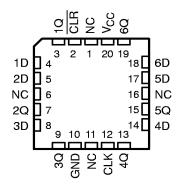
SCLS425A - JUNE 1998 - REVISED OCTOBER 1998

- Operating Range 2-V to 5.5-V V_{CC}
- EPIC™ (Enhanced-Performance Implanted CMOS) Process
- Contain Six Flip-Flops With Single-Rail Outputs
- Applications Include:
 - Buffer/Storage Registers
 - Shift Registers
 - Pattern Generators
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

description

The 'AHC174 devices are positive-edge-triggered D-type flip-flops with a direct clear ($\overline{\text{CLR}}$) input and are designed for 2-V to 5.5-V V_{CC} operation.

Information at the data (D) inputs meeting the


setup time requirements is transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of CLK. When CLK is at either the high or low level, the D input has no effect at the output.

The SN54AHC174 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74AHC174 is characterized for operation from -40° C to 85° C.

SN54AHC174 ... J OR W PACKAGE SN74AHC174 ... D, DB, DGV, N, OR PW PACKAGE (TOP VIEW)

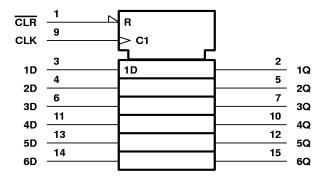
SN54AHC174 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

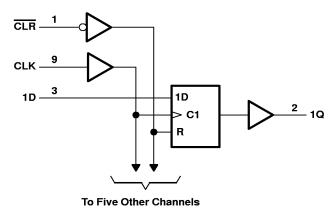
FUNCTION TABLE (each flip-flop)

	INPUTS		ОИТРИТ
CLR	CLK	D	Q
L	Х	Х	٦
Н	1	Н	н
Н	\uparrow	L	L
Н	L	Χ	Q ₀

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1998, Texas Instruments Incorporated

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, DGV, J, N, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the D, DB, DGV, J, N, PW, and W packages.

absolute maximum ratings over operating free-air temperature ranget

Supply voltage range, V _{CC}		
Output voltage range, VO (see Note 1)		
Input clamp current, I_{IK} ($V_I < 0$)		
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CO}$	c)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	- 	±25 mA
Continuous current through V _{CC} or GND		±50 mA
Package thermal impedance, θ_{JA} (see Note 2):	: D package	113°C/W
-	DB package	131°C/W
	DGV package	180°C/W
	N package	78°C/W
	PW package	149°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions (see Note 3)

			SN54A	HC174	SN74A	HC174	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		2	5.5	2	5.5	٧
		V _{CC} = 2 V	1.5		1.5		
v_{IH}	High-level input voltage	V _{CC} = 3 V	2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		
		V _{CC} = 2 V		0.5		0.5	
VIL	Low-level input voltage	V _{CC} = 3 V		0.9		0.9	V
		$V_{CC} = 5.5 V$		1.65		1.65	
VI	Input voltage		0	5.5	0	5.5	٧
٧o	Output voltage		0	Vcc	0	Vcc	٧
		V _{CC} = 2 V	1	– 50		-50	μΑ
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		– 4		– 4	mA
		$V_{CC} = 5 V \pm 0.5 V$		-8		-8	IIIA
		V _{CC} = 2 V	4	50		50	μΑ
lOL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	mA
		$V_{CC} = 5 V \pm 0.5 V$		8		8	IIIA
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	ns/V
Δι/Δν	input transition rise of fall rate	$V_{CC} = 5 V \pm 0.5 V$		20		20	115/ V
TA	Operating free-air temperature		– 55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SCLS425A - JUNE 1998 - REVISED OCTOBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	\ <u>\</u>	T,	չ = 25°C	;	SN54A	HC174	SN74AI	HC174	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		V
	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48	47	2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8	4	3.8		
		2 V			0.1	4	0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1		0.1	
V _{OL}		4.5 V			0.1	8	0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
lį	V _I = V _{CC} or GND	5.5 V			± 0.1		± 1		± 1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40	μΑ
C _i	V _I = V _{CC} or GND	5 V		1.7	10				10	pF

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

			T _A = 2	25°C	SN54A	HC174	SN74A	HC174	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
	Pulse duration	CLR low	5		5		5		ns
ιw	Fuise duration	CLK high or low	5		5 5		115		
	Setup time before CLK↑	Data 5			6		6		20
^T su	Setup time before CENT	CLR inactive	3		3	<i>y</i> -	3		ns
th	Hold time, data after CLK↑		0		0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted)

			T _A =	T _A = 25°C		HC174	SN74A	HC174	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
	Pulse duration	CLR low	5		5		5			
™	Pulse duration	CLK high or low	5		5		5		ns	
· ·	Setup time before CLK↑	Data	4.5		4.5		4.5		T	
tsu	Setup time before CENT	CLR inactive	2.5		2.5	,	2.5		ns	
th	Hold time, data after CLK↑		0.5		0.5		0.5		ns	

