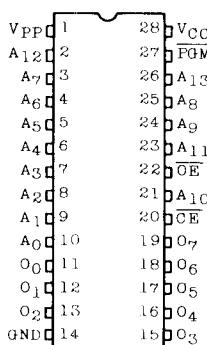


TOSHIBA MOS MEMORY PRODUCTS

**16,384 WORD X 8 BIT UV ERASABLE AND ELECTRICALLY
PROGRAMMABLE READ ONLY MEMORY**
N-CHANNEL SILICON STACKED GATE MOS

**TMM27128AD-15, TMM27128AD-150
TMM27128AD 20, TMM27128AD-200**


DESCRIPTION

The TMM27128AD is a 16,384 word \times 8 bit ultra-violet light erasable and electrically programmable read only memory. For read operation, the TMM27128AD's access time is 150ns/200ns, and the TMM27128AD operates from a single 5-volt power supply and has a low power standby mode which reduces the power dissipation without increasing access time.

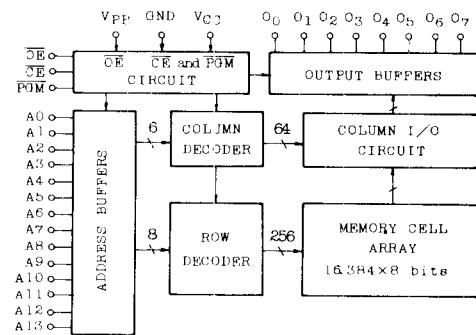
FEATURES

	-15	-20	-150	-200
V _{CC}	5V±5%		5V±10%	
I _{ACC}	150ns	200ns	150ns	200ns
I _{CC2}		100mA		120mA
I _{CC1}		30mA		35mA

PIN CONNECTION (TOP VIEW)

PIN NAMES

A ₀ ~A ₁₃	Address Inputs
O ₀ ~O ₇	Outputs (Inputs)
CE	Chip Enable Input
OE	Output Enable Input
PGM	Program Control Input
V _{PP}	Program Supply Voltage
V _{CC}	Power Supply Voltage (+5V)
GND	Ground


The standby mode is achieved by applying a TTL-high level signal to the \overline{CE} input.

For program operation, the program is achieved by using the high speed programming mode.

The TMM27128AD is fabricated with the N-channel silicon double layer gate MOS technology.

- Fully static operation
- High speed programming mode
- Single location programming
- Three state outputs
- Inputs and outputs TTL compatible
- Pin compatible with i27128A

BLOCK DIAGRAM

MODE SELECTION

PINS MODE	PGM (27)	CE (20)	OE (22)	V _{PP} (1)	V _{CC} (28)	O ₀ ~O ₇ (11~13, 15~19)	POWER
Read	H	L	L			Data Out	
Output	*	*	H	5V	5V	High Impedance	Active
Deselect							
Standby	*	H	*			High Impedance	Standby
Program	L	L	*			Data In	
Program	*	H	*			High Impedance	
Inhibit	H	L	H	12.5V	6V	High Impedance	Active
Program							
Verify	H	L	L			Data Out	

Note * : H or L

TMM27128AD-15, TMM27128AD-150 TMM27128AD-20, TMM27128AD-200

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V_{CC}	Power Supply Voltage	-0.6~7.0	V
V_{PP}	Program Supply Voltage	-0.6~14.0	V
V_{IN}	Input Voltage	-0.6~7.0	V
V_{IO}	Input/Output Voltage	-0.6~7.0	V
P_D	Power Dissipation	1.5	W
T_{SOLDER}	Soldering Temperature · Time	260 · 10	°C·sec
T_{STG}	Storage Temperature	-65~125	°C
T_{OPR}	Operating Temperature	0~70	°C

READ OPERATION

D. C. AND A.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	TMM27128AD-15/20	TMM27128AD-150/200
T_a	Operating Temperature	0~70°C	0~70°C
V_{CC}	V_{CC} Power Supply Voltage	5V±5%	5V±10%
V_{PP}	V_{PP} Power Supply Voltage	2.0~ V_{CC} +0.6V	2.0~ V_{CC} +0.6V

