
Features

- Low $R_{DS(ON)}$:
 - 80 mΩ @ $V_{GS} = -4.5V$
 - 110 mΩ @ $V_{GS} = -2.7V$
 - 130 mΩ @ $V_{GS} = -2.5V$
- Low Input/Output Leakage
- Lead Free By Design/RoHS Compliant (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- "Green" Device (Note 4)

TOP VIEW

SOT-26

TOP VIEW
Internal Schematic

Mechanical Data

- Case: SOT-26
- Case Material – Molded Plastic. UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminals: Finish - Matte Tin Solderable per MIL-STD-202, Method 208
- Terminal Connections: See Diagram
- Marking Information: See Page 2
- Ordering Information: See page 2
- Weight: 0.008 grams (approximate)

Maximum Ratings

$@T_A = 25^\circ\text{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	-20	V
Gate-Source Voltage	V_{GSS}	± 12	V
Drain Current (Note 1) Continuous $T_A = 25^\circ\text{C}$ $T_A = 70^\circ\text{C}$	I_D	-3.4 -2.7	A
Pulsed Drain Current (Note 2)	I_{DM}	-12	A
Body-Diode Continuous Current (Note 1)	I_S	2.0	A

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Total Power Dissipation (Note 1)	P_D	1.25	W
Thermal Resistance, Junction to Ambient (Note 1); Steady-State	$R_{\theta JA}$	100	°C/W
Operating and Storage Temperature Range	T_J, T_{STG}	-55 to +150	°C

Notes:

1. Device mounted on 1"x1", FR-4 PC board with 2 oz. Copper and test pulse width $t \leq 10\text{s}$.
2. Repetitive Rating, pulse width limited by junction temperature.
3. No purposefully added lead.
4. Diodes Inc's "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.

Electrical Characteristics @ $T_A = 25^\circ\text{C}$ unless otherwise specified

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
STATIC PARAMETERS						
Drain-Source Breakdown Voltage	BV_{DSS}	-20	—	—	V	$I_D = -250\mu\text{A}$, $V_{GS} = 0\text{V}$
Zero Gate Voltage Drain Current $T_J = 25^\circ\text{C}$	I_{DSS}	—	—	-1	μA	$V_{DS} = -20\text{V}$, $V_{GS} = 0\text{V}$
Gate-Body Leakage Current	I_{GSS}	—	—	± 100	nA	$V_{DS} = 0\text{V}$, $V_{GS} = \pm 12\text{V}$
Gate Threshold Voltage	$V_{GS(\text{th})}$	-0.6	—	-1.25	V	$V_{DS} = V_{GS}$, $I_D = -250\mu\text{A}$
On State Drain Current (Note 5)	$I_{\text{D}(\text{ON})}$	-15	—	—	A	$V_{GS} = -4.5\text{V}$, $V_{DS} = -5\text{V}$
Static Drain-Source On-Resistance (Note 5)	$R_{\text{DS}(\text{ON})}$	—	51 82 94	80 110 130	$\text{m}\Omega$	$V_{GS} = -4.5\text{V}$, $I_D = -4.5\text{A}$ $V_{GS} = -2.7\text{V}$, $I_D = -3.8\text{A}$ $V_{GS} = -2.5\text{V}$, $I_D = -3.7\text{A}$
Forward Transconductance (Note 5)	g_{FS}	—	6.3	—	S	$V_{DS} = -10\text{V}$, $I_D = -4.5\text{A}$
Diode Forward Voltage (Note 5)	V_{SD}	—	0.79	-1.26	V	$I_S = -1.7\text{A}$, $V_{GS} = 0\text{V}$
Maximum Body-Diode Continuous Current (Note 1)	I_S	—	—	1.7	A	—
DYNAMIC PARAMETERS (Note 6)						
Total Gate Charge	Q_g	—	7.3	—	nC	$V_{GS} = -4.5\text{V}$, $V_{DS} = -10\text{V}$, $I_D = 4.5\text{A}$
Gate-Source Charge	Q_{gs}	—	2.0	—	nC	$V_{GS} = -4.5\text{V}$, $V_{DS} = -10\text{V}$, $I_D = 4.5\text{A}$
Gate-Drain Charge	Q_{gd}	—	1.9	—	nC	$V_{GS} = -4.5\text{V}$, $V_{DS} = -10\text{V}$, $I_D = 4.5\text{A}$
Turn-On Delay Time	$t_{\text{D}(\text{on})}$	—	12	—	ns	—
Turn-On Rise Time	t_r	—	20	—	ns	$V_{DS} = -10\text{V}$, $V_{GS} = -4.5\text{V}$,
Turn-Off Delay Time	$t_{\text{D}(\text{off})}$	—	38	—	ns	$R_L = 10\Omega$, $R_G = 6\Omega$
Turn-Off Fall Time	t_f	—	41	—	ns	—
Input Capacitance	C_{iss}	—	443	—	pF	$V_{DS} = -16\text{V}$, $V_{GS} = 0\text{V}$
Output Capacitance	C_{oss}	—	125	—	pF	$f = 1.0\text{MHz}$
Reverse Transfer Capacitance	C_{rss}	—	98	—	pF	—

Notes: 5. Test pulse width $t = 300\mu\text{s}$.

