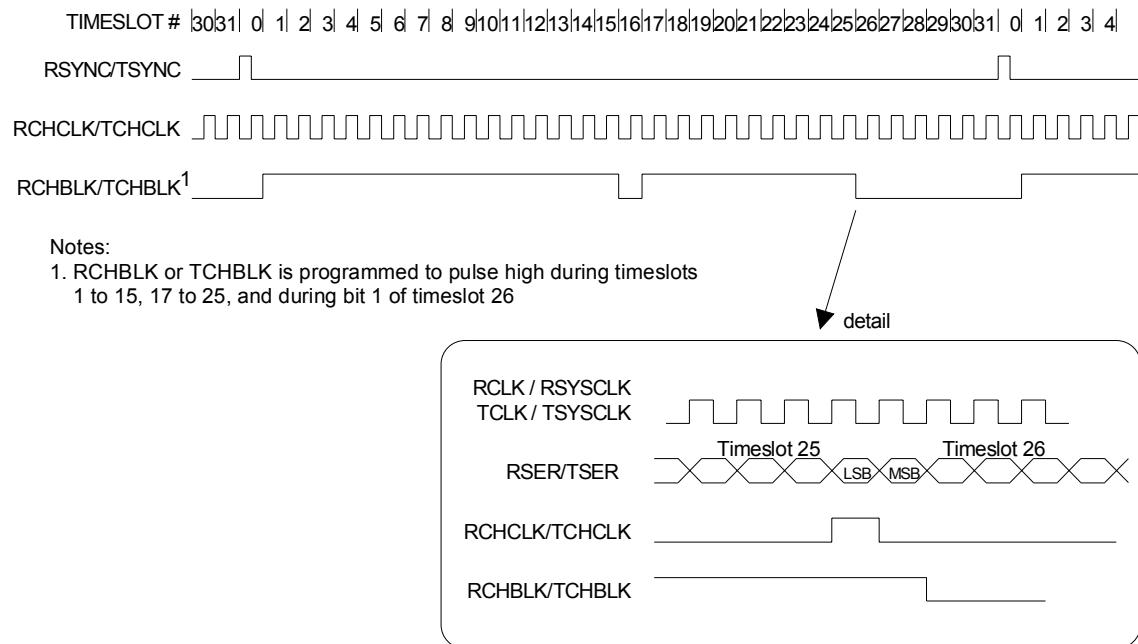
1. There is a 5 TCLK delay from TSER to TPOS and TNEG
2. TSYNC is in the input mode (TCR1.0 = 0)
3. TSYNC is in the output mode (TCR1.0 = 1)
4. TCHBLK is programmed to block channel 2
5. TLINK is programmed to source the Sa4 bits
6. The signaling data at TSIG during channel 1 is normally overwritten in the transmit formatter with the CAS multiframe alignment nibble (0000)
7. Shown is a non-align frame boundary


## Figure 18-9. TRANSMIT SIDE 1.544 MHz BOUNDARY TIMING (With Elastic Store Enabled)



Notes:

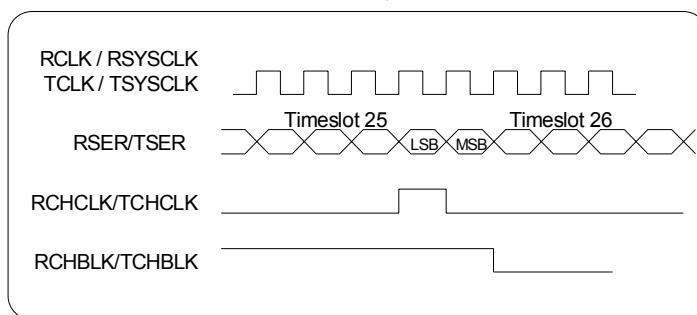
1. TCHBLK is programmed to block channel 23
2. The F-bit position is ignored by the DS2154


**Figure 18-10. TRANSMIT SIDE, 2.048MHz BOUNDARY TIMING (With Elastic Store Enabled)**

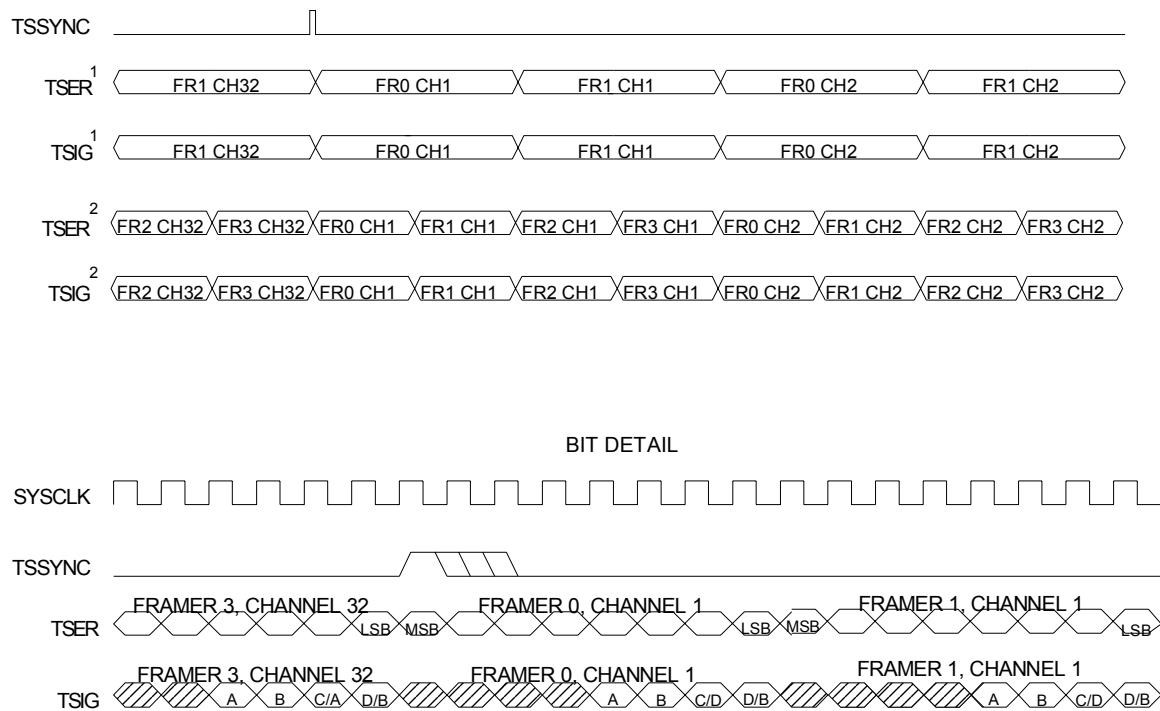


Notes:

