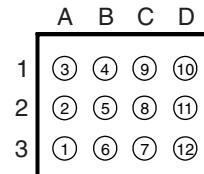


HIGH-BANDWIDTH DUAL SPDT DIFFERENTIAL SIGNAL SWITCH WITH INPUT LOGIC TRANSLATION

Check for Samples: [TS3DS26227](#)


FEATURES

- High-Bandwidth Data Paths – Up to 800 MHz
- Specified Break-Before-Make Switching
- Control Inputs Reference to V_{IO}
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 2.3-V to 3.6-V Power Supply (V_+)
- 1.65-V to 1.95-V Logic Supply (V_{IO})
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 4000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
 - 200-V Machine Model (A115-A)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation
- Low-Voltage Differential Signal Routing
- Mobile Industry Processor Interface (MIPI) Signal Routing

**YZT PACKAGE
(BOTTOM VIEW)**

Table 1. TERMINAL ASSIGNMENTS

	A	B	C	D
1	IN1	NO1	COM1	NC1
2	V_{IO}	GND	GND	V_+
3	IN2	NO2	COM2	NC2

DESCRIPTION/ORDERING INFORMATION

The TS3DS26227 is a dual single-pole double-throw (SPDT) analog switch that is designed to operate from 2.3 V to 3.6 V. The device offers high-bandwidth data paths, and a break-before-make feature to prevent signal distortion during the transferring of a signal from one path to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable applications.

The TS3DS26227 has a separate logic supply pin (V_{IO}) that operates from 1.65 V to 1.95 V. V_{IO} powers the control circuitry, which allows the TS3DS26227 to be controlled by 1.8-V signals.

ORDERING INFORMATION

T _A	PACKAGE ^{(1) (2)}	ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
–40°C to 85°C	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZT (Pb-free)	Tape and reel	TS3DS26227YZTR

- (1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
- (3) YZT: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

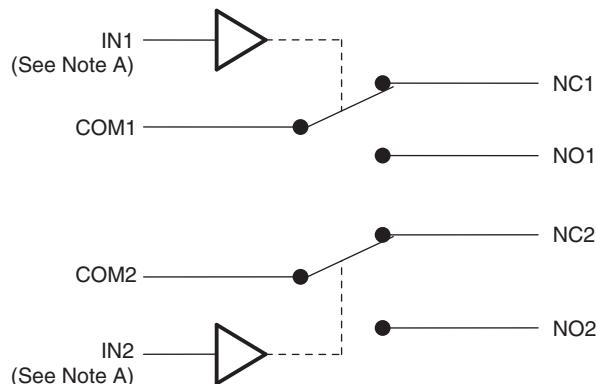

NanoFree is a trademark of Texas Instruments.

Table 2. SUMMARY OF CHARACTERISTICS⁽¹⁾

Configuration	Dual 2:1 Multiplexer/Demultiplexer (2 × SPDT)
Number of channels	2
ON-state resistance (r_{on})	5 Ω max
ON-state resistance match (Δr_{on})	0.1 Ω max
ON-state resistance flatness [$r_{on(flat)}$]	3 Ω max
Turn-on/turn-off time (t_{ON}/t_{OFF})	9 ns/4 ns
Break-before-make time (t_{BBM})	8 ns
Charge injection (Q_C)	5.5 pC
Bandwidth (BW)	800 MHz
OFF isolation (O_{ISO})	-40 dB
Crosstalk (X_{TALK})	-39 dB
Leakage current [$I_{NO(OFF)}/I_{NC(OFF)}$]	±5 nA
Power-supply current (I_+)	±20 nA
Package options	12-bump WCSP

(1) $V_+ = 2.7$ V, $T_A = 25^\circ\text{C}$ **Table 3. FUNCTION TABLE**

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

LOGIC DIAGRAMA. IN1 and IN2 are control inputs referenced to V_{IO} .

ABSOLUTE MAXIMUM RATINGS^{(1) (2)}

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_+ V_{IO}	Supply voltage range ⁽³⁾		-0.5	4.6	V
V_{NC} V_{NO} V_{COM}	Analog voltage range ^{(3) (4) (5)}		-0.5	$V_+ + 0.5$	V
I_K	Analog port diode current	$V_{NC}, V_{NO}, V_{COM} < 0$, or $V_{NC}, V_{NO}, V_{COM} > V_+ + 0.5$	-50	50	mA
I_{NC} I_{NO} I_{COM}	On-state switch current	$V_{NC}, V_{NO}, V_{COM} = 0$ to V_+	-64	64	mA
	On-state peak switch current		-100	100	
V_I	Digital input voltage range		-0.5	$V_{IO} + 0.5$	V
I_{IK}	Digital input clamp current ^{(3) (4)}	$V_I < 0$, or $V_I > V_{IO} + 0.5$	-50	50	mA
I_+	Continuous current through V_+		-100	100	mA
I_{GND}	Continuous current through GND		-100	100	mA
θ_{JA}	Package thermal impedance ⁽⁶⁾	YZT package		TBD	°C/W
T_{stg}	Storage temperature range		-65	150	°C

- (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
- (6) The package thermal impedance is calculated in accordance with JESD 51-7.

ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY⁽¹⁾

$V_+ = 2.7$ V to 3.6 V, $V_{IO} = 1.65$ V to 1.95 V, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_A	V_+	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM} , V_{NO} , V_{NC}					0	V_+		V
ON-state resistance	r_{on}	$0 \leq (V_{NO} \text{ or } V_{NC}) \leq 1.6$, $I_{COM} = -10$ mA, See Figure 13	Switch ON, See Figure 13	25°C	2.7 V	3.5	5	Ω	
				Full			6		
ON-state resistance match between channels	Δr_{on}	$V_{NO} \text{ or } V_{NC} = 1.6$ V, $I_{COM} = -10$ mA, See Figure 13	Switch ON, See Figure 13	25°C	2.7 V	0.05	0.1	Ω	
				Full			0.2		
ON-state resistance flatness	$r_{on(\text{flat})}$	$0 \leq (V_{NO} \text{ or } V_{NC}) \leq 1.6$ V, $I_{COM} = -10$ mA, See Figure 13	Switch ON, See Figure 13	25°C	2.7 V	2	3	Ω	
				Full			4		
NC, NO OFF leakage current	$I_{NO(OFF)}$, $I_{NC(OFF)}$	$V_{NO} \text{ or } V_{NC} = 0.3$ V, $V_{COM} = 3$ V, or $V_{NO} \text{ or } V_{NC} = 3$ V, $V_{COM} = 0.3$ V, See Figure 14	Switch OFF, See Figure 14	25°C	3.6 V	-5	0.1	5	nA
				Full		-15	15		
NC, NO ON leakage current	$I_{NO(ON)}$, $I_{NC(ON)}$	$V_{NO} \text{ or } V_{NC} = 0.3$ V, $V_{COM} = \text{Open}$, or $V_{NO} \text{ or } V_{NC} = 3$ V, $V_{COM} = \text{Open}$, See Figure 15	Switch ON, See Figure 15	25°C	3.6 V	-10	0.2	10	nA
				Full		-30	30		
COM ON leakage current	$I_{COM(ON)}$	$V_{NO} \text{ or } V_{NC} = \text{Open}$, $V_{COM} = 0.3$ V, or $V_{NO} \text{ or } V_{NC} = \text{Open}$, $V_{COM} = 3$ V, See Figure 15	Switch ON, See Figure 15	25°C	3.6 V	-10	0.2	10	nA
				Full		-30	30		
Digital Control Inputs (IN1, IN2)⁽²⁾									
Input logic high	V_{IH}	$V_{IO} = 1.65$ V to 1.95 V		Full		$0.65 \times V_{IO}$	V_{IO}		V
Input logic low	V_{IL}	$V_{IO} = 1.65$ V to 1.95 V		Full		0	$0.35 \times V_{IO}$		V
Input leakage current	I_{IH} , I_{IL}	$V_{IN} = V_{IO}$ or 0		25°C	3.6 V	-2	0.1	2	nA
				Full		-10	10		