6. Guaranteed by design. Not subject to production testing.

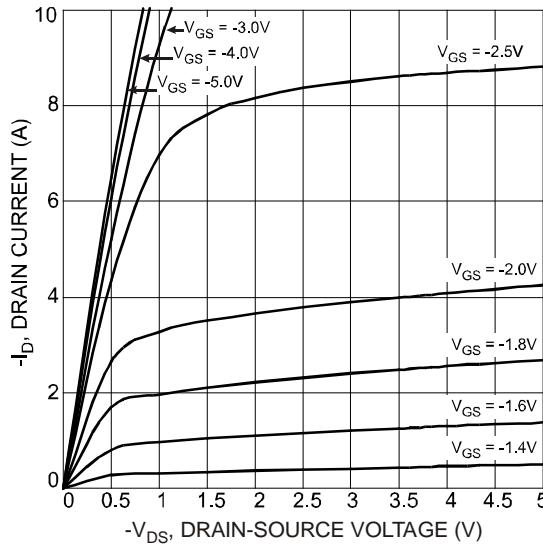


Fig. 1 Typical Output Characteristics

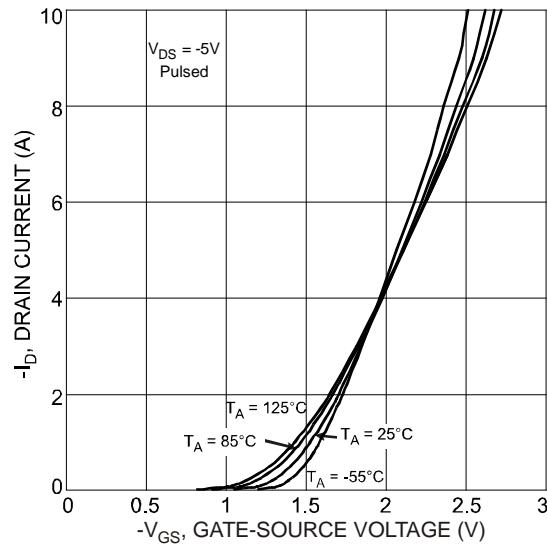


Fig. 2 Typical Transfer Characteristics

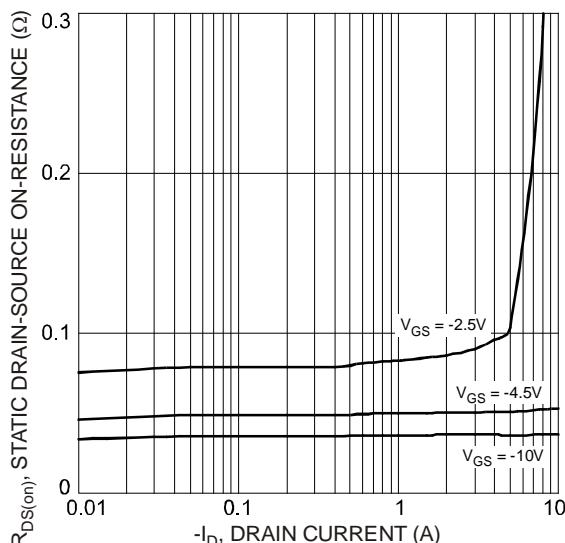


Fig. 3 On-Resistance vs. Drain Current and Gate Voltage

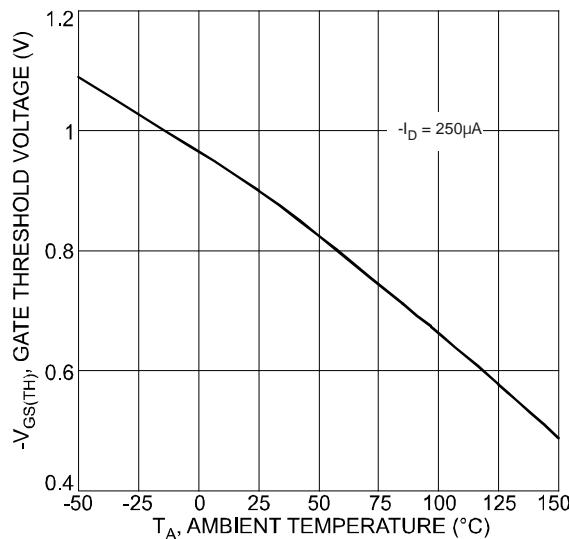


Fig. 5 Gate Threshold Voltage vs. Ambient Temperature

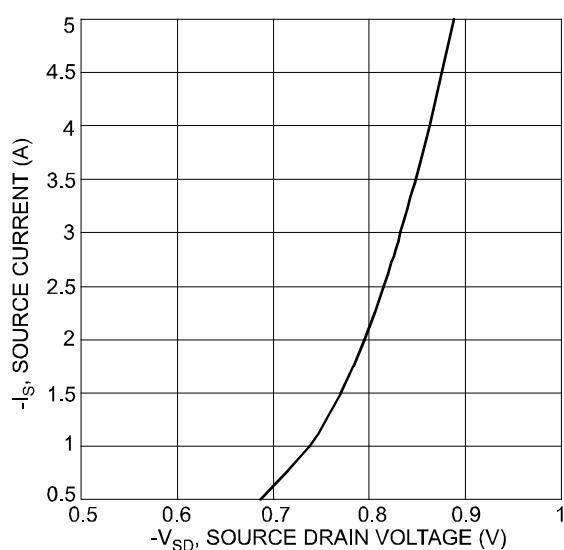


Fig. 7 Reverse Drain Current vs. Source-Drain Voltage

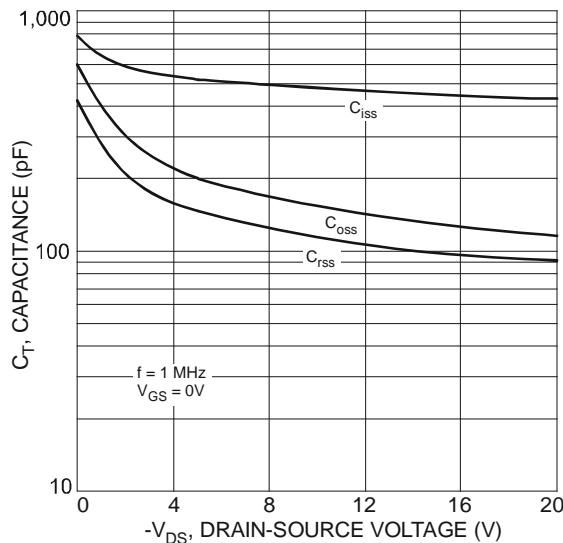
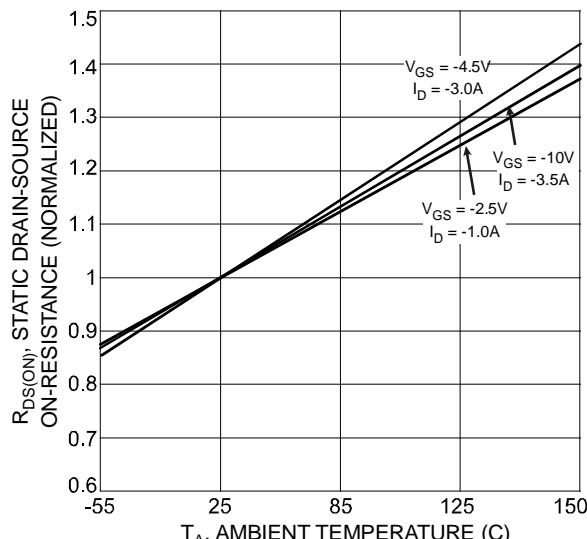
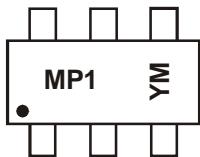


Fig. 4 Typical Total Capacitance




Fig. 6 Normalized Static Drain-Source On-Resistance vs. Ambient Temperature

Ordering Information (Note 7)

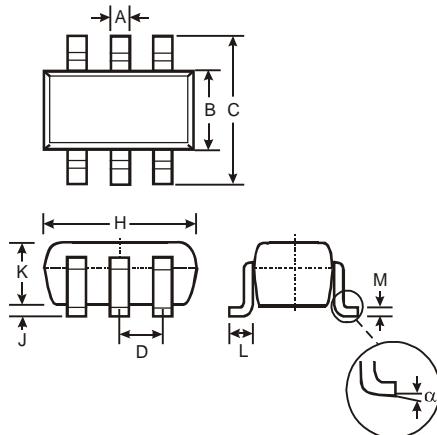