1. TCHBLK is programmed to block channel 31


**Figure 18-11. G.802 TIMING**

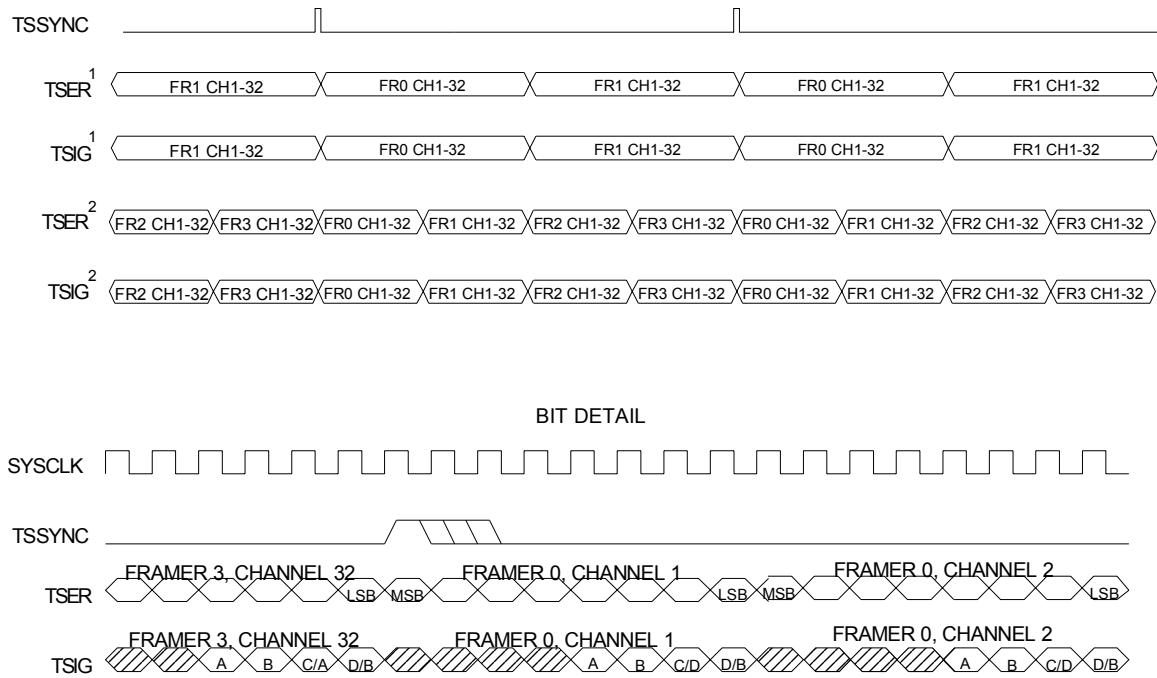



Notes:

1. RCHBLK or TCHBLK is programmed to pulse high during timeslots 1 to 15, 17 to 25, and during bit 1 of timeslot 26

detail

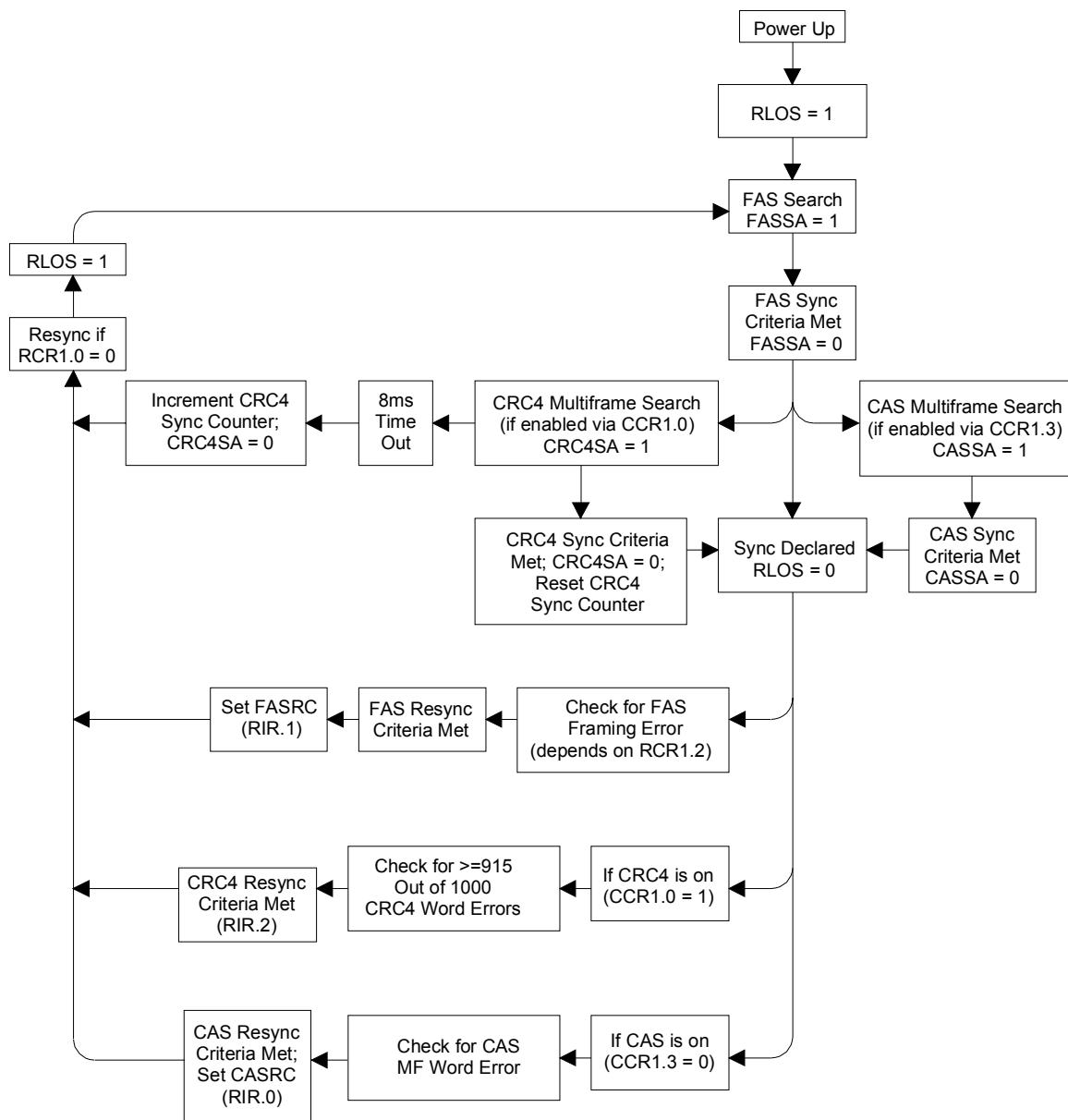



## Figure 18-12. TRANSMIT SIDE, INTERLEAVED BUS OPERATION BYTE MODE TIMING



Notes:

1. 4.096 MHz bus configuration.
2. 8.192 MHz bus configuration.