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(2) All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

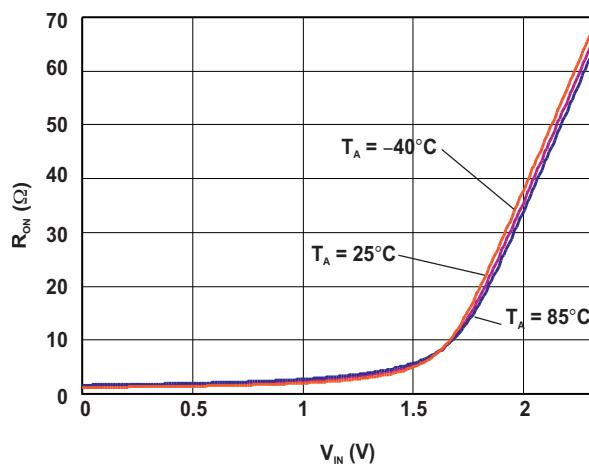
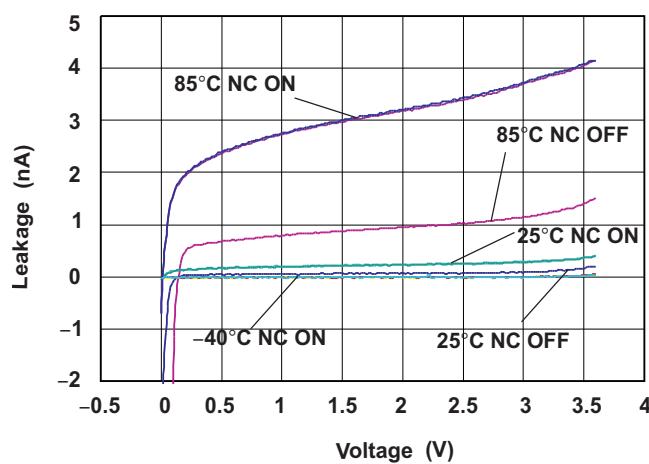
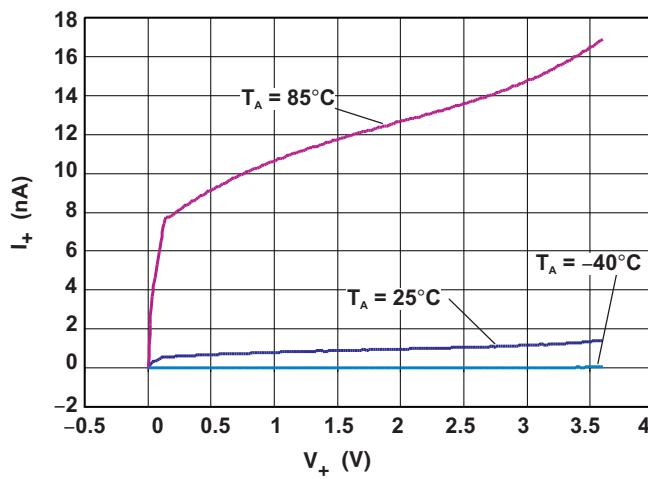
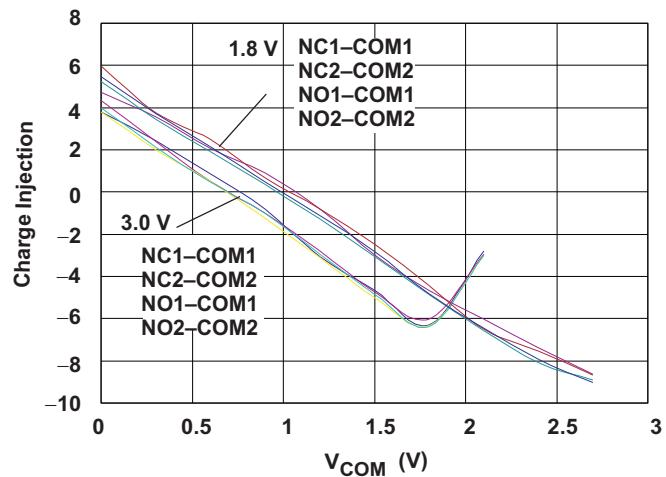
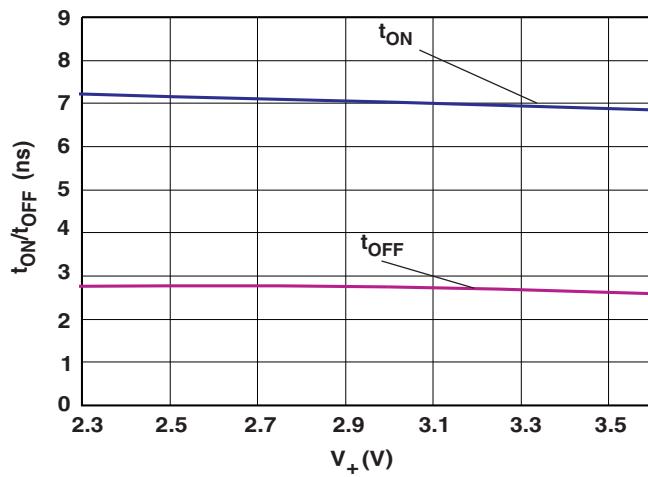
ELECTRICAL CHARACTERISTICS FOR 3.3-V SUPPLY⁽¹⁾ (continued)
 $V_+ = 2.7 \text{ V to } 3.6 \text{ V}$, $V_{IO} = 1.65 \text{ V to } 1.95 \text{ V}$, $T_A = -40^\circ\text{C to } 85^\circ\text{C}$ (unless otherwise noted)

