ETR0305 007

Low ESR Cap. Compatible Positive Voltage Regulators

■GENERAL DESCRIPTION

The XC6206 series are highly precise, low power consumption, 3 terminal, positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage.

The XC6206 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error correction circuit. The series is compatible with low ESR ceramic capacitors. The currrent limiter's foldback circuit operates as a short circuit protection as well as the output current limiter for the output pin.

Output voltages are internally by laser trimming technologies. It is selectable in 0.1V increments within a range of 1.2V to 5.0V.

SOT-23, SOT-89 and USP-6B packages are available.

APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipments
- Reference voltage sources
- Multi-function power supplies

■ FEATURES

Maximum Output Current : 200mA (3.0V type)

Dropout Voltage : 250mV @ 100mA (3.0V type)

Maximum Operating Voltage : 6.0V

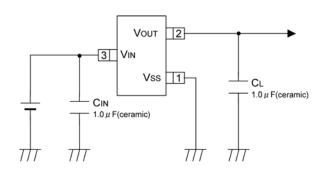
Output Voltage Range : $1.2V \sim 5.0V (0.1V increments)$

Highly Accurate $\pm 2\%$ $V_{OUT} \ge 1.5$

<u>+</u>30mV@VouT<1.5V (<u>+</u>1% @VouT≥2.0V)

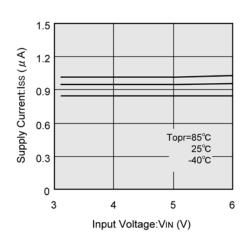
Low Power Consumption : 1.0µA (TYP.)

Low ESR Capacitor : Ceramic capacitor compatible
Protection : Current Limit Circuit Built-in

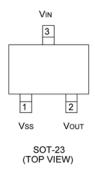

Operating Ambient Temperature: $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Packages : SOT-23

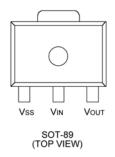
> SOT-89 USP-6B

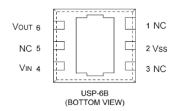
USP-0B


Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT




■TYPICAL PERFORMANCE CHARACTERISTICS


XC6206P302

■PIN CONFIGURATION

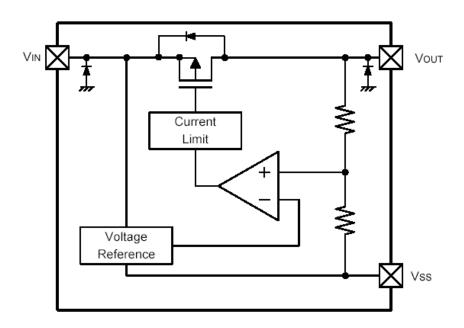
*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release.

If the pad needs to be connected to other pins, it should be connected to the pin number 4 (V_{IN}) .

■PIN ASSIGNMENT

F	IN NUMBER	2	PIN NAME	FUNCTIONS
SOT-23	SOT-89	USP-6B	FIN NAIVIE	FONCTIONS
1	1	2	Vss	Ground
3	2	4	Vin	Power Input
2	3	6	Vout	Output
-	-	1, 3, 5	NC	No Connection

■PRODUCT CLASSIFICATION


Ordering Information

 $\underline{XC6206P \ (1)(2)(3)(4)(5)-(6)}^{(*1)}$

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
12	Output Voltage	12~50	e.g. Vouт: 3.0V→①=3, ②=0
3	Accuracy.	2	±2% (V _{OUT} ≥1.5V), ±30mV (V _{OUT} <1.5V)
<u> </u>	Accuracy	1	<u>+</u> 1% (Vouт≧2.0V)
	(Order Unit)	MR	SOT-23 (3,000/Reel)
		MR-G	SOT-23 (3,000/Reel)
		PR	SOT-89 (1,000/Reel)
43-6		PR-G	SOT-89 (1,000/Reel)
		DR	USP-6B (3,000/Reel)
		DR-G	USP-6B (3,000/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■BLOCK DIAGRAM

^{*}Diodes inside the circuit are an ESD protection diode and a parasitic diode.

■ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETER		SYMBOL	RATINGS	UNITS	
Input Voltage	Э	Vin	-0.3~+7.0	V	
Output Curre	nt	lout	500 ^(*1)	mA	
Output Voltag	je	Vout	-0.3 ~ V _{IN} + 0.3	V	
	SOT-23		250		
	301-23	Pd	500(PCB mounted) (*2)		
Dower Dissipation	SOT-89		500	mW	
Power Dissipation			1000(PCB mounted) (*2)	IIIVV	
	LIOD OD		120		
	USP-6B		1000(PCB mounted) (*2)		
Operating Ambient Temperature		Topr	- 40 ~ + 85	°C	
Storage Tempera	ature	Tstg	- 55 ~ + 125	°C	

^(*1) Iout≦Pd / (Vin-Vout)

^(*2) This power dissipation figure shown is PCB mounted and is for reference only. Please refer to page 15~17 for details.

■ELECTRICAL CHARACTERISTICS

Ta=25 °C

PARAMETER	SYMBOL	CONE	OITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage		Iоит=30mA	V _{OUT(T)} <1.5V	-0.03		+0.03	V	
(Standard) ^(*2)	V _{OUT(E)} (*3)	1001-30111A	V _{OUT(T)} ≧1.5V	×0.98	V _{OUT(T)} (*4)	×1.02		2
Output Voltage (High Accuracy)(*2)	V OUT(E)	I _{OUT} =30mA	V _{OUT(T)} ≧2.0V	×0.99	VOUI(I)	×1.01	V	
Supply Current	I _{DD}			-	1.0	3.0	μA	1
Load Regulation	ΔVουτ	V _{OUT(T)} ≦1.8° 1mA≦I _{OUT} ≦				E-1 ^(*5)	mV	2)
Load Negulation	Δνου1	V _{OUT(T)} >1.8V 1mA≦I _{OUT} ≦		_	-	E-1(°)	mv	۷
Dropout Voltage 1	Vdif1 ^(*6)	I _{OUT} =30mA		-	E-2	2(*5)		
Dropout Voltage 2	Vdif2 ^(*6)	V _{OUT(T)} ≦1.8	V _{OUT(T)} ≦1.8V, I _{OUT} =60mA		- E-3(*5)		mV	2
Dropout voltage 2	Vull2(3)	V _{OUT(T)} >1.8V	V _{OUT(T)} >1.8V, I _{OUT} =100mA					
Line Degulation	ΔV _{OUT} /	V _{OUT(T)} <4.5V, V _{OUT(T)} +1.0V≦V _{IN} ≦6.0V, I _{OUT} =30mA		- 0.05		0.25	0, 0,)
Line Regulation	(ΔV _{IN} • V _{OUT})	V _{OUT(T)} ≧4.5' 5.5V≦V _{IN} ≦ I _{OUT} =30mA		-	0.03	0.20	%/V	2
Maximum Output Current	Іоитмах	Vouт≧Vouт(V _{OUT} ≧V _{OUT(E)} × 0.9		-	-	mA	2
Short Circuit Current	Ishort	V _{OUT} =V _{SS}		-	E-5 ^(*5)	-	mA	2
Input Voltage	V _{IN}			1.8	-	6.0	V	2
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr • V _{OUT})	I _{OUT} =30mA, -40°C≦Topr	I _{OUT} =30mA, -40°C≦Topr≦85°C		±100	-	ppm/°C	2

^{*1:} Unless otherwise stated, $V_{IN} = V_{OUT(T)} + 1.0V$

 V_{OUT1} : A voltage equal to 98% of the output voltage whenever an amply stabilized $\{V_{\text{OUT(T)}} + 1.0V\}$ is input with each I_{OUT} . V_{IN1} : The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

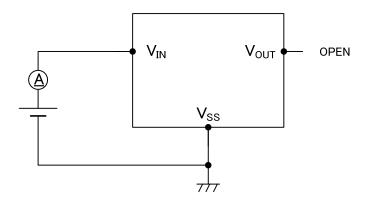
^{*2: (}Standard): $\pm 2\%$ (1.5V \leq V_{OUT(T)}) , ± 0.03 V (1.5V>V_{OUT(T)}) (High Accuracy): $\pm 1\%$ (2.0V \leq V_{OUT(T)})