## Figure 18-13. TRANSMIT SIDE, INTERLEAVED BUS OPERATION FRAME MODE TIMING



**Notes:**

1. 4.096 MHz bus configuration.
2. 8.192 MHz bus configuration.

## Figure 18-14. DS21Q44 FRAMER SYNCHRONIZATION FLOWCHART



## Figure 18-15. DS21Q44 TRANSMIT DATA FLOW



## NOTES

1. TCLK should be tied to RCLK and TSYNC should be tied to RFSYNC for data to be properly received from RSER.
2. Auto Remote Alarm if enabled will only overwrite bit 3 of timeslot 0 in the Not Align Frames if the alarm needs to be sent.

## 19. OPERATING PARAMETERS

### ABSOLUTE MAXIMUM RATINGS\*

|                                                        |                 |
|--------------------------------------------------------|-----------------|
| Voltage Range on Any Non-Supply Pin Relative to Ground | -1.0V to +5.5V  |
| Supply Voltage Range                                   | -0.3V to +3.63V |
| Operating Temperature Range for DS21Q44T               | 0°C to +70°C    |
| Operating Temperature Range for DS21Q44TN              | -40°C to +85°C  |
| Storage Temperature Range                              | -55°C to +125°C |

\* This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time can affect reliability.

### RECOMMENDED DC OPERATING CONDITIONS

(0°C to +70°C for DS21Q44T;  
0°C to +85°C for DS21Q44TN)

| PARAMETER | SYMBOL          | MIN  | TYP | MAX  | UNITS | NOTES |
|-----------|-----------------|------|-----|------|-------|-------|
| Logic 1   | V <sub>IH</sub> | 2.2  |     | 5.5  | V     |       |
| Logic 0   | V <sub>IL</sub> | -0.3 |     | +0.8 | V     |       |
| Supply    | V <sub>DD</sub> | 2.97 |     | 3.63 | V     |       |

### CAPACITANCE (T<sub>A</sub> = +25°C)

| PARAMETER          | SYMBOL           | MIN | TYP | MAX | UNITS | NOTES |
|--------------------|------------------|-----|-----|-----|-------|-------|
| Input Capacitance  | C <sub>IN</sub>  |     | 5   |     | pF    |       |
| Output Capacitance | C <sub>OUT</sub> |     | 7   |     | pF    |       |

### DC CHARACTERISTICS (0°C to +70°C; V<sub>DD</sub> = 2.97 to 3.63V for DS21Q44T; -40°C to +85°C; V<sub>DD</sub> = 2.97 to 3.63V for DS21Q44TN)

| PARAMETER             | SYMBOL          | MIN  | TYP | MAX  | UNITS | NOTES |
|-----------------------|-----------------|------|-----|------|-------|-------|
| Supply Current @ 3.3V | I <sub>DD</sub> |      | 75  |      | mA    | 1     |
| Input Leakage         | I <sub>IL</sub> | -1.0 |     | +1.0 | µA    | 2     |
| Output Leakage        | I <sub>LO</sub> |      |     | 1.0  | µA    | 3     |
| Output Current (2.4V) | I <sub>OH</sub> | -1.0 |     |      | mA    |       |
| Output Current (0.4V) | I <sub>OL</sub> | +4.0 |     |      | mA    |       |

### NOTES:

- 1) TCLK = RCLK = TSYSCLK = RSYSCLK = 2.048MHz; outputs open-circuited.
- 2) 0.0V < V<sub>IN</sub> < V<sub>DD</sub>.
- 3) Applied to INT\* when tri-stated.

**AC CHARACTERISTICS—MULTIPLEXED PARALLEL PORT (MUX = 1)**

(0°C to +70°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44T  
-40°C to +85°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44TN)

| PARAMETER                                               | SYMBOL     | MIN | TYP | MAX | UNITS | NOTES |
|---------------------------------------------------------|------------|-----|-----|-----|-------|-------|
| Cycle Time                                              | $t_{CYC}$  | 200 |     |     | ns    |       |
| Pulse Width, DS low or RD* high                         | $PW_{EL}$  | 100 |     |     | ns    |       |
| Pulse Width, DS high or RD* low                         | $PW_{EH}$  | 100 |     |     | ns    |       |
| Input Rise/Fall times                                   | $t_R, t_F$ |     |     | 20  | ns    |       |
| R/W* Hold Time                                          | $t_{RWH}$  | 10  |     |     | ns    |       |
| R/W* Setup time before DS high                          | $t_{RWS}$  | 50  |     |     | ns    |       |
| CS*, FSO or FS1 Setup time before DS, WR* or RD* active | $t_{CS}$   | 20  |     |     | ns    |       |
| CS*, FSO or FS1 Hold time                               | $t_{CH}$   | 0   |     |     | ns    |       |
| Read Data Hold time                                     | $t_{DHR}$  | 10  |     | 50  | ns    |       |
| Write Data Hold time                                    | $t_{DHW}$  | 10  |     |     | ns    |       |
| Muxed Address valid to AS or ALE fall                   | $t_{ASL}$  | 15  |     |     | ns    |       |
| Muxed Address Hold time                                 | $t_{AHL}$  | 10  |     |     | ns    |       |
| Delay time DS, WR* or RD* to AS or ALE rise             | $t_{ASD}$  | 20  |     |     | ns    |       |
| Pulse Width AS or ALE high                              | $PW_{ASH}$ | 30  |     |     | ns    |       |
| Delay time, AS or ALE to DS, WR* or RD*                 | $t_{ASED}$ | 10  |     |     | ns    |       |
| Output Data Delay time from DS or RD*                   | $t_{DDR}$  | 20  |     | 80  | ns    |       |
| Data Setup time                                         | $t_{DSW}$  | 50  |     |     | ns    |       |

See Figures 19-1 to 19-3 for details.

**AC CHARACTERISTICS—NONMULTIPLEXED PARALLEL PORT (MUX = 0)**

(0°C to +70°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44T;  
-40°C to +85°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44TN)

| PARAMETER                                                       | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
|-----------------------------------------------------------------|--------|-----|-----|-----|-------|-------|
| Setup Time for A0 to A7, FS0 or FS1 Valid to CS* Active         | $t_1$  | 0   |     |     | ns    |       |
| Setup Time for CS* Active to either RD*, WR*, or DS* Active     | $t_2$  | 0   |     |     | ns    |       |
| Delay Time from either RD* or DS* Active to Data Valid          | $t_3$  |     |     | 75  | ns    |       |
| Hold Time from either RD*, WR*, or DS* Inactive to CS* Inactive | $t_4$  | 0   |     |     | ns    |       |
| Hold Time from CS* Inactive to Data Bus 3-state                 | $t_5$  | 5   |     | 50  | ns    |       |
| Wait Time from either WR* or DS* Active to Latch Data           | $t_6$  | 75  |     |     | ns    |       |
| Data Setup Time to either WR* or DS* Inactive                   | $t_7$  | 15  |     |     | ns    |       |
| Data Hold Time from either WR* or DS* Inactive                  | $t_8$  | 10  |     |     | ns    |       |
| Address Hold from either WR* or DS* inactive                    | $t_9$  | 10  |     |     | ns    |       |

See Figures 19–4 to 19–7 for details.