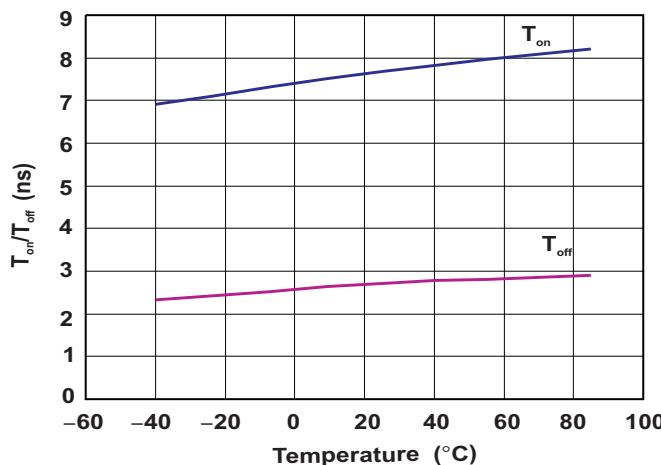
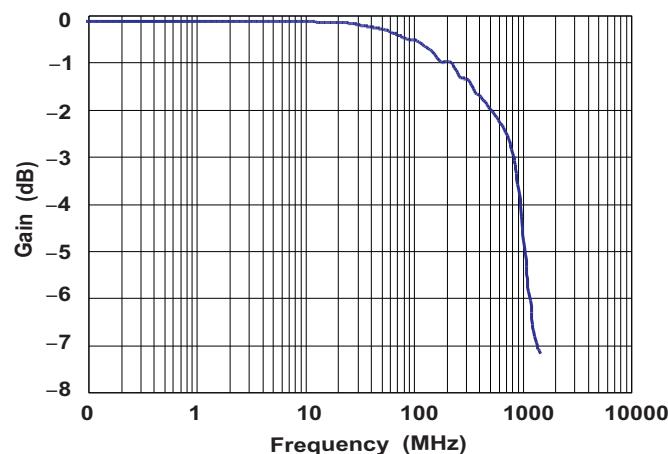
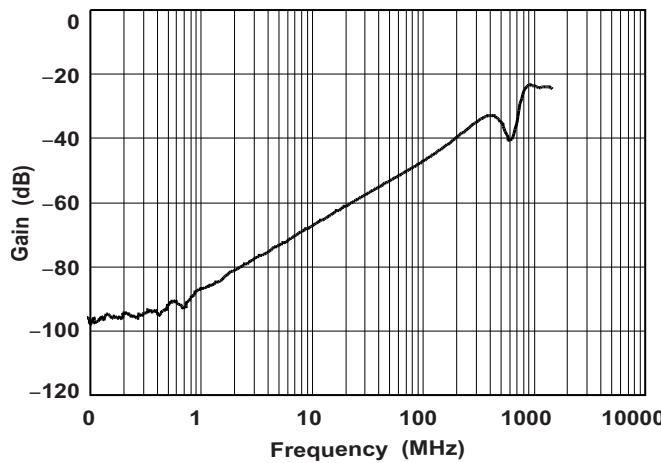
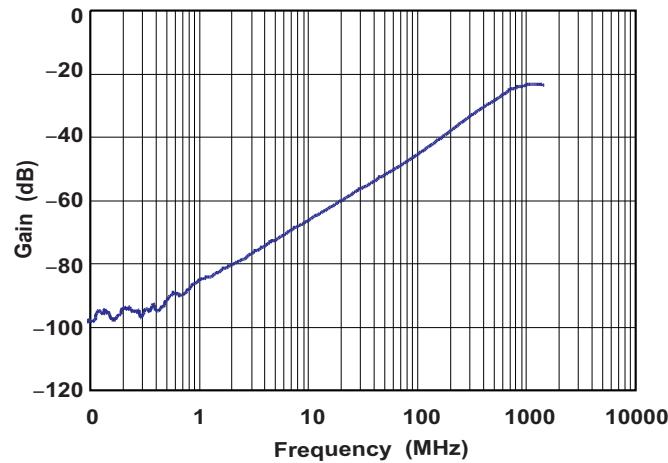
PARAMETER	SYMBOL	TEST CONDITIONS		T _A	V ₊	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	t _{ON}	V _{COM} = V ₊ , R _L = 50 Ω,	C _L = 35 pF, See Figure 17	25°C	3.3 V	1	6.5	9	ns
				Full	2.7 to 3.6 V	1		11.5	
Turn-off time	t _{OFF}	V _{COM} = V ₊ , R _L = 50 Ω,	C _L = 35 pF See Figure 17	25°C	3.3 V	1	2	4	ns
				Full	2.7 to 3.6 V	1		5	
Break-before-make time	t _{BBM}	V _{NC} = V _{NO} = 0.6 V, R _L = 50 Ω,	C _L = 35 pF See Figure 18	25°C	3.3 V	0.5	4	8	ns
				Full	2.7 to 3.6 V	0.5		9	
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF See Figure 22	25°C	3.3 V		5.5		pC
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V _{NC} or V _{NO} = 1.3 V or GND, Switch OFF,	See Figure 16	25°C	3.3 V		3.5		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V _{NC} or V _{NO} = 1.3 V or GND, Switch ON,	See Figure 16	25°C	3.3 V		10.5		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = 1.3 V or GND, Switch ON,	See Figure 16	25°C	3.3 V		10.5		pF
Digital input capacitance	C _I	V _I = V ₊ or GND	See Figure 16	25°C	3.3 V		2		pF
Bandwidth	BW	R _L = 50 Ω,	Switch ON See Figure 19	25°C	2.7 V		800		MHz
OFF isolation	O _{ISO}	R _L = 50 Ω, f = 200 MHz,	Switch OFF See Figure 20	25°C	2.7 V		-40		dB
Crosstalk	X _{TALK}	R _L = 50 Ω, f = 200 MHz,	Switch ON See Figure 21	25°C	2.7 V		-39		dB
Supply									
Positive supply current	I ₊	V _I = V ₊ or GND,	Switch ON or OFF	25°C	3.6 V	-20	1	20	nA
				Full		-500		500	
Logic supply current	I _{IO}	V _I = V _{IO} or GND,	Switch ON or OFF	25°C	3.6 V	-10	1	10	nA
				Full		-200		200	

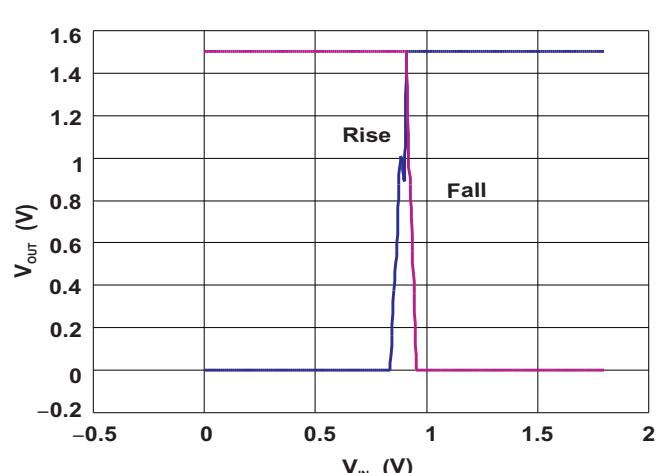
ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY⁽¹⁾