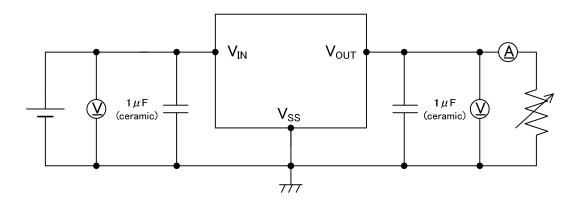
^{*3:} $V_{OUT(E)}$: Effective output voltage.

^{*4:} V_{OUT(T)} :Nominal voltage

^{*5:} For E-1,E-2,E-3,E-4,E-5, Please refer to Electrical Characteristics Chart.

^{*6:} Vdif =V_{IN1} -V_{OUT1}

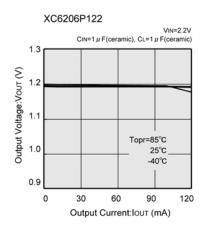

^{*7:} The low ESR capacitors use that is more than 1.0µF as C_L is possible

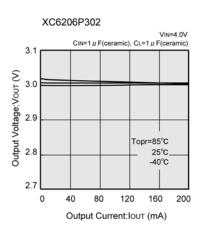

	E-1	E-	2	E	E-3	E-4	E-5
NOMINAL	LOAD	DROF			POUT	MAX. OUTPUT	
VOLTAGE	REGULATION	VOLTA		VOLTAGE2		CURRENT	SHORT CURRENT
	∠V _{OUT} (mV)	V _{dif1} ((mV)	I _{OUTMAX} (mA)	I _{SHORT} (mA)
V _{OUT(T)}	MAX.	TYP.	MAX.	TYP.	MAX.	MIN.	TYP.
1.2		460	760				
1.3	40	400	650	700	960		180
1.4		350	590			60	
1.5		300	510	580	860		
1.6		250	450				155
1.7	45	200	410	450	810		
1.8		150	390			80	
1.9					780		
2.0							130
2.1							
2.2	50					120	
2.3				350			
2.4		100	370	330			
2.5					710		
2.6							
2.7	55					150	
2.8							
2.9							
3.0							
3.1							
3.2	60						
3.3							
3.4		75	350	250	680	200	
3.5							
3.7	65						100
3.8	- 55						
3.9							
4.0							
4.1							
4.2	70						
4.3							
4.4		-	055	0.5.5	0.55		
4.5		60	320	200	630	250	
4.6							
4.7	75						
4.8							
4.9							
5.0	80	50	290	175	600		

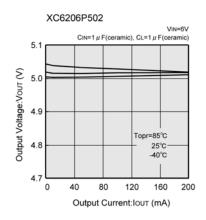
■TEST CIRCUITS

Circuit ①

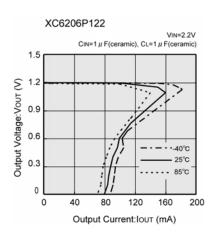
Circuit 2

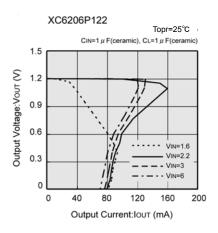


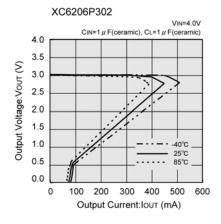

■NOTES ON USE

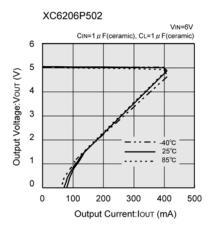

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{BIAS} , V_{IN} and V_{SS} wiring in particular
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. Capacitances of these capacitors (C_{IN}, C_L) are decreased by the influences of bias voltage and ambient temperature. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
- 5. When it is used in a quite small input / output dropout voltage, output may go into unstable operation. Please test it thoroughly before using it in production.
- 6. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