**AC CHARACTERISTICS – RECEIVE SIDE**

(0°C to +70°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44T;  
-40°C to +85°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44TN)

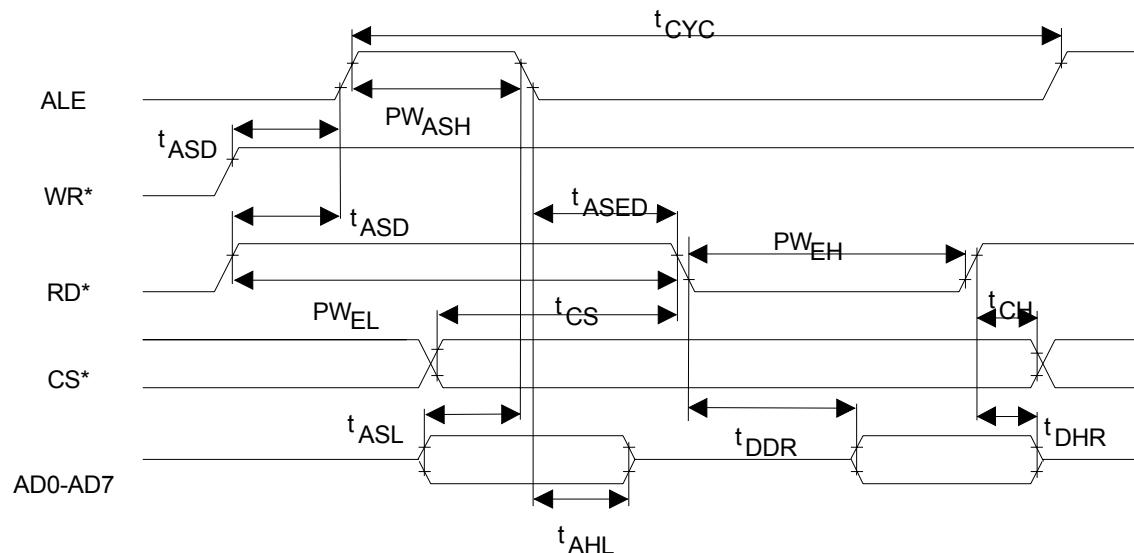
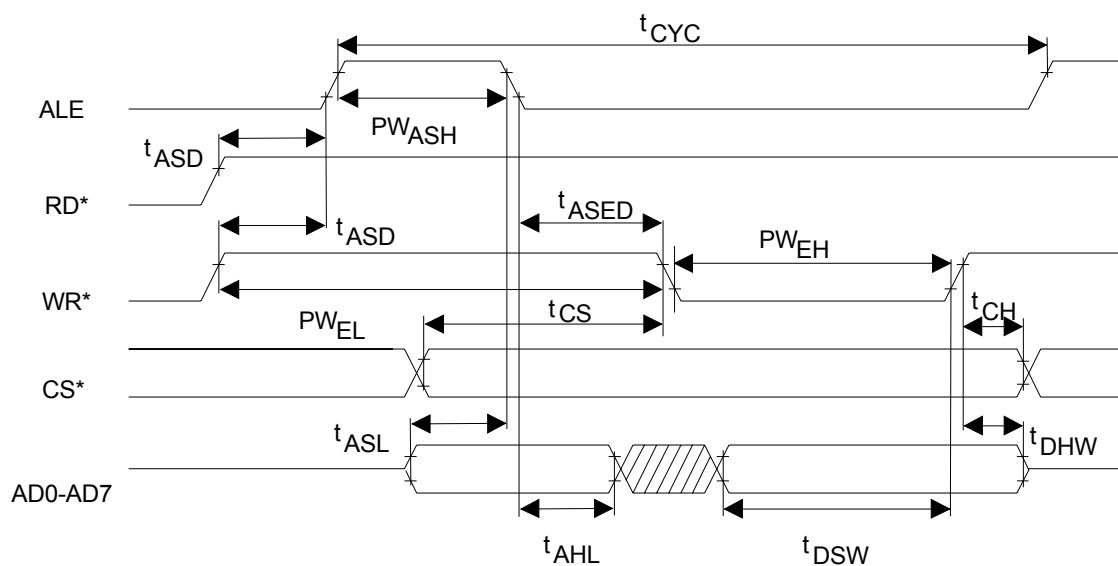
| PARAMETER                                                | SYMBOL               | MIN | TYP        | MAX          | UNITS | NOTES  |
|----------------------------------------------------------|----------------------|-----|------------|--------------|-------|--------|
| RCLK Period                                              | $t_{CP}$             |     | 488        |              | ns    |        |
| RCLK Pulse Width                                         | $t_{CH}$<br>$t_{CL}$ | 75  |            |              | ns    |        |
| RSYSCLK Period                                           | $t_{SP}$<br>$t_{SP}$ | 122 | 648<br>488 |              | ns    | 1<br>2 |
| RSYSCLK Pulse Width                                      | $t_{SH}$<br>$t_{SL}$ | 50  |            |              | ns    |        |
| RSYNC Setup/Hold to<br>RSYSCLK Falling                   | $t_{SU}$<br>$t_{HD}$ | 20  |            | $t_{SH} - 5$ | ns    |        |
| RSYNC Pulse Width                                        | $t_{PW}$             | 50  |            |              | ns    |        |
| RPOS/RNEG Setup to<br>RCLK Falling                       | $t_{SU}$             | 20  |            |              | ns    |        |
| RPOS/RNEG Hold From<br>RCLK Falling                      | $t_{HD}$             | 20  |            |              | ns    |        |
| RSYSCLK/RCLKI Rise<br>and Fall Times                     | $t_R$ , $t_F$        |     |            | 25           | ns    |        |
| Delay RCLK to RSER,<br>RSIG, RLINK Valid                 | $t_{D1}$             |     |            | 50           | ns    |        |
| Delay RCLK to RCHCLK,<br>RSYNC, RCHBLK,<br>RFSYNC, RLCLK | $t_{D2}$             |     |            | 50           | ns    |        |
| Delay RSYSCLK to<br>RSER, RSIG Valid                     | $t_{D3}$             |     |            | 50           | ns    |        |
| Delay RSYSCLK to<br>RCHCLK, RCHBLK,<br>RMSYNC, RSYNC     | $t_{D4}$             |     |            | 50           | ns    |        |

See Figures 19-8 to 18-10 for details.

