

LM18293

Four Channel Push-Pull Driver

General Description

The LM18293 is designed to drive DC loads up to one amp. Typical applications include driving such inductive loads as solenoids, relays and stepper motors along with driving switching power transistors and use as a buffer for low level logic signals. The four inputs accept standard TTL and DTL levels for ease of interfacing. Two enable pins are provided that also accept the standard TTL and DTL levels. Each enable controls 2 channels and when an enable pin is disabled (tied low), the corresponding outputs are forced to the TRI-STATE® condition. If the enable pins are not connected (i.e., floating), the circuit will function as if it has been enabled. Separate pins are provided for the main power supply (pin 8), and the logic supply (pin 16). This allows a lower voltage to be used to bias up the logic resulting in reduced power dissipation. The chip is packaged in a specially de-

signed 16 pin power DIP. The 4 center pins of this package are tied together and form the die paddle inside the package. This provides much better heat sinking capability than most other DIP packages available. The device is capable of operating at voltages up to 36 volts.

Features

- 1A output current capability per channel
- Pin for pin replacement for L293B
- Special 16 pin power DIP package
- 36 volt operation
- Internal thermal overload protection
- Logical "0" input voltage up to 1.5 volts results in high noise immunity

Typical Connection

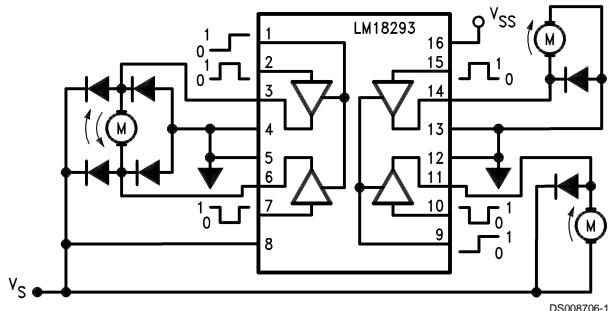


FIGURE 1. Application circuit showing bidirectional and on/off control of a single DC motor using two outputs and unidirectional on/off function of two DC motors using a single output each.

Order Number LM18293N

NS Package Number N16A

TRI-STATE® is a registered trademark of National Semiconductor Corp.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Output Drive Supply Voltage (V_S)	36V	Junction Temperature (T_J)	+150°C
Logic Supply Voltage (V_{SS})	36V	Thermal Resistance Junction to Case (θ_{JC})	14°C/W
Input Voltage (V_I)	7V	Thermal Resistance Junction to Ambient (θ_{JA})	80°C/W
Enable Voltage (V_E)	7V	Internal Power Dissipation	Internally Limited
Peak Output Current (Non-Repetitive $t = 5$ ms)	2A	Operating Temperature Range	-40°C to +125°C
		Storage Temperature Range	-65°C to +150°C
		Lead Temperature (Solder 10 seconds)	260°C

Electrical Characteristics

$V_S = 24V$, $V_{SS} = 5V$, $T = 25^\circ C$, $L = 0.4V$, $H = 3.5V$, each channel, unless otherwise noted

Symbol	Parameter	Conditions	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units
V_S	Main Supply (Pin 8)	Maximum Supply Voltage		36		Vmax
V_{SS}	Logic Supply (Pin 16)	Minimum Logic Supply Voltage		4.5		Vmin
		Maximum Logic Supply Voltage		36		Vmax
I_S	Total Quiescent Supply Current	$V_I = L$ $I_O = 0$ $V_E = H$ $V_I = H$ $I_O = 0$ $V_E = H$ $V_E = L$	2 16 4	6 24 4		mAmax mAmax mAmax
I_{SS}	Total Quiescent Logic Supply Current (pin 16)	$V_I = L$ $I_O = 0$ $V_E = H$ $V_I = H$ $I_O = 0$ $V_E = H$ $V_E = L$	44 16 16	60 22 24		mAmax mAmax mAmax
V_I	Input Voltage	Min Value of Low Max Value of Low Min Value of High Max Value of High ($V_{SS} \leq 7$) Max Value of High ($V_{SS} > 7$)		-0.3 1.5 2.3 V_{SS} 7		Vmin Vmax Vmin Vmax Vmax
I_I	Input Current	$V_I = L$ $V_I = H$	30	-10 100		μ Amax μ Amax
V_E	Enable Voltage (Pins 1, 9)	Min Value of Low Max Value of Low Min Value of High Max Value of High ($V_{SS} \leq 7$) Max Value of High ($V_{SS} > 7$)		-0.3 1.5 2.3 V_{SS} 7		Vmin Vmax Vmin Vmax Vmax
I_E	Enable Current	$V_E = L$ $V_E = H$	-30	-100 ± 10		μ Amax μ Amax
V_{CE} sat Top	Source Saturation Voltage	$I_o = -1$ amp	1.4	1.8		Vmax
V_{CE} sat Bottom	Sink Saturation Voltage	$I_o = 1$ amp	1.2	1.8		Vmax
t_r	Rise Time	10%–90% V_o	250			ns
t_f	Fall Time	90%–10% V_o	250			ns
t_{on}	Turn-On Delay	50% V_I to 50% V_o	450			ns
t_{off}	Turn-Off Delay	50% V_I to 50% V_o	200			ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: Tested limits are guaranteed and 100% production tested.

