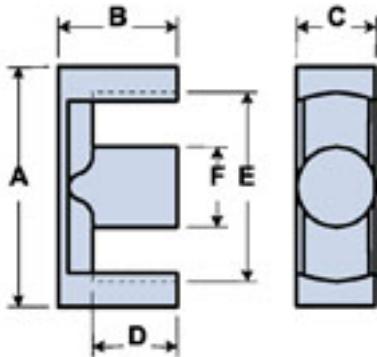


Fair-Rite Products Corp. Your Signal Solution®


Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9578494902
Printed: 2013-02-27

RoHS
Material Declaration

Part Number: 9578494902

Frequency Range: Dimensions

Description: 78 ETD CORE

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: ETD Cores

Generic Name: ETD49

Mechanical Specifications

Weight: 124.000(g)

Part Type Information

ETD29, ETD34, ETD39, ETD44, ETD49, ETD54, ETD59

ETD cores have been designed to make optimum use of a given volume of ferrite material for maximum throughput power, specifically for forward converter transformers. The structure, which includes a round center post, approaches a nearly uniform cross-sectional area throughout the core and provides a winding area that minimizes winding losses. ETD cores are used mainly in switched-mode power supplies and permit off-line designs where IEC and VDE isolation requirements must be met.

- ETD cores can be supplied with the centerpost gapped to a mechanical dimension.
- ETD cores can also be supplied to an AL value, these would be supplied in sets.

Fair-Rite Products Corp.

Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9578494902
Printed: 2013-02-27

RoHS
Material Declaration

Mechanical Specifications

Dim	mm	mm tol	nominal inch	inch misc.
A	49.00	± 0.8	1.929	-
B	24.70	± 0.2	0.972	-
C	16.30	± 0.4	0.642	-
D	18.10	± 0.2	0.713	-
E	36.10	min	1.421	min
F	16.30	± 0.4	0.642	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)	

Electrical Properties	
A_L (nH)	4000 $\pm 25\%$
A_e (cm ²)	2.13500
$\sum I/A$ (cm ⁻¹)	5.30
I_e (cm)	11.44
V_e (cm ³)	24.42000
A_{min} (cm ²)	2.090

Land Patterns

V	W ref	X	Y	Z
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns Tested	Wire Size	1st Wire Length	2nd Wire Length
-	-	-	-

Reel Information

Tape Width mm	Pitch mm	Parts 7 " Reel	Parts 13 " Reel	Parts 14 " Reel
-	-	-	-	-

Package Size

Pkg Size
- (-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

$\sum I/A$ - Core Constant

A_e - Effective Cross-Sectional Area

A_L - Inductance Factor ($\frac{L}{N^2}$)

N/AWG - Number of Turns/Wire Size for Test Coil

I_e : Effective Path Length

V_e : Effective Core Volume

NI - Value of dc Ampere-turns

Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9578494902
Printed: 2013-02-27

RoHS
Material
Declaration

Ferrite Material Constants

Specific Heat	0.25 cal/g/°C
Thermal Conductivity	10x10 ⁻³ cal/sec/cm/°C
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /°C
Tensile Strength	4.9 kgf/mm ²
Compressive Strength	42 kgf/mm ²
Young's Modulus	15x10 ³ kgf/mm ²
Hardness (Knoop)	650
Specific Gravity	≈ 4.7 g/cm ³

The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

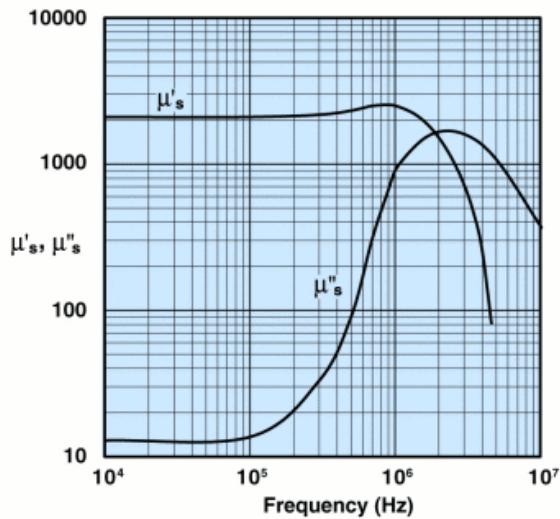
Fair-Rite Products Corp.