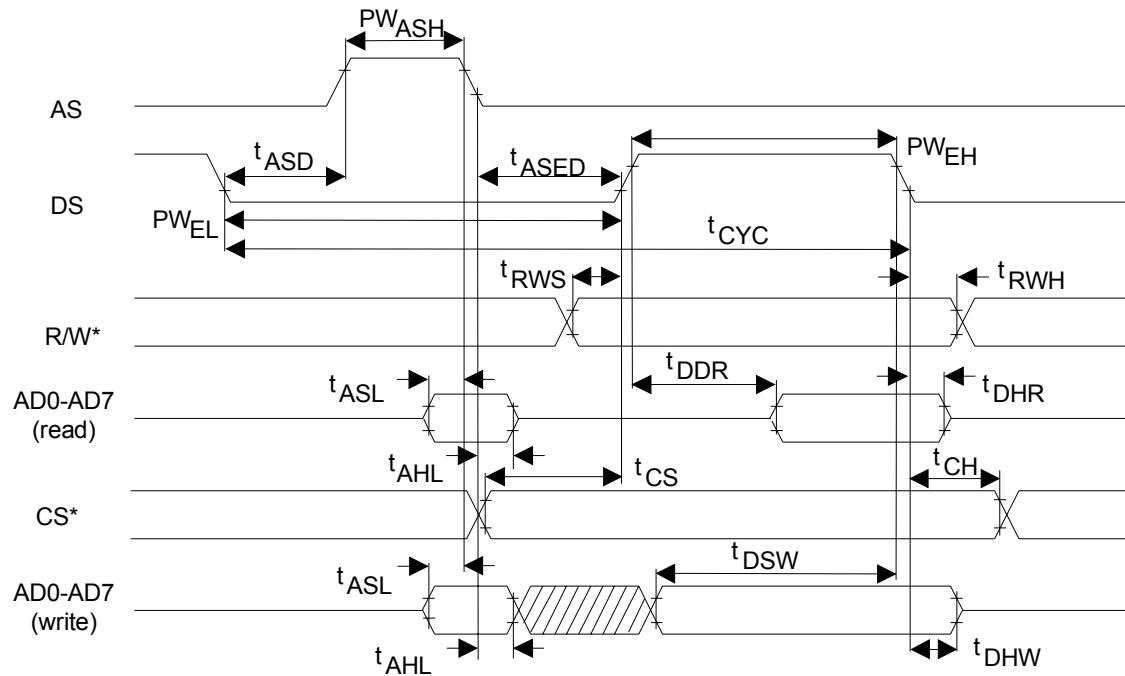
**NOTES:**

- 1) RSYSCLK = 1.544MHz
- 2) RSYSCLK = 2.048MHz

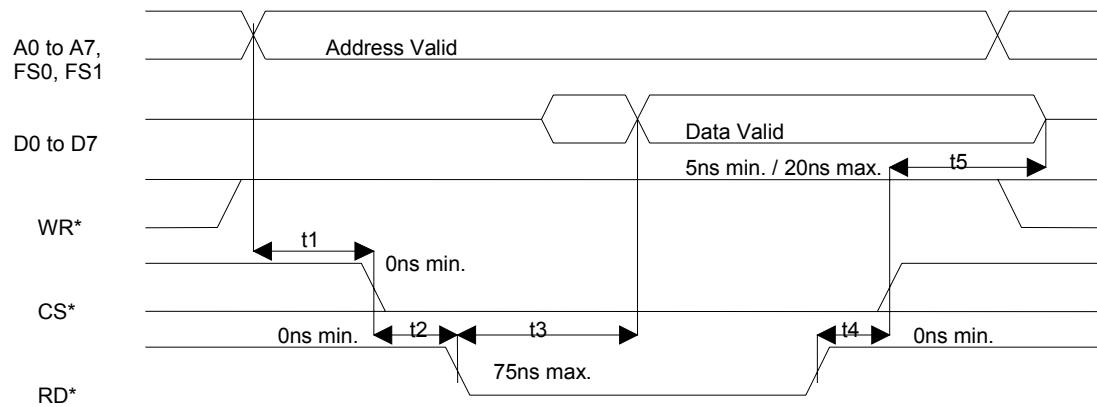
**AC CHARACTERISTICS—TRANSMIT SIDE**

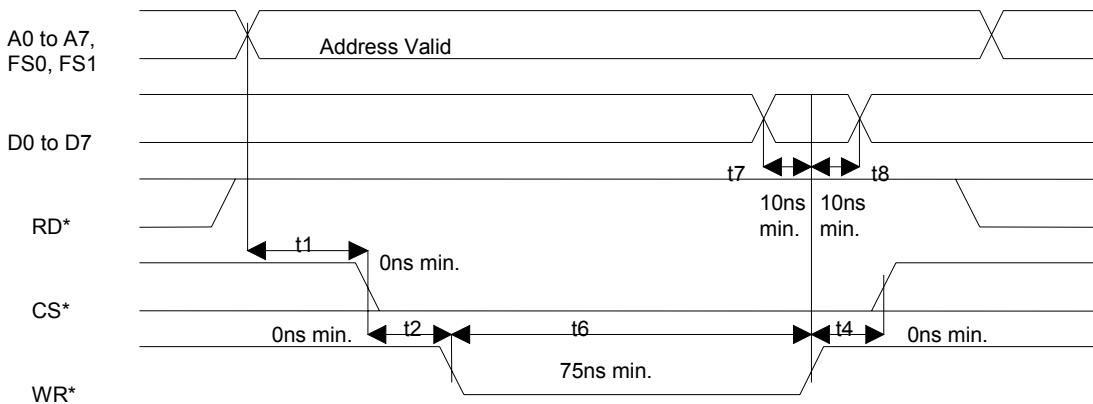
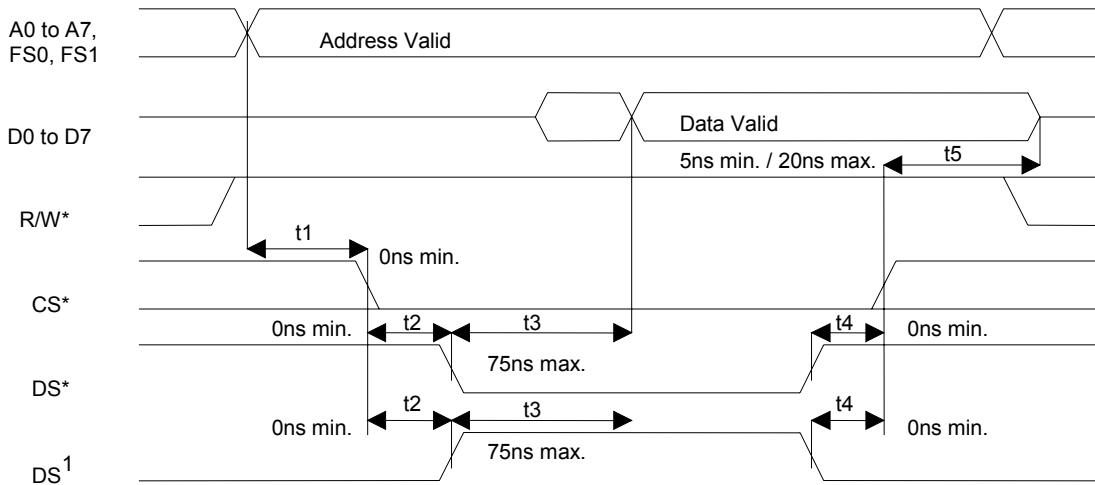