$V_+ = 2.3$ V to 2.7 V, $V_{IO} = 1.65$ V to 1.95 V, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	MIN	TYP	MAX	UNIT
Analog Switch								
Analog signal range	V_{COM}, V_{NO}, V_{NC}				0		V_+	V
ON-state resistance	r_{on}	$0 \leq (V_{NO} \text{ or } V_{NC}) \leq 1.3$, $I_{COM} = -10$ mA, See Figure 13	25°C	2.3 V		4	5.5	Ω
			Full				7	
ON-state resistance match between channels	Δr_{on}	$V_{NO} \text{ or } V_{NC} = 1.3$ V, $I_{COM} = -10$ mA, See Figure 13	25°C	2.3 V		0.05	0.1	Ω
			Full				0.2	
ON-state resistance flatness	$r_{on(flat)}$	$0 \leq (V_{NO} \text{ or } V_{NC}) \leq 1.3$ V, $I_{COM} = -10$ mA, See Figure 13	25°C	2.3 V		2.5	4	Ω
			Full				4.5	
NC, NO OFF leakage current	$I_{NO(OFF)}, I_{NC(OFF)}$	$V_{NO} \text{ or } V_{NC} = 0.2$ V, $V_{COM} = 2.3$ V, or $V_{NO} \text{ or } V_{NC} = 2.3$ V, $V_{COM} = 0.2$ V, See Figure 14	25°C	2.7 V		-5	0.1	nA
			Full			-15	15	
NC, NO ON leakage current	$I_{NO(ON)}, I_{NC(ON)}$	$V_{NO} \text{ or } V_{NC} = 0.2$ V, $V_{COM} = \text{Open}$, or $V_{NO} \text{ or } V_{NC} = 2.3$ V, $V_{COM} = \text{Open}$, See Figure 15	25°C	2.7 V		-5	0.2	nA
			Full			-20	20	
COM ON leakage current	$I_{COM(ON)}$	$V_{NO} \text{ or } V_{NC} = \text{Open}$, $V_{COM} = 0.2$ V, or $V_{NO} \text{ or } V_{NC} = \text{Open}$, $V_{COM} = 2.3$ V, See Figure 15	25°C	2.7 V		-1	0.05	nA
			Full			-10	10	
Digital Control Inputs (IN1, IN2)⁽²⁾								
Input logic high	V_{IH}	$V_{IO} = 1.65$ V to 1.95 V	Full		$0.65 \times V_{IO}$		V_{IO}	V
Input logic low	V_{IL}	$V_{IO} = 1.65$ V to 1.95 V	Full		0	$0.35 \times V_{IO}$		V
Input leakage current	I_{IH}, I_{IL}	$V_{IN} = V_{IO}$ or 0	25°C	2.7 V		-1	0.05	nA
			Full			-10	10	






(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum


(2) All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY⁽¹⁾ (continued)
 $V_+ = 2.3 \text{ V to } 2.7 \text{ V}$, $V_{IO} = 1.65 \text{ V to } 1.95 \text{ V}$, $T_A = -40^\circ\text{C to } 85^\circ\text{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	MIN	TYP	MAX	UNIT	
Dynamic									
Turn-on time	t_{ON}	$V_{COM} = V_+$, $R_L = 50 \Omega$, $C_L = 35 \text{ pF}$ See Figure 17	25°C	2.5 V	1	7	11	ns	
			Full	2.3 to 2.7 V	1		13		
Turn-off time	t_{OFF}	$V_{COM} = V_+$, $R_L = 50 \Omega$, $C_L = 35 \text{ pF}$ See Figure 17	25°C	2.5 V	1	2.5	4.5	ns	
			Full	2.3 to 2.7 V	1		5.5		
Break-before-make time	t_{BBM}	$V_{NC} = V_{NO} = 0.6 \text{ V}$, $R_L = 50 \Omega$, $C_L = 35 \text{ pF}$ See Figure 18	25°C	2.3 V	1	4	8	ns	
			Full	2.3 to 2.7 V	1		10		
Charge injection	Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$,	$C_L = 1 \text{ nF}$ See Figure 22	25°C	2.5 V		4	pC	
NC, NO OFF capacitance	$C_{NC(OFF)}$, $C_{NO(OFF)}$	V_{NC} or $V_{NO} = 1.6 \text{ V}$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		3.5	pF	
NC, NO ON capacitance	$C_{NC(ON)}$, $C_{NO(ON)}$	V_{NC} or $V_{NO} = 1.6 \text{ V}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		10.5	pF	
COM ON capacitance	$C_{COM(ON)}$	$V_{COM} = 1.6 \text{ V}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		10.5	pF	
Digital input capacitance	C_I	$V_I = V_+$ or GND	See Figure 16	25°C	2.5 V		2	pF	
Bandwidth	BW	$R_L = 50 \Omega$,	Switch ON See Figure 19	25°C	2.3 V		800	MHz	
OFF isolation	O_{ISO}	$R_L = 50 \Omega$, $f = 200 \text{ MHz}$,	Switch OFF See Figure 20	25°C	2.3 V		-40	dB	
Crosstalk	X_{TALK}	$R_L = 50 \Omega$, $f = 200 \text{ MHz}$,	Switch ON See Figure 21	25°C	2.3 V		-39	dB	
Supply									
Positive supply current	I_+	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	2.7 V	-10	1	10	nA
				Full		-350		350	
Logic supply current	I_{IO}	$V_I = V_{IO}$ or GND,	Switch ON or OFF	25°C	2.7 V	-5	1	5	nA
				Full		-200		200	

TYPICAL CHARACTERISTICS

Figure 1. r_{on} vs V_I (NC, NO, or COM), $V_+ = 2.3$ VFigure 2. r_{on} vs V_I (NC, NO, or COM), $V_+ = 2.7$ VFigure 3. Analog Switch Leakage Current vs V_I (NC, NO, or COM), $V_+ = 3.6$ VFigure 4. I_+ Supply Current vs V_+ Figure 5. Charge Injection vs V_{COM} Figure 6. t_{on}/t_{off} vs V_+

TYPICAL CHARACTERISTICS (continued)

Figure 7. t_{on}/t_{off} vs Temperature, $V_+ = 2.3$ V

Figure 8. Bandwidth, $V_+ = 2.5$ V

Figure 9. OFF Isolation vs Frequency, $V_+ = 2.5$ V

Figure 10. Crosstalk vs Frequency, $V_+ = 2.5$ V

Figure 11. Threshold Voltage, $V_{IO} = 1.8$ V, $V_+ = 2.7$ V

Figure 12. Threshold Voltage, $V_{IO} = 1.8$ V, $V_+ = 3.6$ V

PARAMETER MEASUREMENT INFORMATION

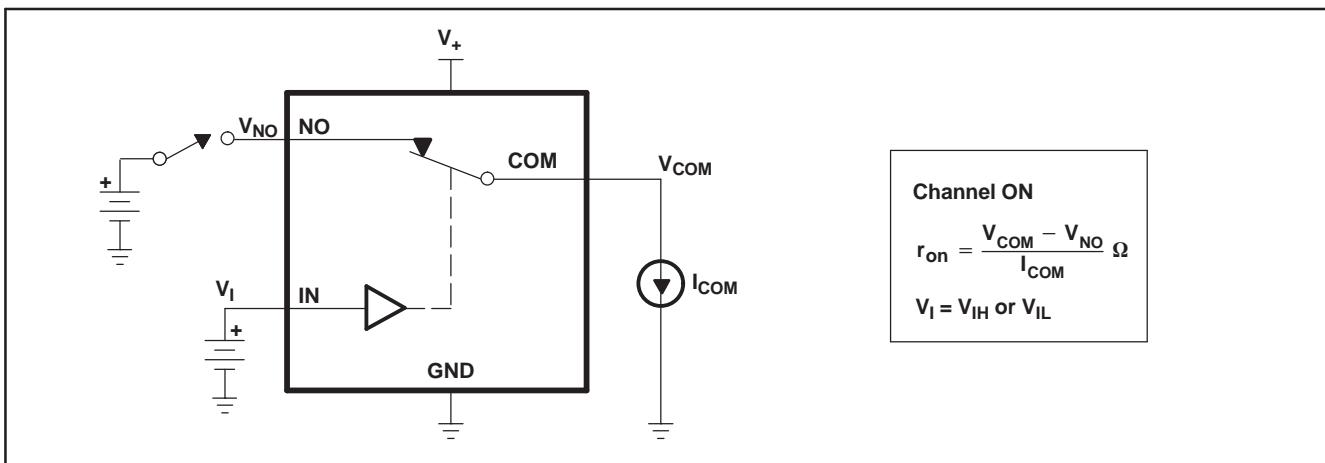


Figure 13. ON-State Resistance (r_{on})