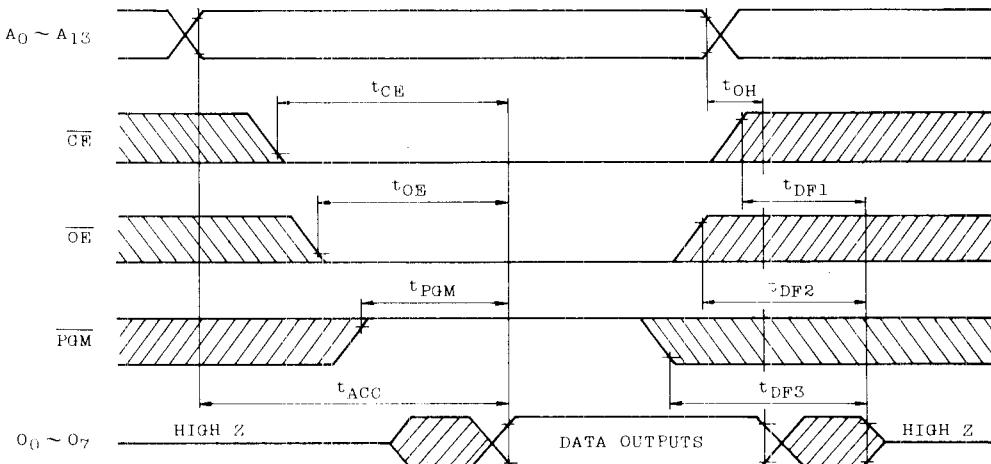
D. C. AND OPERATING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
I_{IN}	Input Current	$V_{IN}=0~V_{CC}$	—	—	±10	μA
I_{O}	Output Leakage Current	$V_{OUT}=0.4~V_{CC}$	—	—	±10	μA
I_{CC1}	Supply Current (Standby)	$\overline{CE}=V_{IH}$	-15/20	—	30	mA
			-150/200	—	35	
I_{CC2}	Supply Current (Active)	$CE=V_{IL}$	-15/20	—	100	mA
			-150/200	—	120	
V_{IH}	Input High Voltage		2.0	—	$V_{CC}-1.0$	V
V_{IL}	Input Low Voltage		—	—	0.8	V
V_{OH}	Output High Voltage	$I_{OH}=-400\mu A$	2.4	—	—	V
V_{OL}	Output Low Voltage	$I_{OL}=2.1mA$	—	—	0.4	V
I_{PP1}	V_{PP} Current	$V_{PP}=0-V_{CC}+0.6$	—	—	±10	μA

A. C. CHARACTERISTICS

SYMBOL	PARAMETER	TMM27128AD-15/150		TMM27128AD-20/200		UNIT
		MIN.	MAX.	MIN.	MAX.	
t_{ACC}	Address Access Time	—	150	—	200	ns
t_{CE}	CE to Output Valid	—	150	—	200	ns
t_{OE}	OE to Output Valid	—	70	—	70	ns
t_{PGM}	PGM to Output Valid	—	70	—	70	ns
t_{PH1}	CE to Output in High-Z	0	60	0	60	ns
t_{PH2}	OE to Output in High-Z	0	60	0	60	ns
t_{PH3}	PGM to Output in High-Z	0	60	0	60	ns
t_{OH}	Output Data Hold Time	0	—	0	—	ns

A. C. TEST CONDITIONS


- Output Load : 1 TTL Gate and $C_L = 100\text{pF}$
- Input Pulse Rise and Fall Times : 10ns Max.
- Input Pulse Levels : 0.45V to 2.4V
- Timing Measurement Reference Level : Inputs 0.8V and 2.0V, Outputs 0.8V and 2.0V

CAPACITANCE * (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
C_{IN}	Input Capacitance	$V_{IN} = 0V$	—	4	6	pF
C_{OUT}	Output Capacitance	$V_{OUT} = 0V$	—	8	12	pF

* This parameter is periodically sampled is not 100% tested.