(0°C to +70°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44T;  
-40°C to +85°C;  $V_{DD} = 2.97$  to 3.63V for DS21Q44TN)

| PARAMETER                                             | SYMBOL               | MIN | TYP        | MAX                                | UNITS | NOTES  |
|-------------------------------------------------------|----------------------|-----|------------|------------------------------------|-------|--------|
| TCLK Period                                           | $t_{CP}$             |     | 488        |                                    | ns    |        |
| TCLK Pulse Width                                      | $t_{CH}$<br>$t_{CL}$ | 75  |            |                                    | ns    |        |
| TCLKI Pulse Width                                     | $t_{LH}$<br>$t_{LL}$ | 75  |            |                                    | ns    |        |
| TSYSCLK Period                                        | $t_{SP}$<br>$t_{SP}$ | 122 | 648<br>448 |                                    | ns    | 1<br>2 |
| TSYSCLK Pulse Width                                   | $t_{SH}$<br>$t_{SL}$ | 50  |            |                                    | ns    |        |
| TSYNC or TSSYNC Setup/Hold to TCLK or TSYSCLK falling | $t_{SU}$<br>$t_{HD}$ | 20  |            | $t_{CH} - 5$<br>or<br>$t_{SH} - 5$ | ns    |        |
| TSYNC or TSSYNC Pulse Width                           | $t_{PW}$             | 50  |            |                                    | ns    |        |
| TSER, TSIG, TLINK Setup to TCLK, TSYSCLK Falling      | $t_{SU}$             | 20  |            |                                    | ns    |        |
| TSER, TSIG, TLINK Hold from TCLK, TSYSCLK Falling     | $t_{HD}$             | 20  |            |                                    | ns    |        |
| TCLK or TSYSCLK Rise and Fall Times                   | $t_R$ , $t_F$        |     |            | 25                                 | ns    |        |
| Delay TCLK to TPOS, TNEG Valid                        | $t_{DD}$             |     |            | 50                                 | ns    |        |
| Delay TCLK to TCHBLK, TCHCLK, TSYNC, TLCLK            | $t_{D2}$             |     |            | 50                                 | ns    |        |
| Delay TSYSCLK to TCHCLK, TCHBLK                       | $t_{D3}$             |     |            | 75                                 | ns    |        |


See Figures 19–11 to 19–13 for details.

