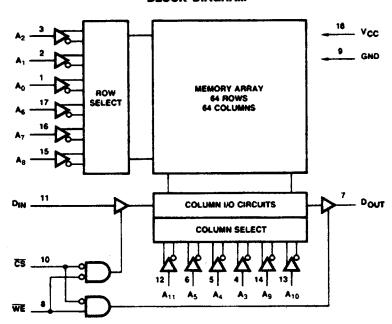
Am9044/AM90L44

4096x1 Static RAM

DISTINCTIVE CHARACTERISTICS

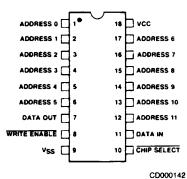

- Low operating and standby power
- · Access times down to 200 ns
- Am9044 is a direct plug-in replacement for 4044
- High output drive -- 4.0 mA sink current @ 0.4 V
- TTL identical interface logic levels

GENERAL DESCRIPTION

The Am9044/Am90L44 Series are high-performance, static, N-Channel, read/write, random-access memories organized as 4096 x 1. Operation is from a single 5 V supply, and all input/output levels are identical to standard TTL specifications. A Low-power version is available with power savings of about 30%.

Data readout is not destructive and the same polarity as data input. CS provides for easy selection of an individual package when the outputs are OR-tied. The outputs of 4.0 mA Am9044 provide increased short-circuit current for improved drive.

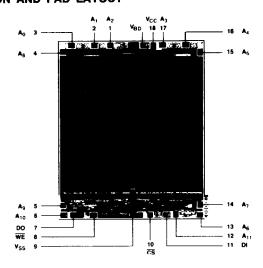
BLOCK DIAGRAM



BD000091

PRODUCT SELECTOR GUIDE

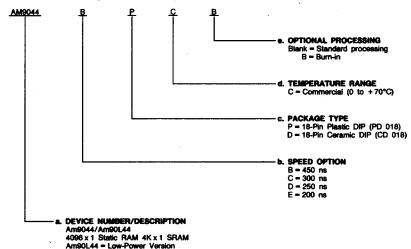
Part Number Speed Indicator			Am9044/Am90L44							
			В	. C	D	E				
Maximum Access Time (ns)		450	300	250	200					
0 to +70°C	Icc (mA)	Standard	70	70	70	70				
		Low-Power	50	50	70	-				


CONNECTION DIAGRAM Top View DIPs

Note: Pin 1 is marked for orientation.

METALLIZATION AND PAD LAYOUT

Address [Address Designators					
External	Internal					
A ₀	A ₂					
A ₁	A ₁					
A ₂	Ao					
A ₃	A ₈					
A ₄	Ag					
A ₅	A ₁₀					
A ₆	А3					
A ₇	A4					
A ₈	A ₅					
A9	A ₇					
A ₁₀	A ₆					
A ₁₁	A ₁₁					


Die Size 0.137" x 0.167"

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)
- c. Package Type
- e. Temperature Range
- e. Optional Processing

Valid Combinations					
AM9044B					
AM90L44B					
AM9044C	7				
AM90L44C	PC, PCB,				
AM9044D	DC, DCB				
AM90L44D					
AM9044E	7				
AM90L44E					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION

A₀-A₁₁ Address Inputs (Inputs)

The address input lines select the memory location from which to read or write.

CS Chip Select (Input, Active LOW)

The CS line selects the memory device for active operation.

WE Write Enable (Input, Active LOW)

When both CS and WE are LOW, data on the input lines is written to the location presented on the address input lines.

D_{IN} Data In (Input)

This pin is used to enter data during write operations.

DOUT Data Out (Output, Three-State)

The content of the selected memory location is presented on the Data Output line during read operations (CS LOW, WE HIGH). The line goes three-state during write operations.

V_{CC} Power Supply

Vss Ground

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature	65 to +150°C
Ambient Temperature with	
Power Applied	0 to 70°C
Supply Voltage	
All Signal Voltage with	
Respect to Ground	0.5 V to +7.0 V
Power Dissipation	1.0 W
DC Output Current	

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

OPERATING RANGES (Note 2)

Commercial (C) Devices	
Ambient Temperature	(T _A) 0 to +70°C
Supply Voltage (V _{CC})	+4.5 V to +5.5 V

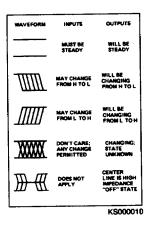
Operating ranges define those limits between which the functionality of the device is guaranteed.