Part Number	Case	Packaging
DMP2130LDM-7	SOT-26	3000/Tape & Reel

Notes: 7. For packaging details, go to our website at <http://www.diodes.com/datasheets/ap02007.pdf>.

Marking Information

MP1 = Product Type Marking Code

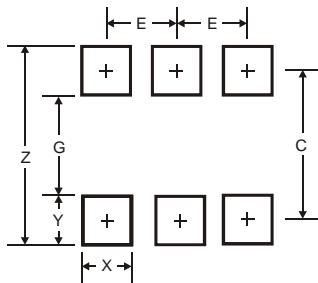
YM = Date Code Marking


Y = Year ex: U = 2007

M = Month ex: 9 = September

Date Code Key

Year	2007	2008	2009	2010	2011	2012						
Code	U	V	W	X	Y	Z						
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D


Package Outline Dimensions

SOT-26			
Dim	Min	Max	Typ
A	0.35	0.50	0.38
B	1.50	1.70	1.60
C	2.70	3.00	2.80
D	—	—	0.95
H	2.90	3.10	3.00
J	0.013	0.10	0.05
K	1.00	1.30	1.10
L	0.35	0.55	0.40
M	0.10	0.20	0.15
α	0°	8°	—

All Dimensions in mm

Suggested Pad Layout

Dimensions	Value (in mm)
Z	3.20
G	1.60
X	0.55
Y	0.80
C	2.40
E	0.95

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.