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		TO (OUTPUT)		SN54AHC174						
PARAMETER	FROM (INPUT)		OUTPUT CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT	
	(01)	(0011 01)	CALACITANCE	MIN	TYP	MAX		IVIAA		
· ·			C _L = 15 pF*	95	170		80		MHz	
fmax			C _L = 50 pF	55	130		50		IVITIZ	
tPHL*	CLR	Any Q	C _I = 15 pF		4.5	11.4	ູ້ 1	13.5	ns	
^t pd*	CLK		C[= 15 pr		5.8	11	1	13	10	
^t PHL	CLR	- Any Q C _L = 50 pF	Anu O	C 50 pE		6	14.9	1	17	ne
^t pd	CLK			7.5	14.5	1	16.5	ns		

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		TO (OUTPUT)		SN74AHC174					
PARAMETER	FROM (INPUT)		OUTPUT CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
	(5.7)	(001: 01)	0,11,1011,11102	MIN	TYP	MAX	IVIIIV	IVIAA	
f		-	C _L = 15 pF	95	170		80		MHz
fmax			C _L = 50 pF	55	130		50		IVITIZ
t _{PHL}	CLR	A O	C _I = 15 pF		4.5	11.4	1	13.5	ns
^t pd	CLK	Any Q	C[= 15 pr		5.8	11	1	13] 115
^t PHL	CLR	Any Q	C. 50 pE		6	14.9	1	17	,,,
^t pd	CLK		C _L = 50 pF		7.5	14.5	1	16.5	ns
t _{sk(o)} †			C _L = 50 pF			1.5		1.5	ns

[†] Skew between any two outputs of the same package switching in the same direction

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

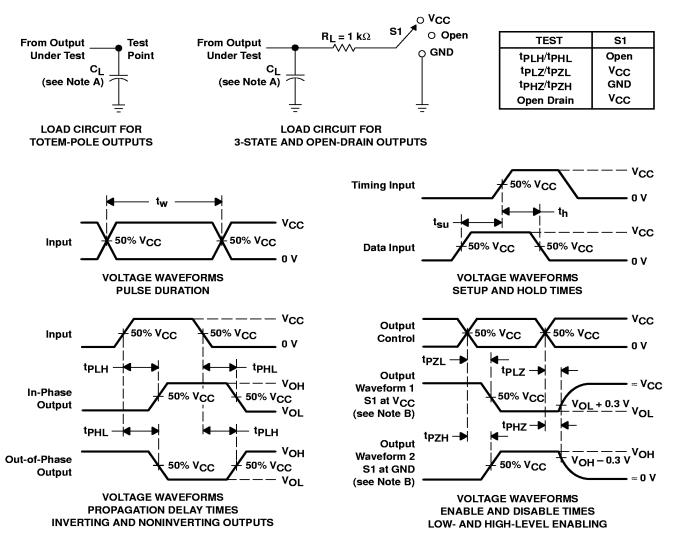
		TO (OUTPUT)							
PARAMETER	FROM (INPUT)		OUTPUT CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
	(5.)	(0011 01)		MIN	TYP	MAX	IVIIIV	IVIAA	
· ·		_	C _L = 15 pF*	130	240		110		MHz
fmax			C _L = 50 pF	90	180		80		IVITIZ
tPHL*	CLR	Any O	C _I = 15 pF		3	7.6	1	9	ns
^t pd*	CLK	Any Q	C[= 13 pi		4.1	7.2	1	8.5	2
^t PHL	CLR	Any Q	C 50 pE		4.2	9.6	1	11	ns
^t pd	CLK	Ally Q	C _L = 50 pF		5.5	9.2	1	10.5	20

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

SN54AHC174, SN74AHC174 HEX D-TYPE FLIP-FLOPS WITH CLEAR

SCLS425A - JUNE 1998 - REVISED OCTOBER 1998

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	OUTPUT CAPACITANCE	T _A = 25°C			MIN	MAX	UNIT
	(01)	(661161)	CAI AGITAILGE	MIN	TYP	MAX	IVIIIV	IVIAA	
f.			C _L = 15 pF	130	240		110		MHz
fmax			C _L = 50 pF	90	180		80]
^t PHL	CLR	Any Q	C _I = 15 pF		3	7.6	1	9	ns
^t pd	CLK	Ally Q	O[= 15 pr		4.1	7.2	1	8.5	115
t _{PHL}	CLR	Any Q	C: 50 pE		4.2	9.6	1	11	no
^t pd	CLK		C _L = 50 pF		5.5	9.2	1	10.5	ns
t _{sk(o)} †			C _L = 50 pF			1		1	ns

[†] Skew between any two outputs of the same package switching in the same direction

operating characteristics, $T_A = 25$ °C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissip	ation capacitance	No load	15.2	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 3 ns. $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