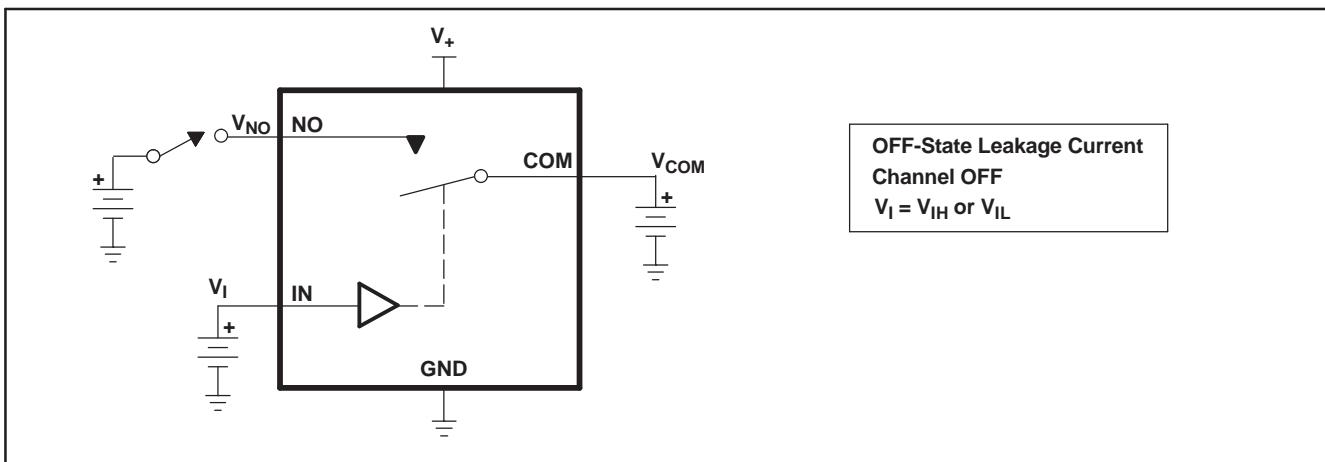


Figure 14. OFF-State Leakage Current ($I_{COM(OFF)}$, $I_{NC(OFF)}$, $I_{COM(PWROFF)}$, $I_{NC(PWROFF)}$)

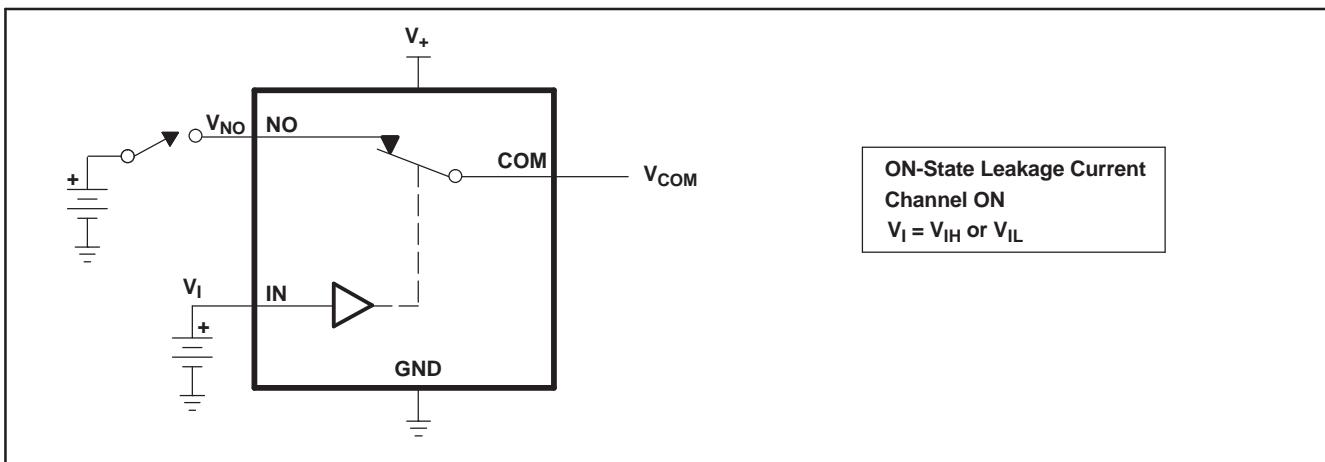
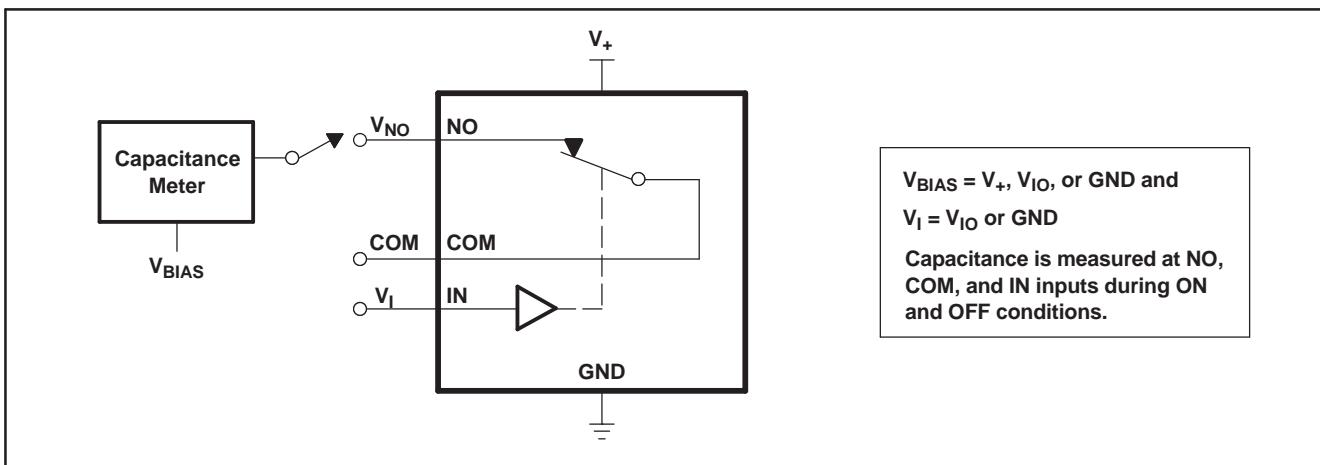
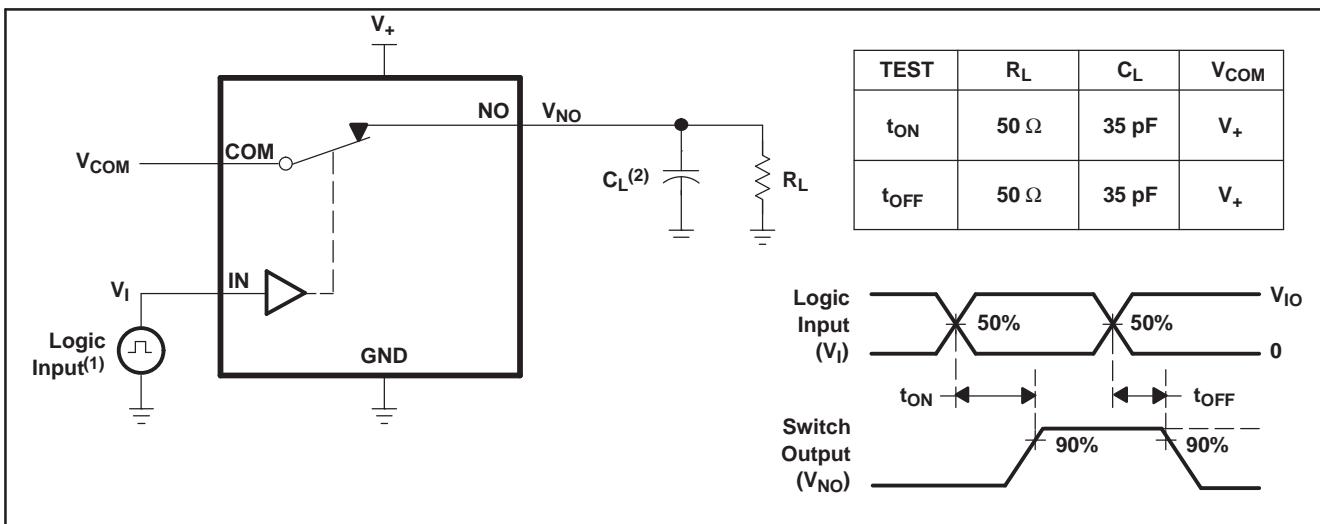