Your Signal Solution®

Ferrite Components for the Electronics Industry

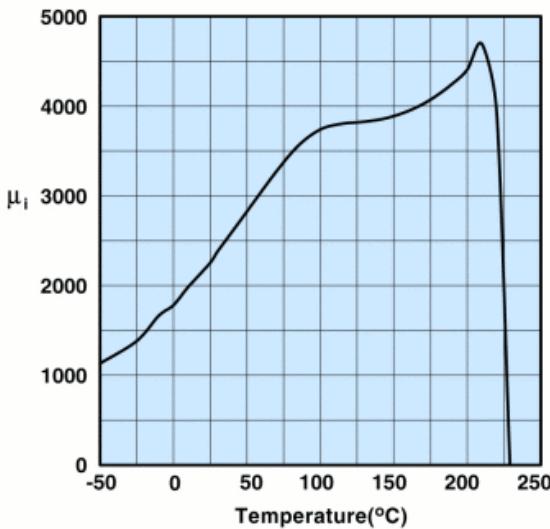
Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog
Part Data Sheet, 9578494902
Printed: 2013-02-27

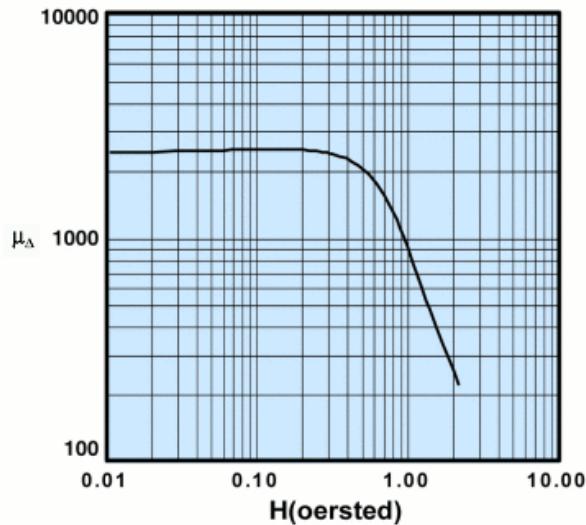

A MnZn ferrite specifically designed for power applications for frequencies up to 200 kHz.

RFID rods, toroids, U cores, and E&I cores are all available in 78 material.

78 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ $B < 10$ gauss		μ_i	2300
Flux Density @ Field Strength	gauss oersted	B H	4800 5
Residual Flux Density	gauss	B_r	1500
Coercive Force	oersted	H_c	0.20
Loss Factor	10^{-6} MHz	$\tan \delta / \mu_i$	4.5 0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/ $^{\circ}$ C		1.0
Curie Temperature	$^{\circ}$ C	T_c	>200
Resistivity	$\Omega \text{ cm}$	ρ	2×10^2

Complex Permeability vs. Frequency


Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

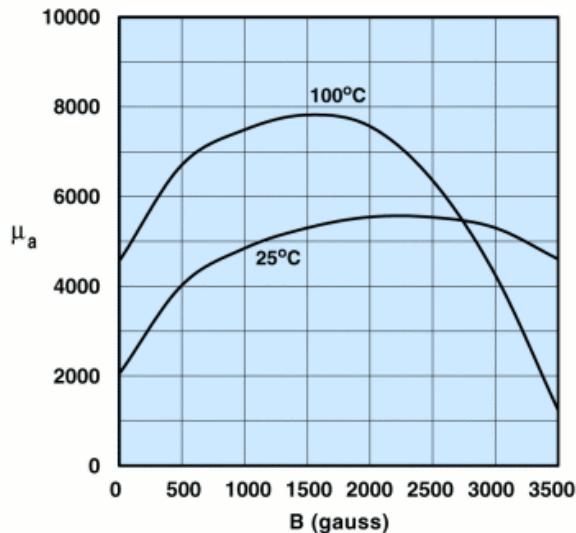


Measured on an 18/10/6mm toroid at 100kHz.