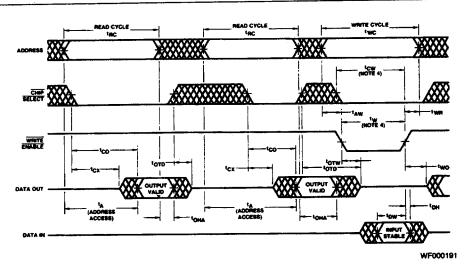
DC CHARACTERISTICS over operating ranges unless otherwise specified (Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions				Max.	Unit
ЮН	Output HIGH Current	V _{OH} = 2.4 V V _{CC} = 4.5 V	T _A = 70°C		-1.0		mA
lOL	Output LOW Current	Output LOW Current V _{OL} = 0.4 V T _A = 70°C		4.0		mA	
VIH	Input HIGH Voltage				2.0	Vcc	>
VIL	input LOW Voltage					8.0	٧
lix	Input Load Current	V _{SS} ≤ V _{IN} ≤ V _{CC}				10	μΑ
loz	Output Leakage Current	0.4 V ≤ V _O ≤ V _{CC} , Output Disabled	TA = +70°C	-50	50	μΑ	
	_	Vcc = Max.		Standard Devices		70	mA
lcc	Operating Supply Current	V _{CC} = Max. CS ≤ V _{IL}	T _A = 0°C	Devices		50	
Cı	Input Capacitance (Note 6)	Test Frequency = 1.0		7.0	ρF		
Co	Output Capacitance (Note 6) TA = 25°C, All pins at 0 V					7.0	

Notes: 1. Absolute Maximum Ratings are intended for user guidelines and are not tested.

- 2. For test and correlation purposes, ambient temperature is defined as the "instant-on" case temperature.
- 3. Test conditions assume signal transition time of 10 ns or less, timing reference levels of 1.5 V, and output loading of the specified I_{OL}/I_{OH} plus 100 pF or 5 pF for T_{CX}, T_{OTD}, T_{OTW} and T_{WO}.
- 4. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 5. The specified address access time will be valid only when CS is LOW soon enough for t_{CO} to elapse.
- These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.
- 7. Transition is measured from 1.5 V on the input to (VOH 500 mV) and (VOL + 500 mV) on the output using CL = 5 pF.


SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Notes 3-6)

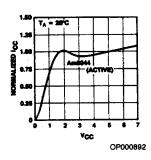

			B Devices		C Devices		D Devices		E Devices		
No.	Parameter Symbol	Parameter Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
R	EAD CYCLE										
1	^t RC	Address Valid to Address Do Not Care Time (Read Cycle Time)	450		300		250		200		
2	t _A	Address Valid to Data Out Valid Delay (Address Access Time)		450		300		250		200	
3	\$co	Chip Select LOW to Data Out Valid (Note 5)		100		100		70		70	
4	tcx	Chip Select LOW to Data Out On (Note 6, 7)	10		10		10		10		
5	totd	Chip Select HIGH to Data Out Off (Note 6, 7)		100		80		60		60	
6	^t OHA	Output hold time after address change	20		20		20		20	<u> </u>	<u> </u>
W	RITE CYCLE				_						
7	twc	Address Valid to Address Do Not Care Time (Write Cycle Time)	450		300		250		200		
8	tw	Write Enable LOW to Write Enable HIGH Time (Note 4)	200		150		100		100		
9	twn	Write Enable HIGH to Address Do Not Care Time	0		0		0		0		
10	totw	Write Enable LOW to Data Out Off Delay (Note 6, 7)		100		80		60		60	
11	tow	Data In Valid to Write Enable HIGH Time	200		150		100		100		
12	tон	Write Enable HIGH to Data In Do Not Care Time	0		0		0		0		ns
13	taw	Address Valid to Write Enable LOW Time	0		0		0		0		
14	tcw	Chip Select LOW to Write Enable HIGH Time (Note 4)	200		150		100		100		
15	two	Write Enable HIGH To Output Turn On (Note 6, 7)	0	100	0	100	0	70	0	70	

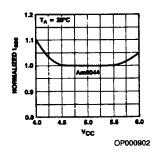
Notes: See notes following DC Characteristics table.

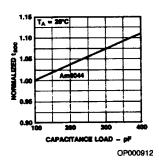
SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

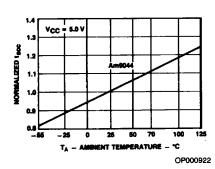
Notes: See notes following DC Characteristics table.

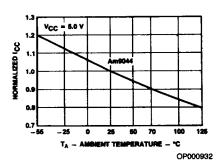

4


TYPICAL PERFORMANCE CURVES


Normalized Supily Current Versus Supply Voltage

Normalized Access Time Versus Output Loading





Normalized Access Time Versus Ambient Temperature

Normalized Supply Current Versus Ambient Temperature