**NOTES:**

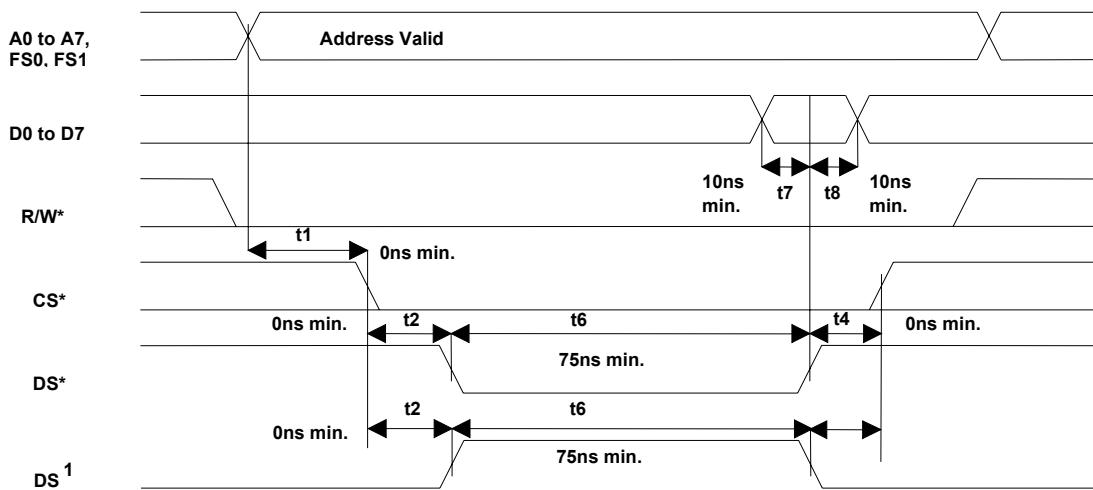

- 1) TSYSCLK = 1.544MHz
- 2) TSYSCLK = 2.048MHz



**Figure 19-1. INTEL BUS READ AC TIMING (BTS = 0 / MUX = 1)****Figure 19-2. INTEL BUS WRITE TIMING (BTS = 0 / MUX = 1)**

### Figure 19-3. MOTOROLA BUS AC TIMING (BTS = 1 / MUX = 1)

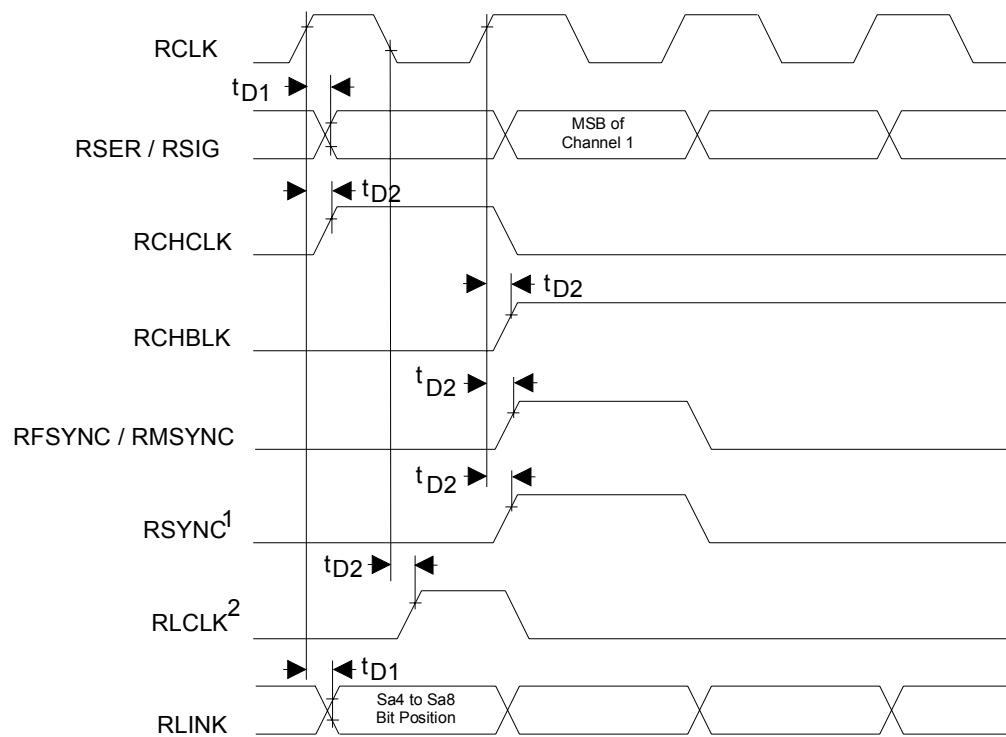


**Figure 19-4. INTEL BUS READ AC TIMING (BTS = 0 / MUX = 0)**



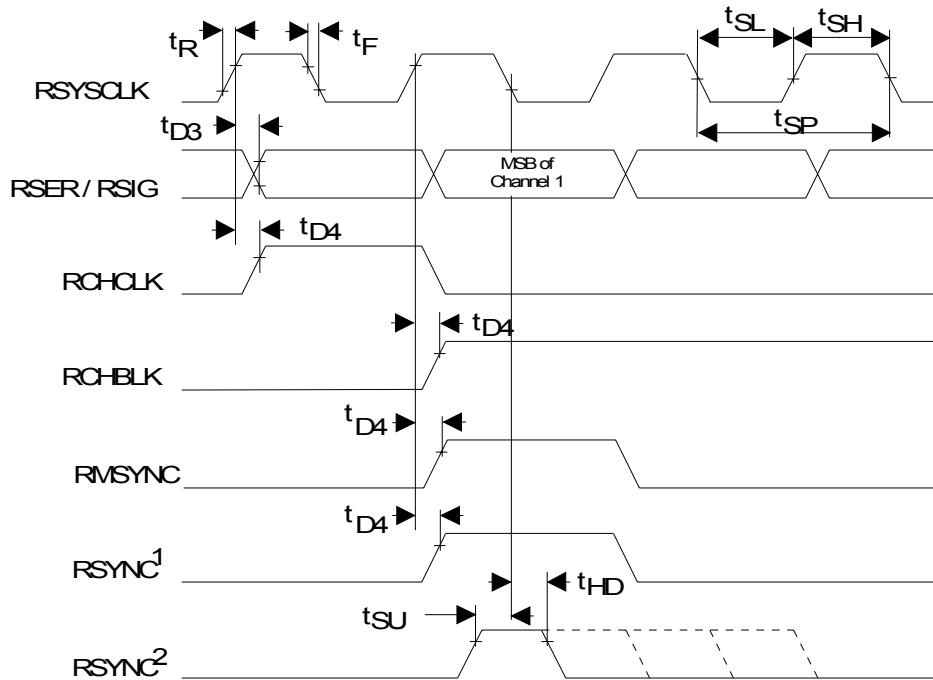

**Figure 19-5. INTEL BUS WRITE AC TIMING (BTS = 0 / MUX = 0)****Figure 19-6. MOTOROLA BUS READ AC TIMING (BTS = 1 / MUX = 0)**

## Notes:


1. The signal DS is active high when emulating the DS21Q43 (FMS = 1).

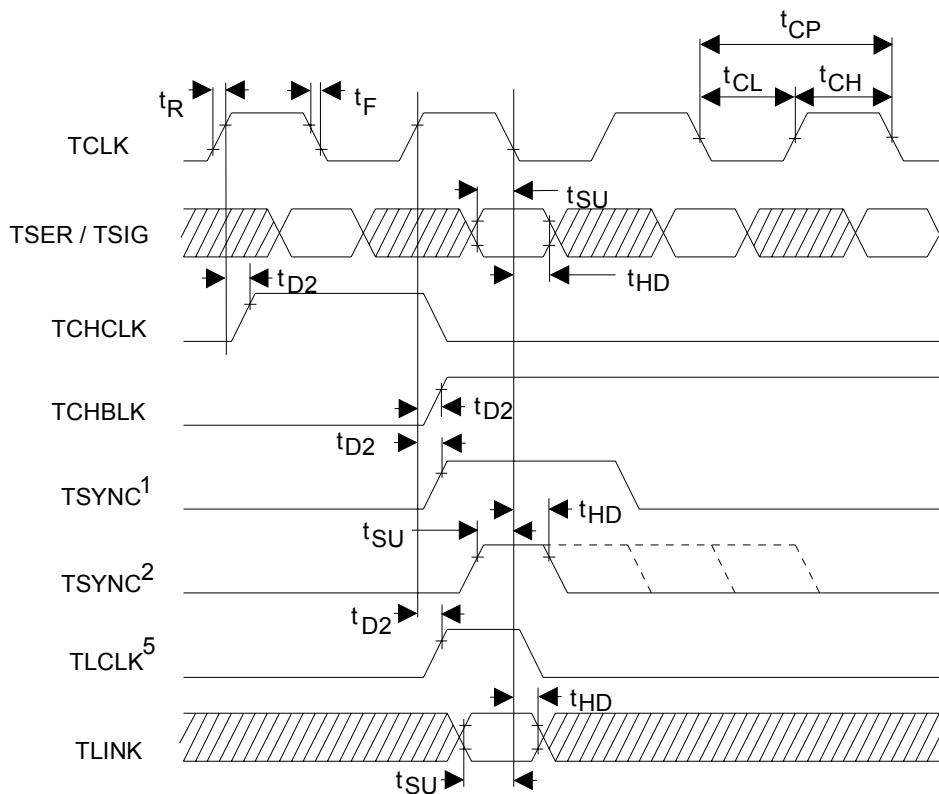
**Figure 19-7. MOTOROLA BUS WRITE AC TIMING (BTS = 1 / MUX = 0)**




**Notes:**

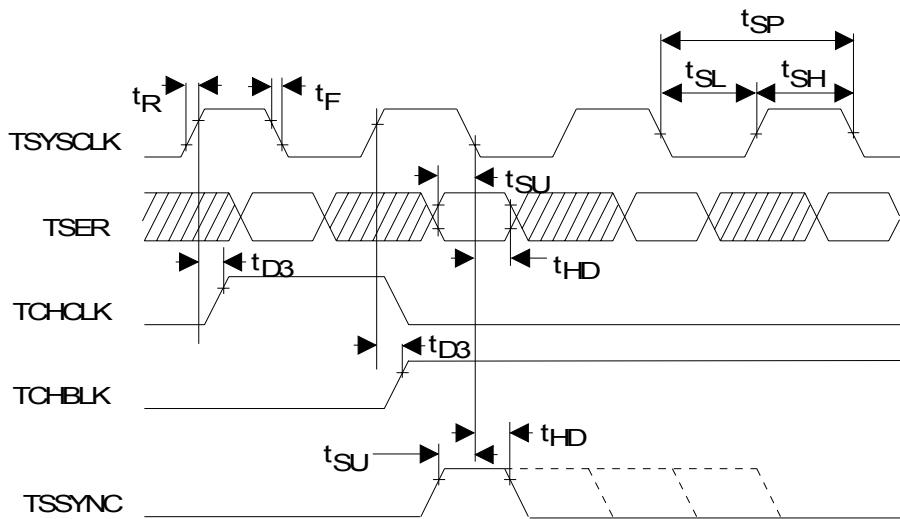
1. The signal DS is active high when emulating the DS21Q43 (FMS = 1)