Figure 15. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$)

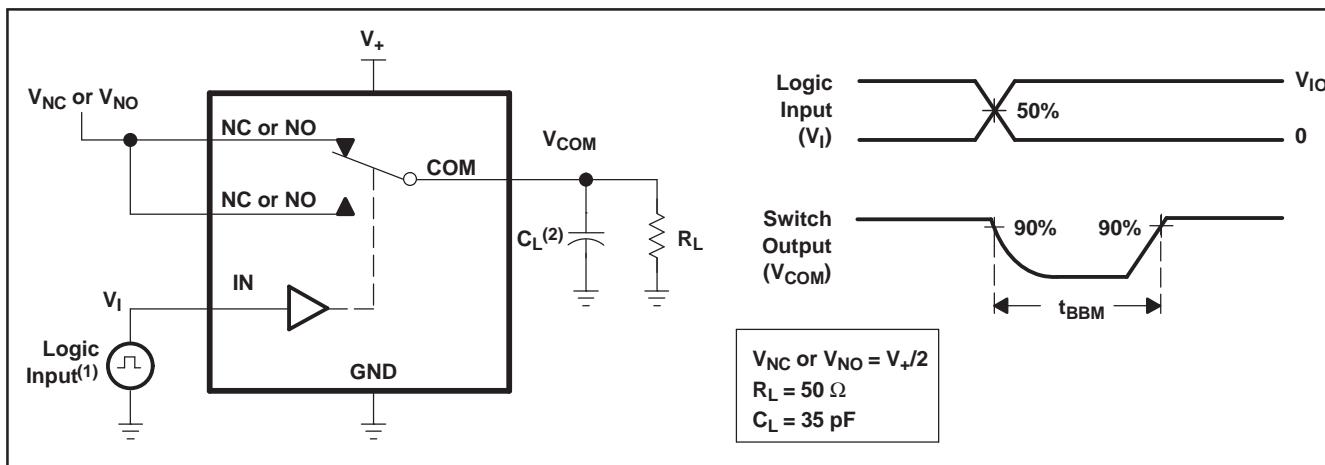

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 16. Capacitance (C_L , $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NC(OFF)}$, $C_{NC(ON)}$)

(1) All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.

(2) C_L includes probe and jig capacitance.

Figure 17. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

PARAMETER MEASUREMENT INFORMATION (continued)

(1) All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
 (2) C_L includes probe and jig capacitance.

Figure 18. Break-Before-Make Time (t_{BBM})

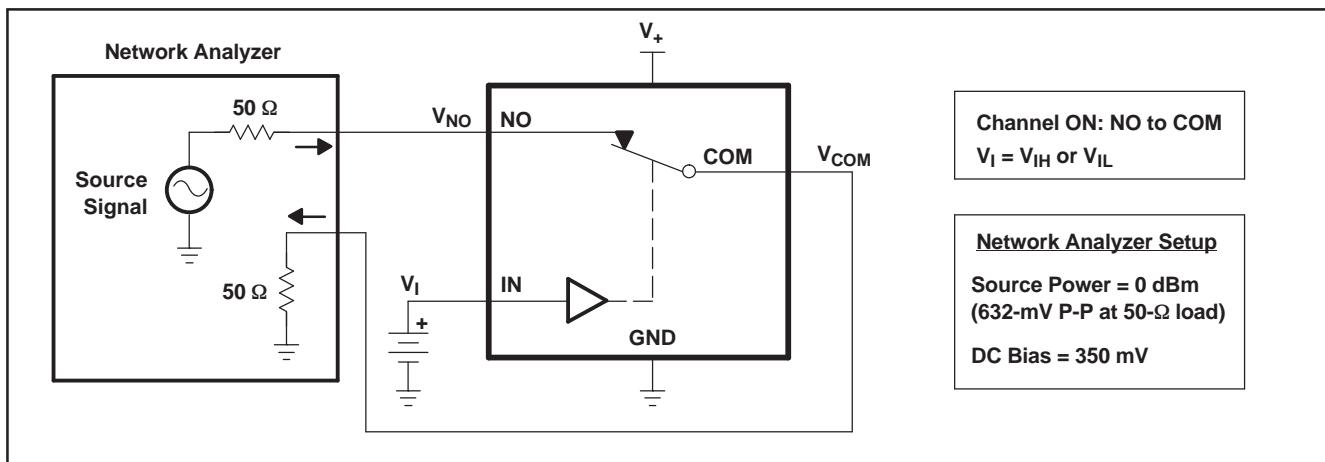
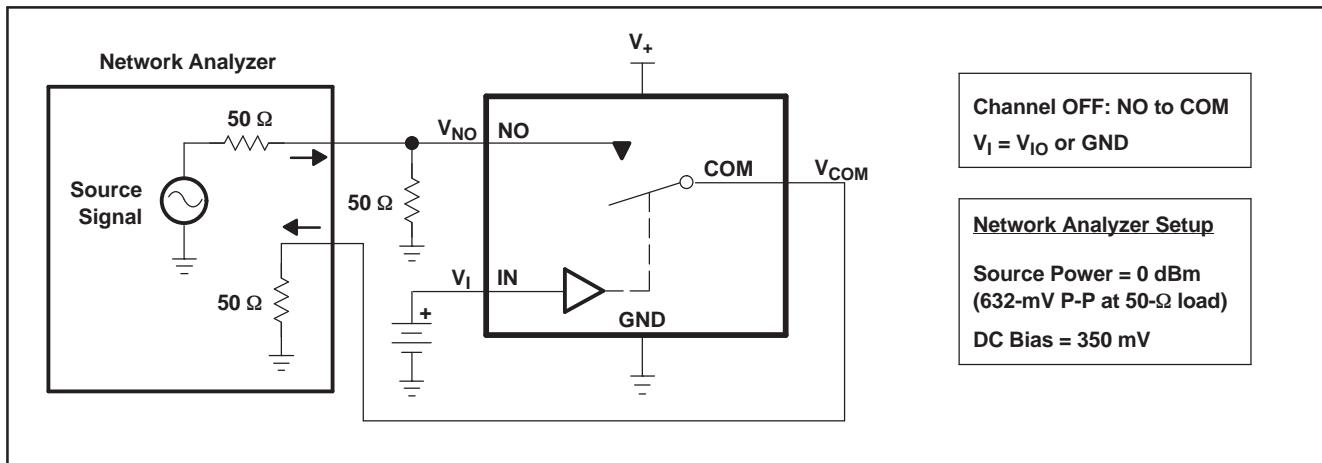
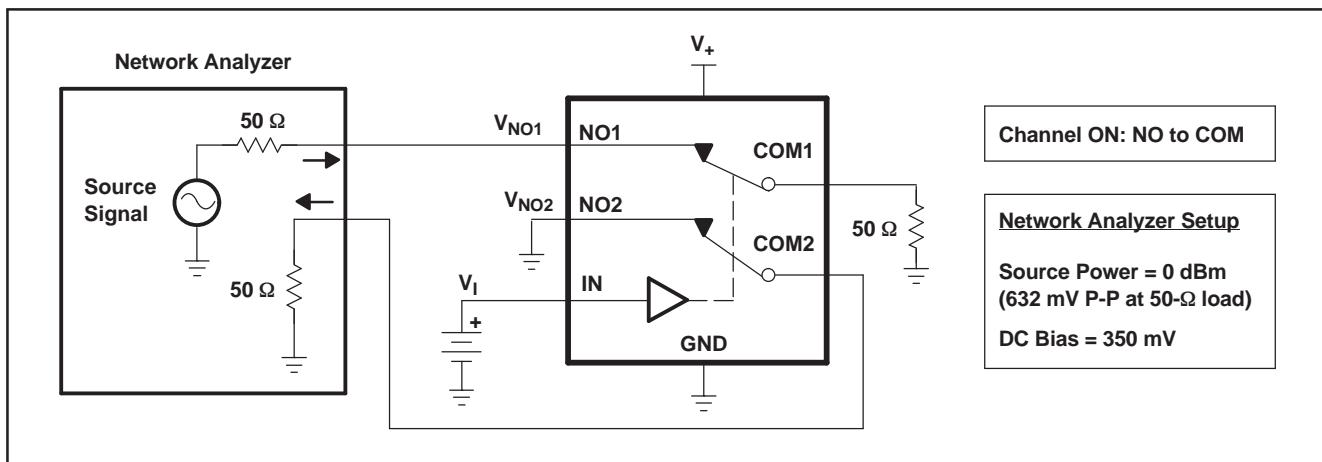