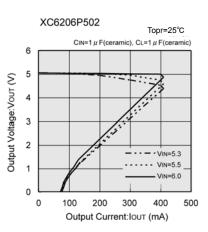
■TYPICAL PERFORMANCE CHARACTERISTICS

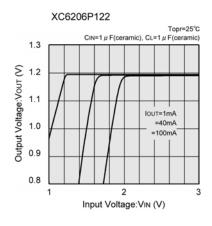

(1) Output Voltage vs. Output Current

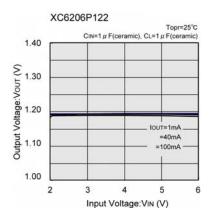


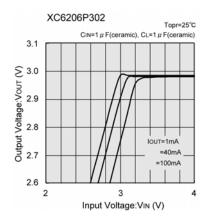


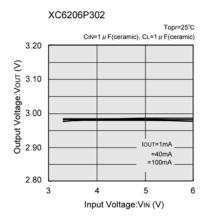

(2) Current Limit

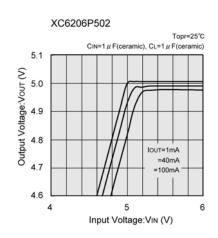


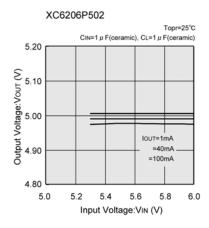


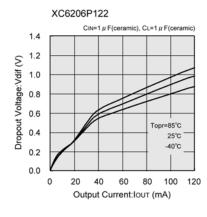


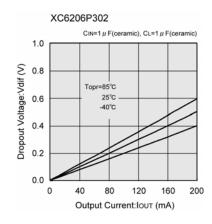


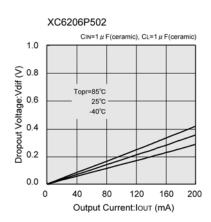


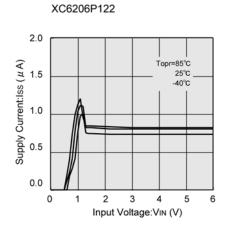

(3) Output Voltage vs. Input Voltage

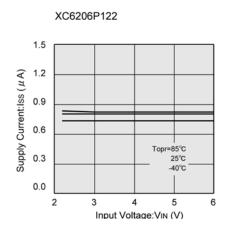


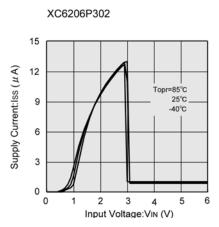


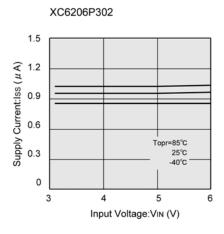


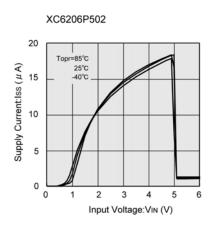


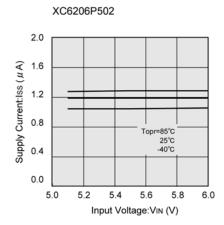

(4) Dropout Voltage vs. Output Current

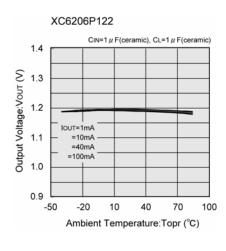


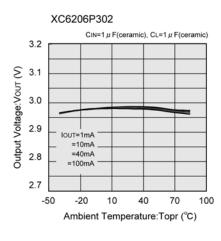


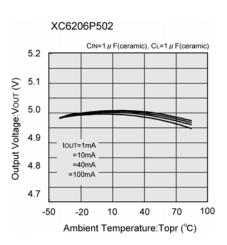


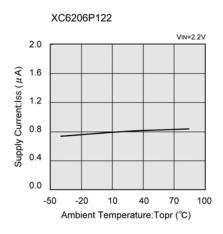