TIMING WAVEFORMS (READ)

**TMM27128AD-15, TMM27128AD-150
TMM27128AD-20, TMM27128AD-200**

HIGH SPEED PROGRAM OPERATION

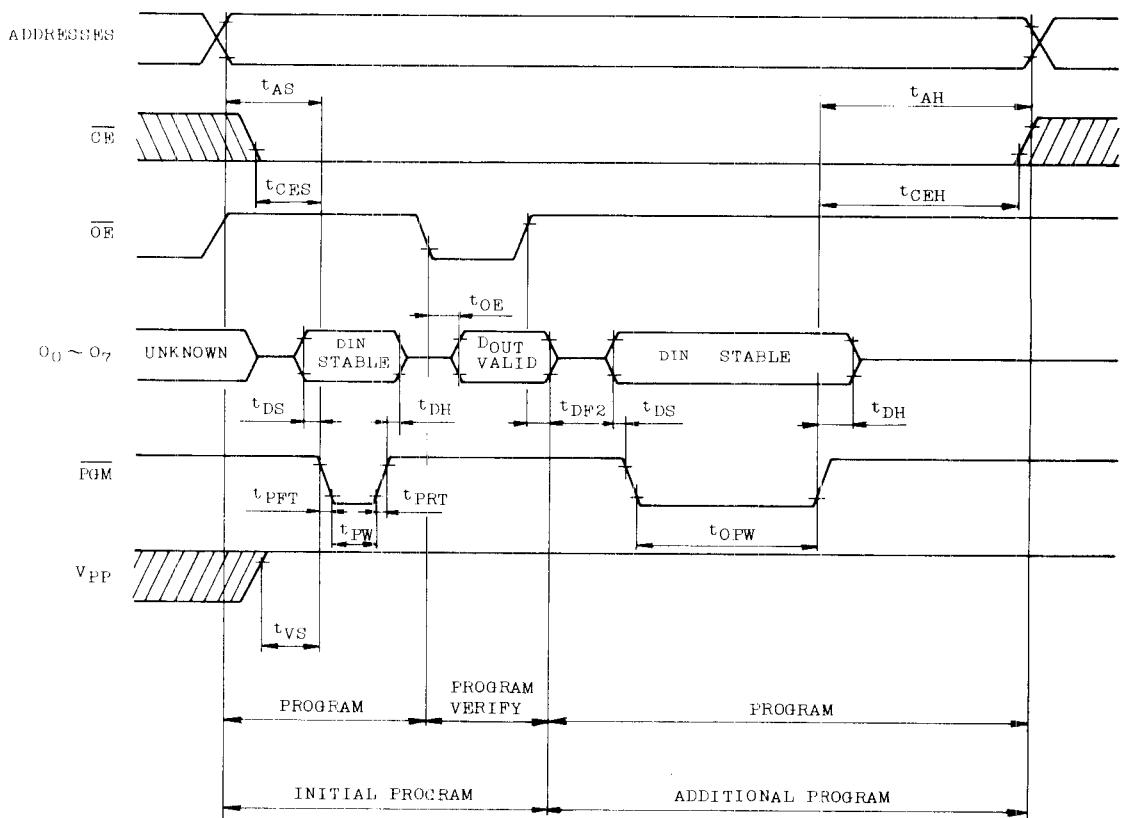
D. C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
V_{IH}	Input High Voltage	2.0	—	$V_{CC} + 1.0$	V
V_{IL}	Input Low Voltage	0.3	—	0.8	V
V_{CC}	V_{CC} Power Supply Voltage	5.75	6.0	6.25	V
V_{PP}	V_{PP} Power Supply Voltage	12.0	12.5	13.0	V

D.C. AND OPERATING CHARACTERISTICS (Ta = 25±5°C, V_{CC} = 6V±0.25V, V_{PP} = 12.5V±0.5V)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
I_{IH}	Input Current	$V_{IN} = 0 \sim V_{CC}$	—	—	±10	μA
V_{OH}	Output High Voltage	$I_{OH} = 400 \mu A$	2.4	—	—	V
V_{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$	—	—	0.4	V
I_{CC}	V_{CC} Supply Current	—	—	—	120	mA
I_{PP2}	V_{PP} Supply Current	$V_{PP} = 13.0V$	—	—	50	mA