Incremental Permeability vs. H

Hysteresis Loop

Measured on an 18/10/6mm toroid at 10kHz.

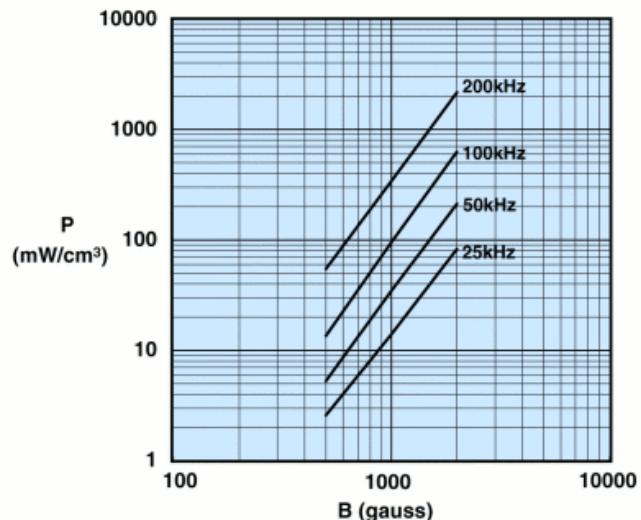


Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

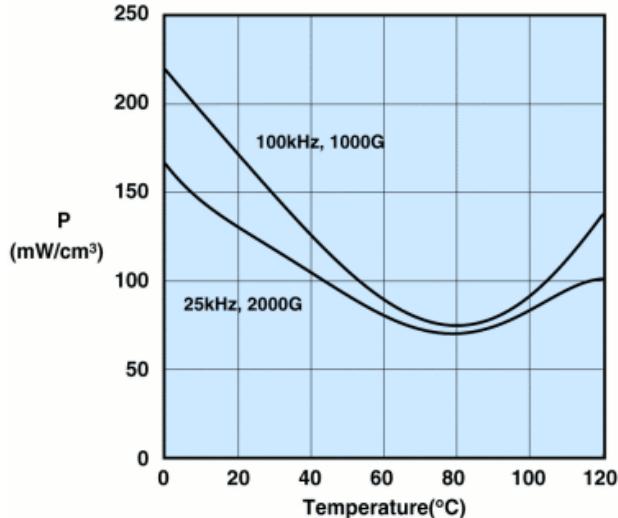
Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288
Phone: (888) 324-7748 www.fair-rite.com

Amplitude Permeability vs. Flux Density

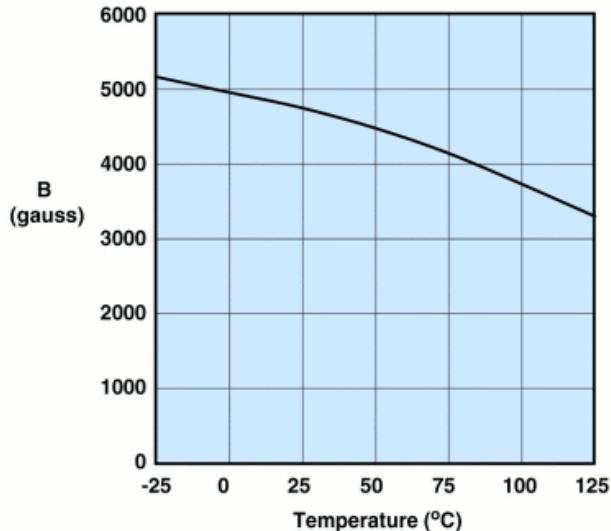


Measured on an 18/10/6mm toroid at 10kHz.

Fair-Rite Product's Catalog
Part Data Sheet, 9578494902
Printed: 2013-02-27



Power Loss Density vs. Flux Density


Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Flux Density vs. Temperature

Measured on an 18/10/6 mm toroid at 10kHz and H=5 oersted.