

APT20M10JLL

200V 185A 0.010Ω

POWER MOS 7™

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS}(ON)}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

Increased Power Dissipation

Easier To Drive

• Lower Gate Charge, Qg

Popular SOT-227 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT20M10JLL	UNIT	
V _{DSS}	Drain-Source Voltage	200	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	180	Amps	
I _{DM}	Pulsed Drain Current ①	720	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
V _{GSM}	Gate-Source Voltage Transient	±40		
P _D	Total Power Dissipation @ T _C = 25°C	690	Watts	
' D	Linear Derating Factor	5.52	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
TL	Lead Temperature: 0.063" from Case for 10 Sec.	300] [
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	180	Amps	
E _{AR}	Repetitive Avalanche Energy ①	30		
E _{AS}	Single Pulse Avalanche Energy ⁽⁴⁾	3600	- mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250μA)	200			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	180			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.010	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = V_{DSS}, V_{GS} = 0V)$			100	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			500	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 5mA)$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street EUROPE Chemin de Magret Bend, Oregon 97702-1035 F-33700 Merignac - France Phone: (541) 382-8028

Phone: (33) 5 57 92 15 15

FAX: (541) 388-0364

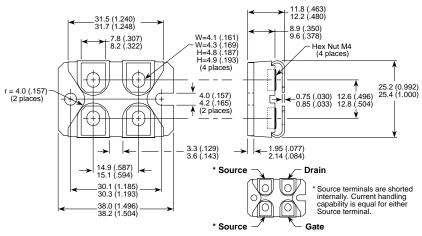
FAX: (33) 5 56 47 97 61

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		12780		
C _{oss}	Output Capacitance	V _{DS} = 25V		4330		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		327		
Q_g	Total Gate Charge ③	V _{GS} = 10V		316		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		96		nC
Q _{gd}	Gate-Drain ("Miller") Charge	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		174		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		15		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		35		ns
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		41		113
t _f	Fall Time	$R_G = 0.6\Omega$		12		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
Is	Continuous Source Current (Body Diode)			180	A
I _{SM}	Pulsed Source Current (1) (Body Diode)			720	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		460		ns
Q _{rr}	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		7.0		μC
dv/ _{dt}	Peak Diode Recovery ^{dv} / _{dt} ⑤			5	V/ns

THERMAL CHARACTERISTICS


Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.18	°C/W
R_{\thetaJA}	Junction to Ambient			40	*C/vv

Repetitive Rating: Pulse width limited by maximum junction temperature.

- 2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
- ③ See MIL-STD-750 Method 3471
- $\stackrel{\text{\tiny 4}}{\odot}$ Starting T_j = +25°C, L = 0.22mH, R_G = 25 Ω , Peak I_L = 180A
- (5) $dv/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le \neg I_{D[Cont.]}$ $di/_{dt} \le 700 \text{A/µs}$ $V_R \le V_{DSS}$ $T_J \le 150 ^{\circ}\text{C}$

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)