Figure 19. Bandwidth (BW)

PARAMETER MEASUREMENT INFORMATION (continued)

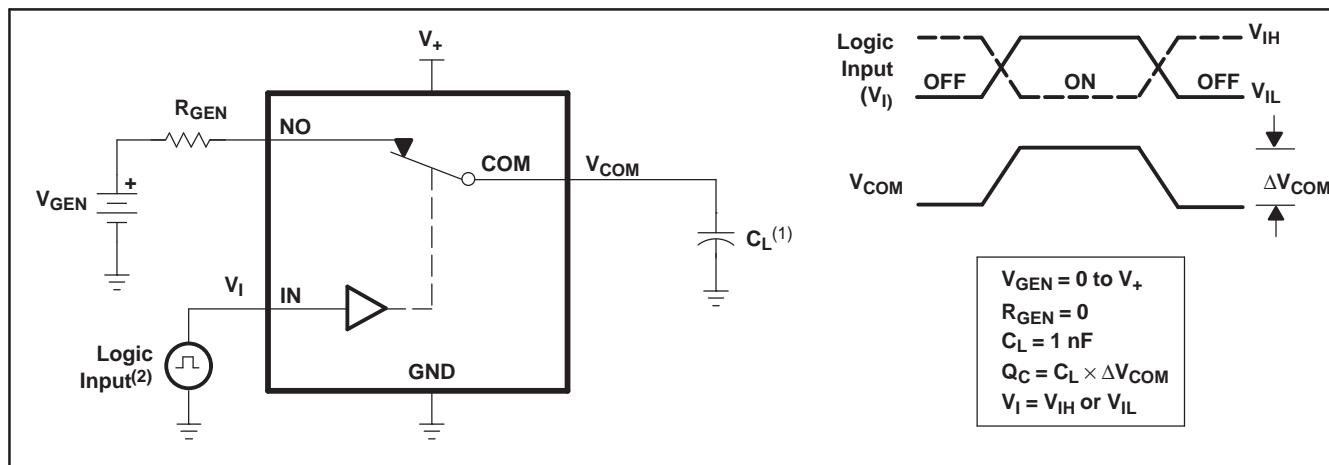
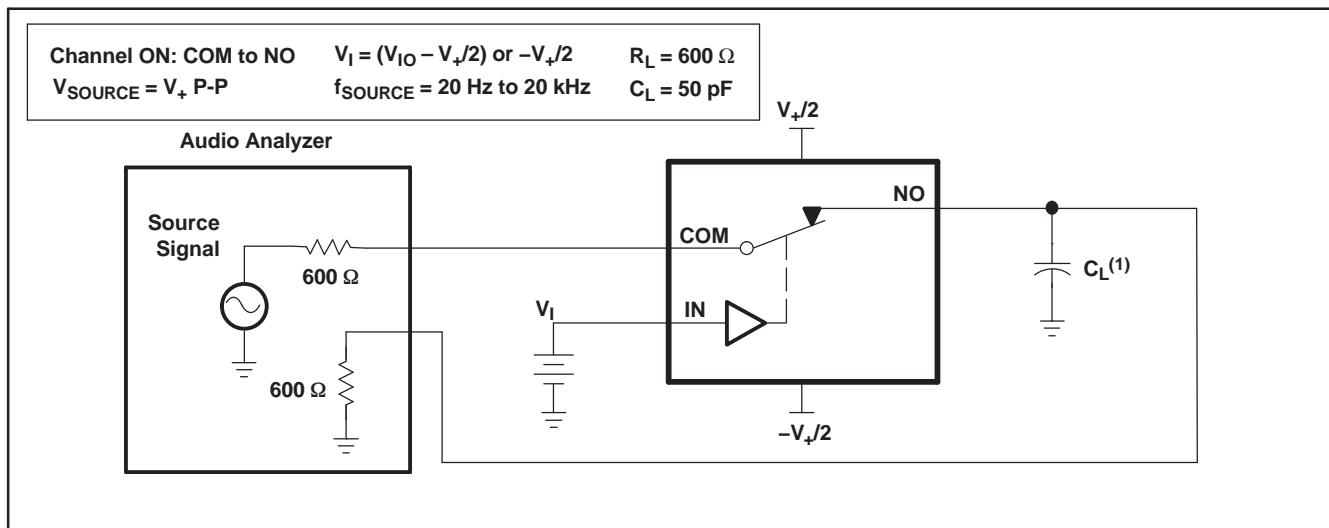


Figure 20. OFF Isolation (O_{Iso})

Figure 21. Crosstalk (X_{TALK})


PARAMETER MEASUREMENT INFORMATION (continued)

(1) C_J includes probe and jig capacitance.

(2) All input pulses are supplied by generators having the following characteristics: $PRR \leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.

Figure 22. Charge Injection (Q_C)

(1) C_1 includes probe and jig capacitance.