A. C. PROGRAMMING CHARACTERISTICS (Ta = 25±5°C, V_{CC} = 6V±0.25V, V_{PP} = 12.5V±0.5V)


SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
t_{AS}	Address Setup Time	—	2	—	—	μs
t_{AH}	Address Hold Time	—	2	—	—	μs
t_{CES}	\overline{CE} Setup Time	—	2	—	—	μs
t_{CEH}	\overline{CE} Hold Time	—	2	—	—	μs
t_{DS}	Data Setup Time	—	2	—	—	μs
t_{DH}	Data Hold Time	—	2	—	—	μs
t_{VS}	V_{PP} Setup Time	—	2	—	—	μs
t_{PW}	Initial Program Pulse Width	—	0.95	1.0	1.05	ms
t_{OPW}	Additional Program Pulse Width	Note 1	2.85	3.0	78.75	ms
t_{PRI}	Program pulse Rise Time	—	5	—	—	ns
t_{PFI}	Program Pulse Fall Time	—	5	—	—	ns
t_{OE}	OE to Output Valid	—	—	—	100	ns
t_{DF2}	OE to Output in High-Z	$\overline{CE} = V_{IL}$	—	—	90	ns

A. C. TEST CONDITIONS

- Output Load : 1 TTL Gate and C_L (100pF)
- Input Pulse Rise and Fall Times : 10ns Max.
- Input Pulse Levels : 0.45V to 2.4V
- Timing Measurement Reference Level : Input 0.8V and 2.0V, Output 0.8V and 2.0V

Note 1: t_{OPW} depends on the program pulse width which is required in the initial program.

TIMING WAVEFORMS (READ)

Note : 1. V_{CC} must be applied simultaneously or before V_{PP} and cut off simultaneously or after V_{PP} .
 2. Removing the device from socket and setting the device in socket with $V_{PP}=12.5V$ may cause permanent damage to the device.
 3. The V_{PP} supply voltage is permitted up to 14V for program operation, so the voltage over 14V should not be applied to the V_{PP} terminal.
 When the switching pulse voltage is applied to the V_{PP} terminal, the overshoot voltage of its pulse should not be exceeded 14V.

TMM27128AD-15, TMM27128AD-150 TMM27128AD 20, TMM27128AD-200

ERASURE CHARACTERISTICS

The TMM27128AD's erasure is achieved by applying shortwave ultraviolet light which has a wavelength of 2537A (Angstroms) to the chip through the transparent window.

Then integrated does (Ultraviolet light intensity [$\mu\text{W}/\text{cm}^2$] \times exposure time [sec.]) for erasure should be a minimum of 15 [$\mu\text{W}\cdot\text{sec}/\text{cm}^2$].

When the Toshiba sterilizing lamp GL-15 is used and the device is exposed at a distance of 1cm from the lamp surface, the erasure will be achieved within 60 minutes.

And using commercial lamps whose ultraviolet

light intensity is a 12000 [$\mu\text{W}/\text{cm}^2$] will reduce the exposure time to about 20 minutes. (In this case, the integrated does is $12000 [\mu\text{W}/\text{cm}^2] \times (20 \times 60) [\text{sec.}] = 15 [\mu\text{W}\cdot\text{sec}/\text{cm}^2]$.)

The TMM27128AD's erasure begins to occur when exposed to light with wavelength shorter than 4000Å. The sunlight and the fluorescent lamps will include 3000 ~ 4000Å wavelength components. Therefore when used under such lighting for extended periods of time, the opeque seals-Toshiba EPROM Protect Seal AC901-are available.

OPERATION INFORMATION

The TMM27128AD's six operation modes are listed in the following table.

Mode selection can be achieved by applying TTL level signal to all inputs.

In the read operation mode, a single 5V power supply is required and the levels required for all inputs are TTL.