**Figure 19-8. RECEIVE SIDE AC TIMING**


## Notes:

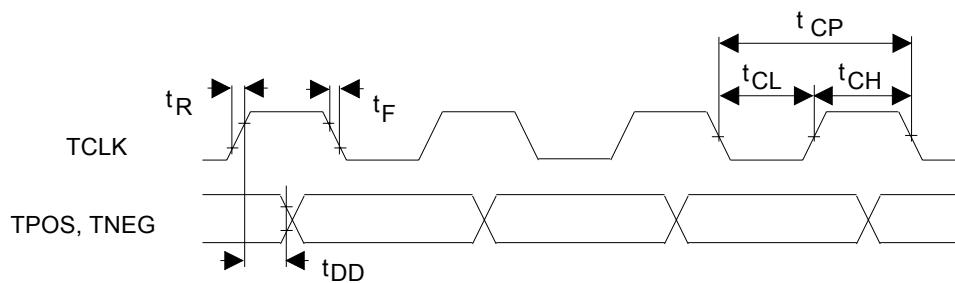
1. RSYNC is in the output mode (RCR1.5 = 0).
2. RLCLK will only pulse high during Sa bit locations as defined in RCR2; no relationship between RLCLK and RSYNC or RFSYNC is implied.

**Figure 19-9. RECEIVE SYSTEM SIDE AC TIMING****Notes:**

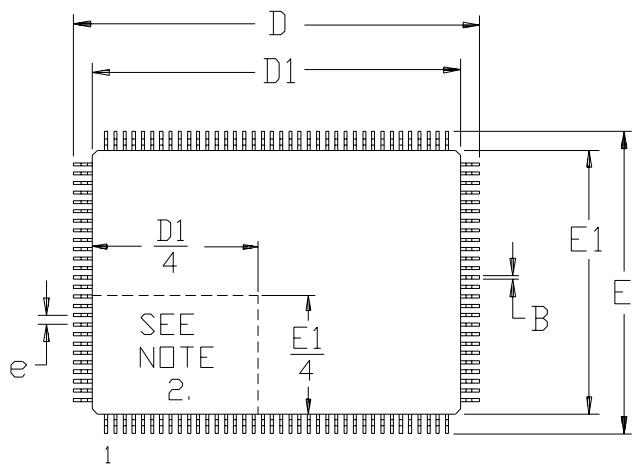

1. RSYNC is in the output mode (RCR1.5 = 0)
2. RSYNC is in the input mode (RCR1.5 = 1)

**Figure 19-10. RECEIVE LINE INTERFACE AC TIMING**

**Figure 19-11. TRANSMIT SIDE AC TIMING**

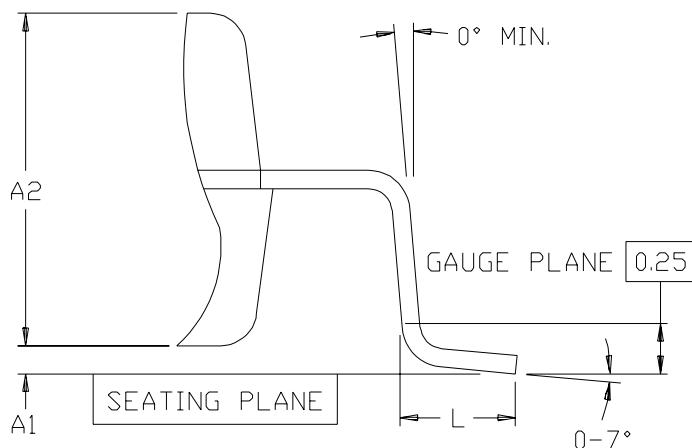
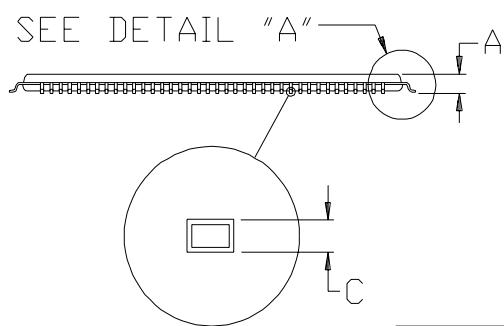

Notes:

1. TSYNC is in the output mode (TCR1.0 = 1).
2. TSYNC is in the input mode (TCR1.0 = 0).
3. TSER is sampled on the falling edge of TCLK when the transmit side elastic store is disabled.
4. TCHCLK and TCHBLK are synchronous with TCLK when the transmit side elastic store is disabled.
5. TLINK is only sampled during Sa bit locations as defined in TCR2; no relationship between TLCLK/TLINK and TSYNC is implied.


**Figure 19-12. TRANSMIT SYSTEM SIDE AC TIMING**

Notes:

1. TSER is only sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.
2. TCHCLK and TCHBLK are synchronous with TSYSCLK when the transmit side elastic store is enabled.



**Figure 19-13. TRANSMIT LINE INTERFACE SIDE AC TIMING**

## 20. 128-PIN TQFP PACKAGE SPECIFICATIONS



### NOTES:

1. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH, BUT DO NOT INCLUDE MOLD PROTRUSION; ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE.
2. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
3. ALLOWABLE DAMBAR PROTRUSION IS 0.08 MM TOTAL IN EXCESS OF THE B DIMENSION; PROTRUSION NOT TO BE LOCATED ON LOWER RADIUS OR FOOT OF LEAD.



DETAIL A

DIMENSIONS ARE IN MILLIMETERS

| DIM | MIN   | MAX   |
|-----|-------|-------|
| A   | —     | 1.60  |
| A1  | 0.05  | —     |
| A2  | 1.35  | 1.45  |
| B   | 0.17  | 0.27  |
| C   | 0.09  | 0.20  |
| D   | 21.80 | 22.20 |
| D1  | 20.00 | BSC   |
| E   | 15.80 | 16.20 |
| E1  | 14.00 | BSC   |
| e   | 0.50  | BSC   |
| L   | 0.45  | 0.75  |