(5) Supply Current vs. Input Voltage

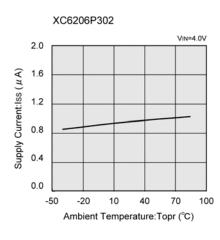


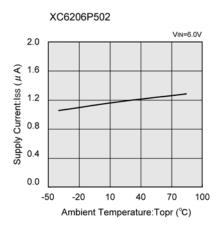


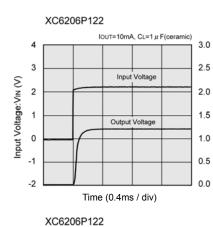


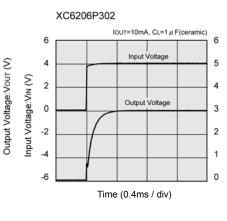


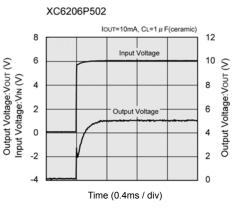

(6) Output Voltage vs. Ambient Temperature

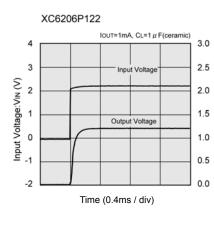


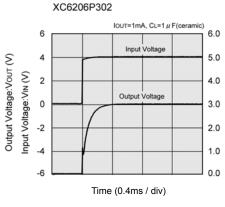


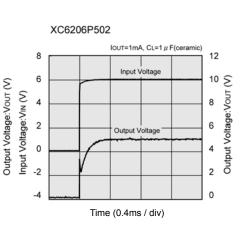

(7) Output Voltage vs. Ambient Temperature

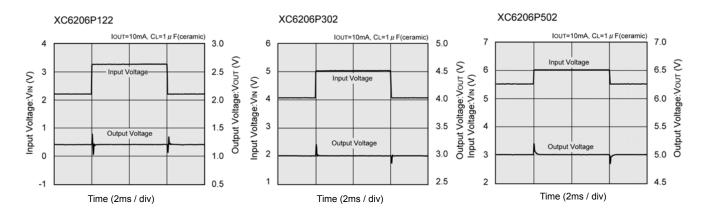


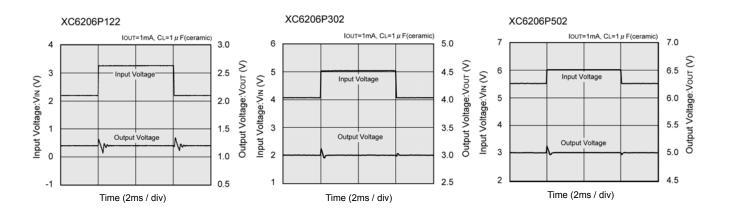


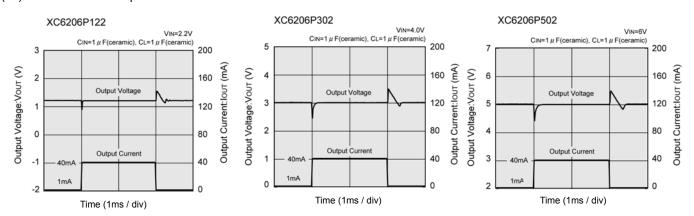



(8) Input Transient Response 1

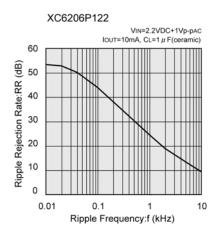


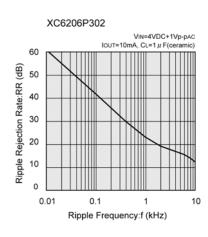


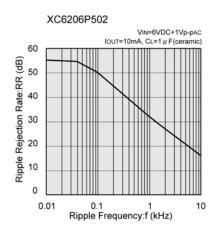


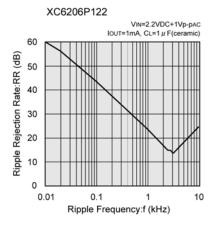


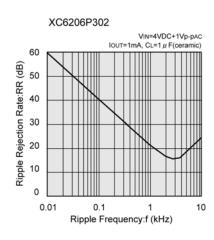
(9) Input Transient Response 2

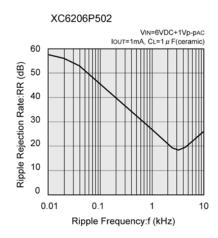


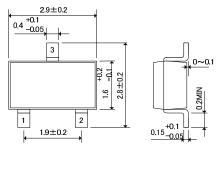



(10) Load Transient Response