MODE	PIN NAMES (NUMBER)	PGM (27)	CE (20)	OE (22)	V _{PP} (1)	V _{CC} (28)	O ₀ ~O ₇ (11~13, 15~19)	POWER
READ OPERATION (Ta=0~70°C)	Read	H	L	L	5V	5V	Data Out	Active
	Output Deselect	*	*	H			High Impedance	Active
	Standby	*	H	*			High Impedance	Standby
PROGRAM OPERATION (Ta=25+5°C)	Program	L	L	*	12.5V	6V	Data In	Active
	Program Inhibit	*	H	*			High Impedance	Active
	Program Verify	H	L	H			High Impedance	Active
		H	L	L			Data Out	Active

Note H : V_{IH}, L : V_{IL}, * : V_{IH} or V_{IL}

READ MODE

The TMM27128AD has three control functions. The chip enable (CE) controls the operation power and should be used for device selection.

The output enable (OE) and the program control (PGM) control the output buffers, independent of device selection.

Assuming that $\overline{\text{CE}}=\overline{\text{OE}}=\text{V}_{IL}$ and $\overline{\text{PGM}}=\text{V}_{IH}$, the output data is valid at the output after address access time from stabilizing of all addresses.

OUTPUT DESELECT MODE

Assuming that $\overline{\text{CE}}=\text{V}_{IH}$ or $\overline{\text{OE}}=\text{V}_{IH}$, the outputs will be in a high impedance state.

So two or more TMM27128AD can be connected

The $\overline{\text{CE}}$ to output valid (t_{CE}) is equal to the address access time (t_{AC}).

Assuming that $\overline{\text{CE}}=\text{V}_{IL}$, $\overline{\text{PGM}}=\text{V}_{IH}$ and all addresses are valid, the output data is valid at the outputs after t_{CE} from the falling edge of OE.

And assuming that $\overline{\text{CE}}=\overline{\text{OE}}=\text{V}_{IL}$ and all addresses are valid, the output data is valid at the outputs after t_{PGM} from the rising edge of PGM.

together on a common bus line.

When $\overline{\text{CE}}$ is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TMM27128AD has a low power standby mode controlled by the \overline{CE} signal.

By applying a TTL high level to the \overline{CE} input, the TMM27128AD is placed in the standby mode which

reduce 70% of operating current and then the outputs are in a high impedance state, independent of the \overline{OE} and the \overline{PGM} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TMM27128AD are in the "1" state which is erased state.

Therefore the program operation is to introduce "0's" data into the desired bit locations by electrically

programming.

The levels required for all inputs are TTL.

The TMM27128AD can be programmed any location at anytime — either individually, sequentially, or at random.

PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits.

The verify is accomplished with \overline{OE} and \overline{CE} at V_{IL} and \overline{PGM} at V_{IH} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+12.5V) is applied to V_{PP} terminal, a high level \overline{CE} or \overline{PGM} input inhibits the TMM27128AD from being programmed.

Programming of two or more TMM27128AD's in parallel with different data is easily accomplished.