Figure 23. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TS3DS26227YZTR	ACTIVE	DSBGA	YZT	12	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85 (262 ~ 267 ~ 26N)		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

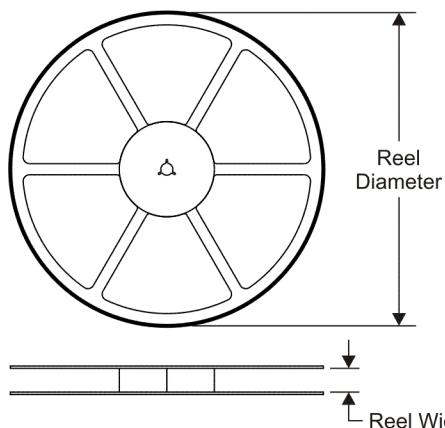
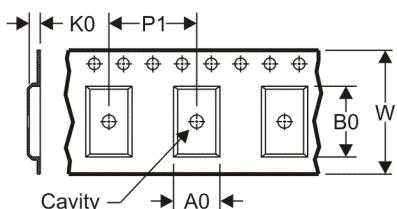
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

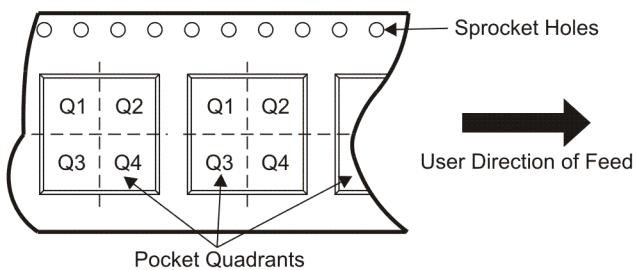
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

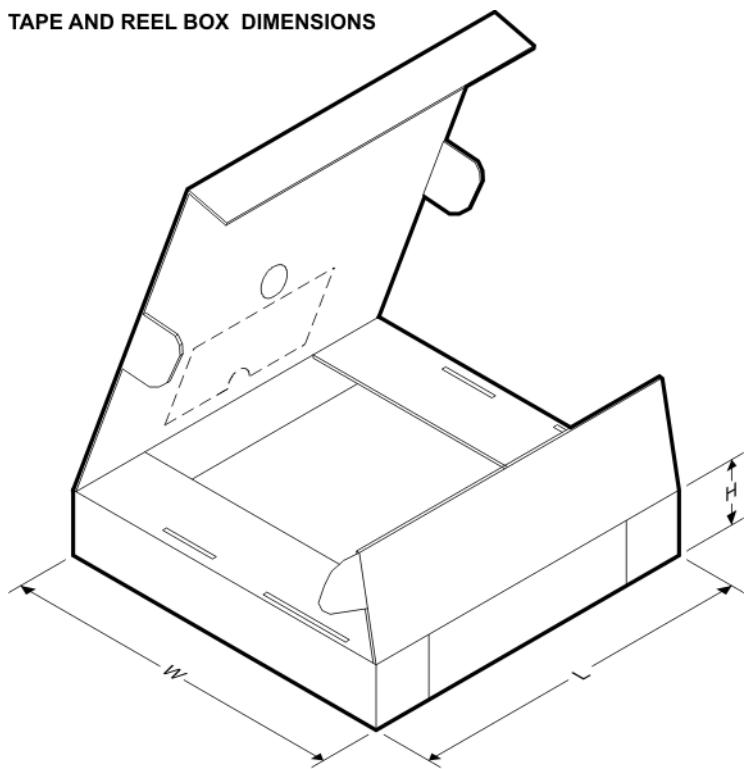


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.


(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

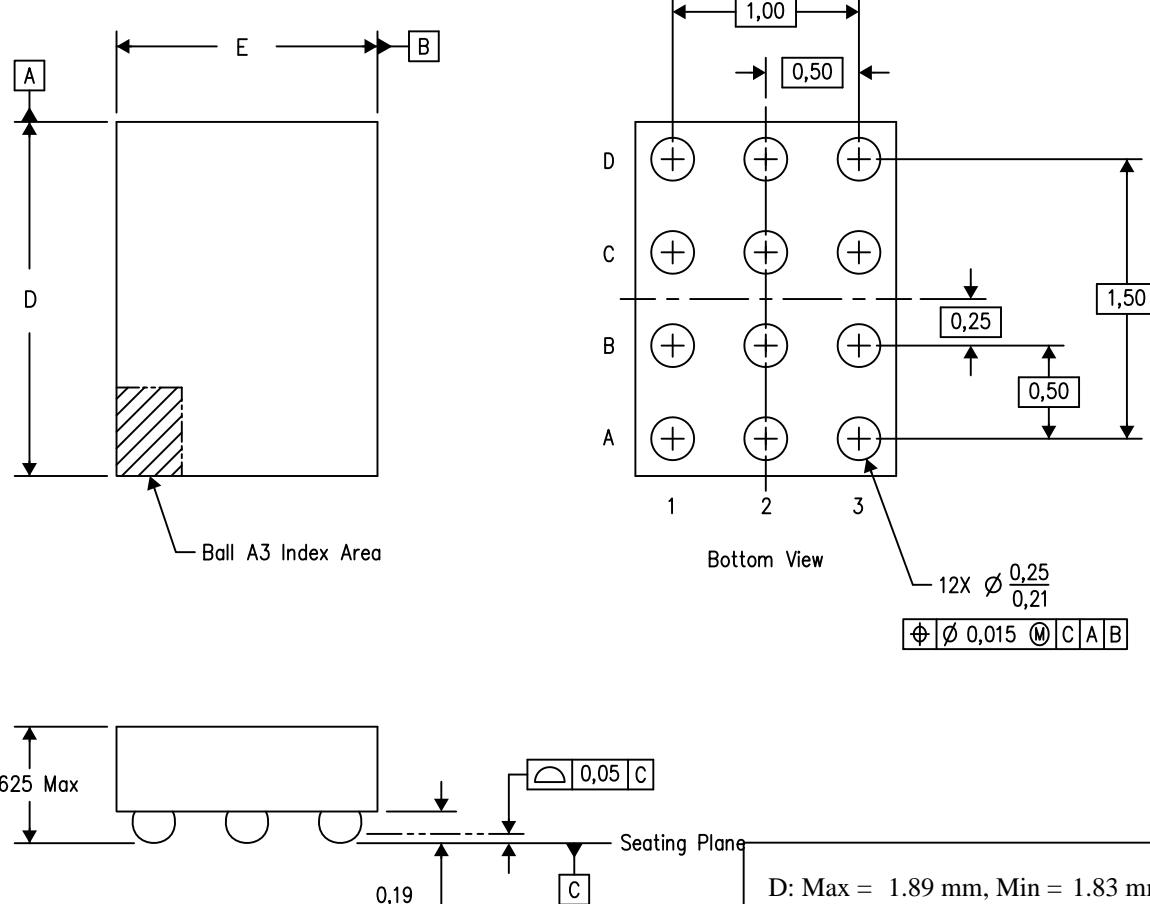
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3DS26227YZTR	DSBGA	YZT	12	3000	178.0	9.2	1.49	1.99	0.75	4.0	8.0	Q2

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3DS26227YZTR	DSBGA	YZT	12	3000	220.0	220.0	35.0

MECHANICAL DATA

YZT (R-XBGA-N12)

(CUSTOM) DIE-SIZE BALL GRID ARRAY

4205418-6/H 05/13

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.
 C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com