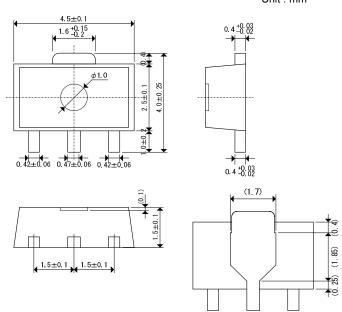

(11) Ripple Rejection Rate

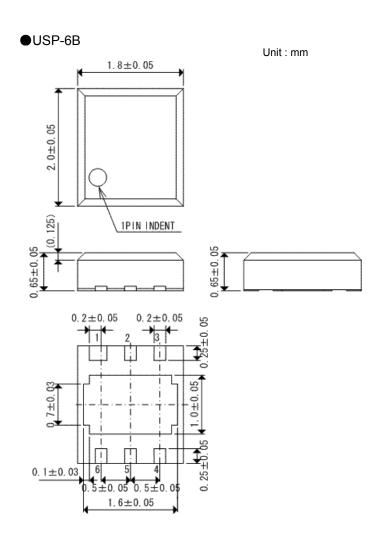


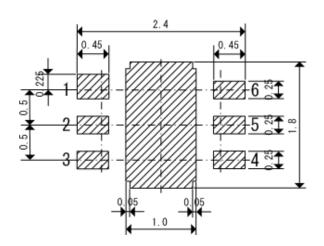


■ PACKAGING INFORMATION

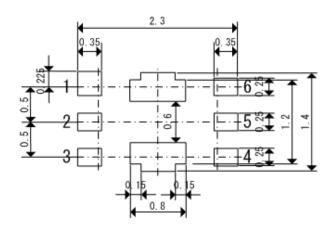
●SOT-23


Unit: mm




●SOT-89

Unit : mm



●USP-6B Reference Pattern Layout

●USP-6B Reference Metal Mask Design

SOT-23 Power Dissipation

Power dissipation data for the SOT-23 is shown in this page.

The value of power dissipation varies with the mount board conditions.

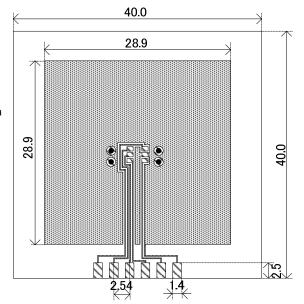
Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

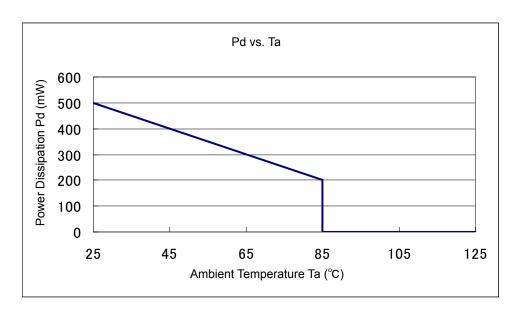

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm Through-hole: 4 x 0.8 Diameter



Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)
25	500	200.00
85	200	200.00

SOT-89 Power Dissipation

Power dissipation data for the SOT-89 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

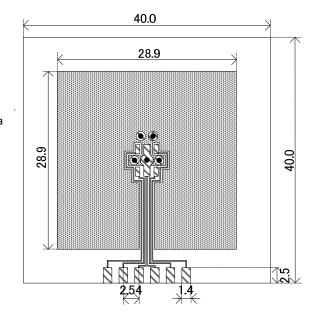
1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