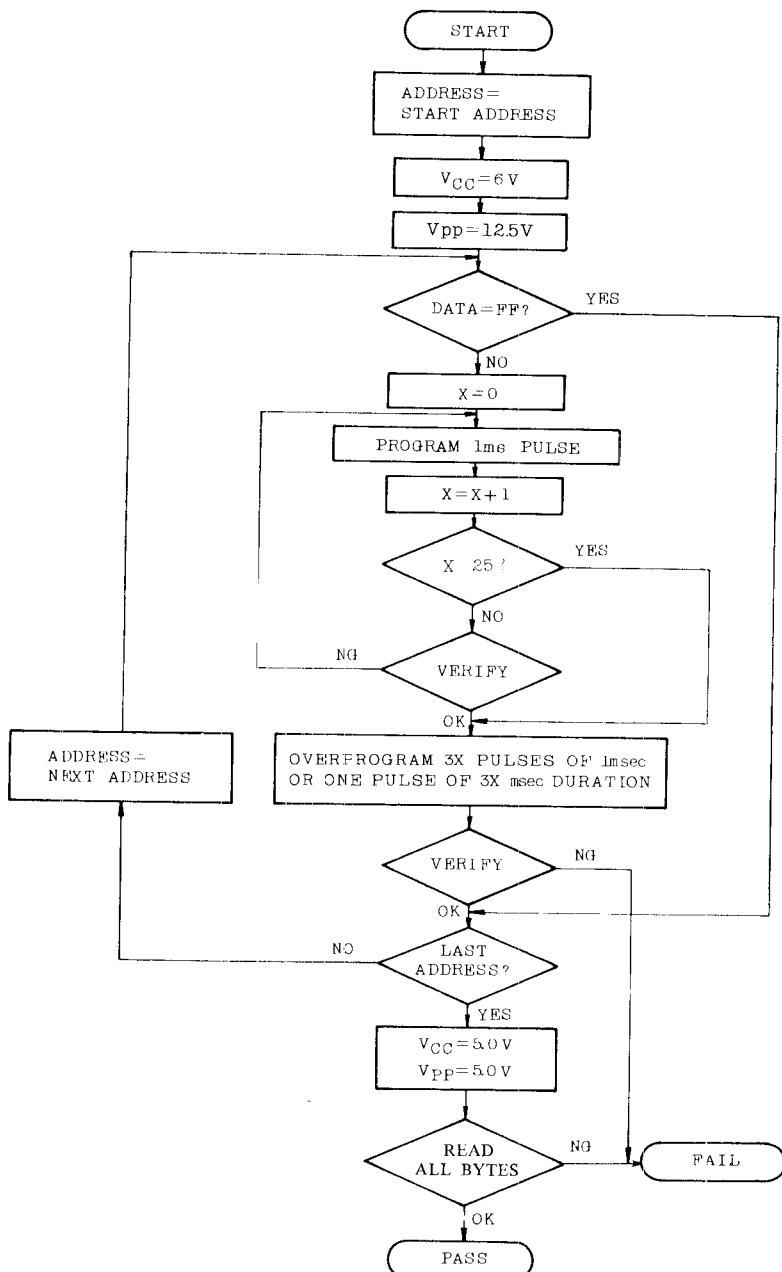
That is, all inputs except for \overline{CE} or \overline{PGM} may be commonly connected, and a TTL low level program pulse is applied to the \overline{CE} and \overline{PGM} of the desired device only and TTL high level signal is applied to the other devices.

HIGH SPEED PROGRAMMING MODE

The program time can be greatly decreased by using this high speed programming mode. The device is set up in the high speed programming mode when the programming voltage (+12.5V) is applied to the V_{PP} terminal with $V_{CC} = 6V$ and $\overline{PGM} = V_{IH}$.

The programming is achieved by applying a single TTL low level 1ms pulse the \overline{PGM} input after addresses and data are stable. Then the programmed data is verified by using Program Verify Mode.

If the programmed data is not correct, another


program pulse of 1ms is applied and then programmed data is verified. This should be repeated until the program operates correctly (max. 25 times)

After correctly programming the selected address, one additional program pulse with pulse width 3 times that needed for programming is applied.

When programming has been completed, the data in all addresses should be verified with $V_{CC} = V_{PP} = 5V$.

**TMM27128AD-15, TMM27128AD-150
TMM27128AD-20, TMM27128AD-200**

HIGH SPEED PROGRAM MODE FLOW CHART

ELECTRIC SIGNATURE MODE

Electric signature mode allows to read out a code from TMM27128AD which identifies its manufacturer and device type.

The programming equipment may read out manufacturer code and device code from TMM27128AD by using this mode before program operation and automatically set program voltage (V_{PP}) and algorithm.

Electric signature mode is set up when 12V is

PINS	A ₉ (10)	O ₇ (19)	O ₆ (18)	O ₅ (17)	O ₄ (16)	O ₃ (15)	O ₂ (13)	O ₁ (12)	O ₀ (11)	HEX. DATA
SIGNATURE										
Manufacture Code	V _{IL}	1	0	0	1	1	0	0	0	98
Device Code	V _{IH}	1	1	0	1	0	0	1	1	D3

Notes : A9 = 12V+0.5V

A1~A8, A10~A13, \overline{CE} , $\overline{OE} = V_{IL}$

PGM = V_{IH}

applied to address line A9 and the rest of address lines is set to V_{IL} in read operation. Data output in this conditions in manufacturer code. Device code is identified when address A0 is set to V_{IH}. These two codes possess an odd parity with the parity bit of MSB (07).

The following table shows electric signature of TMM27128AD.