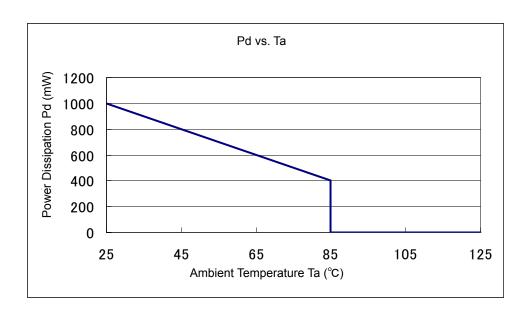

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm Through-hole: 5 x 0.8 Diameter



Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1000	100.00
85	400	100.00

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

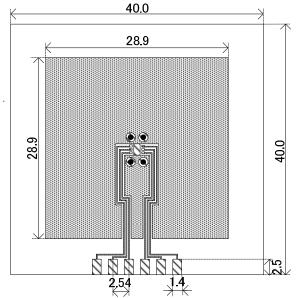
The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

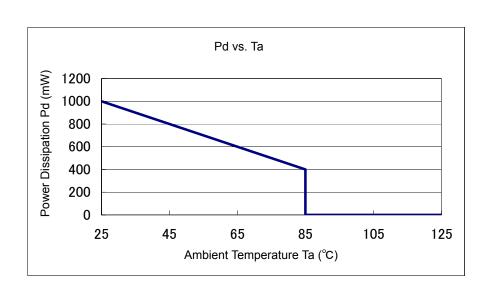

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

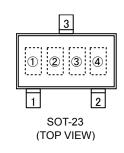
Material: Glass Epoxy (FR-4)

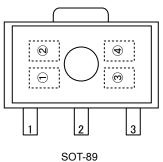
Thickness: 1.6 mm Through-hole: 4 x 0.8 Diameter



Evaluation Board (Unit: mm)

Board Mount (Tj max = 125°C)


2. Power Dissipation vs. Ambient temperature


Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)
25	1000	100.00
85	400	100.00

■MARKING RULE

●SOT-23, SOT-89

(TOP VIEW)

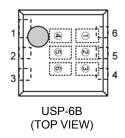
① represents product number

MARK	PRODUCT SERIES	
6	XC6206P****	

2 represents 3 pins regulator

MA	PRODUCT SERIES	
VOLTAGE=0.1 ~ 3.0V	PRODUCT SERIES	
5	6	XC6206P****

3 represents output voltage


MARK	VC	DLTAGE ((V)	MARK	OUTPL	JT VOLTA	AGE (V)
0	-	3.1	-	F	1.6	4.6	-
1	-	3.2	-	Н	1.7	4.7	-
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	1	L	1.9	4.9	-
4	-	3.5	ı	M	2.0	5.0	ı
5	-	3.6	-	N	2.1	-	-
6	-	3.7	-	Р	2.2	-	-
7	-	3.8	-	R	2.3	-	-
8	-	3.9	-	S	2.4	-	-
9	-	4.0	1	T	2.5	-	-
Α		4.1	ı	U	2.6	-	ı
В	1.2	4.2	-	V	2.7	-	-
С	1.3	4.3	1	X	2.8	-	-
D	1.4	4.4	-	Y	2.9	-	-
E	1.5	4.5	-	Z	3.0	-	-

4 represents production lot number

0 to 9, A to Z, and inverted 0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.)

■MARKING RULE (Continued)

●USP-6B

12 represents product number

MA	DDODLICT CEDIEC	
1	PRODUCT SERIES	
0	6	XC6206P***D*

3 represents 3 pins regulator

	<u> </u>	
ı	MARK	PRODUCT SERIES
Ŀ		
I	Р	XC6206P***D*

45 represents output voltage

MARK		OUTPUT VOLTAGE(V)	PRODUCT SERIES
4	5	OUTPUT VOLIAGE(V)	PRODUCT SERIES
3	3	3.3	XC6206P33*D*
5	0	5.0	XC6206P50*D*

6 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

^{*}No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.