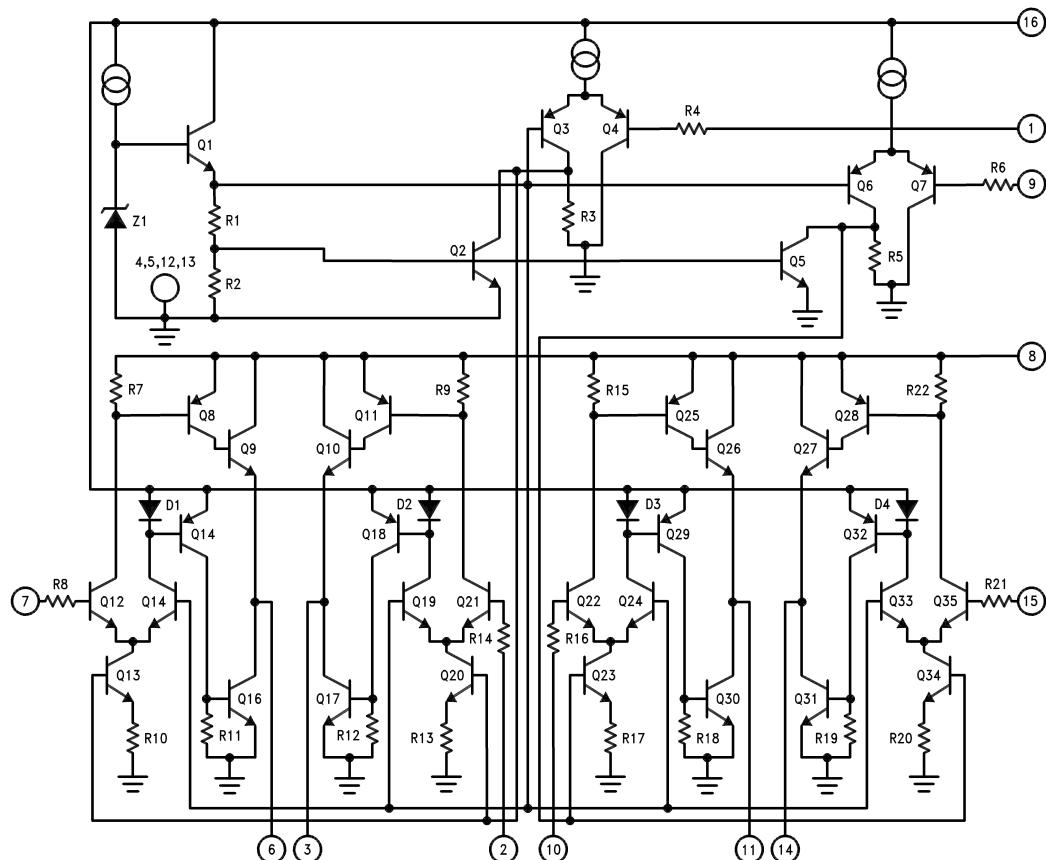
Note 3: Design limits are guaranteed (but not 100% production tested) over the full supply and temperature range. These limits are not used to calculate outgoing quality levels.

Connection Diagram

ENABLE 1	1	16	V _{SS}
INPUT 1	2	15	INPUT 4
OUTPUT 1	3	14	OUTPUT 4
GROUND	4	13	GROUND
GROUND	5	12	GROUND
OUTPUT 2	6	11	OUTPUT 3
INPUT 2	7	10	INPUT 3
V _S	8	9	ENABLE 2

DS008706-2

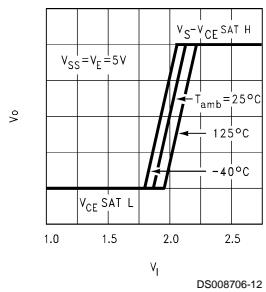
Enable 1 activates outputs 1 & 2
Enable 2 activates outputs 3 & 4

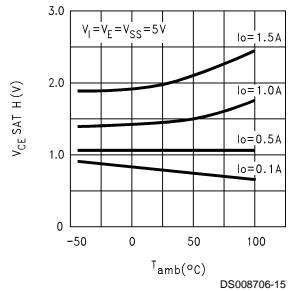

TABLE 1. Input/Output Truth Table

V _E (**)	V _I (Each Channel)	V _O
H	H	H
H	L	L
L	H	X (*)
L	L	X (*)

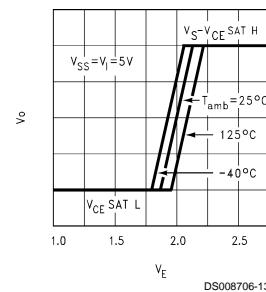
(*) High output impedance.

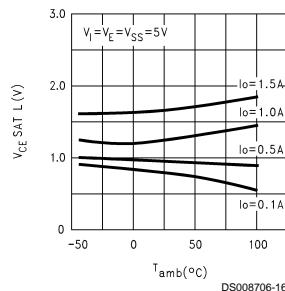
(**) Relative to the pertinent channel.

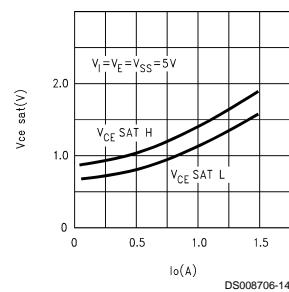

Simplified Schematic

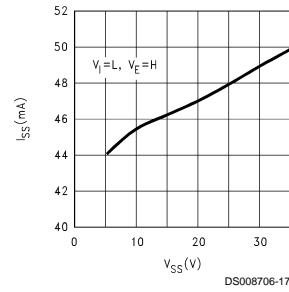

DS008706-3

Typical Performance Characteristics


Output Voltage vs.
Input Voltage


Source Saturation Voltage
vs. Ambient Temperature


Output Voltage vs.
Enable Voltage


Sink Saturation Voltage
vs. Ambient Temperature

Saturation Voltage vs.
Output Current

Quiescent Logic Supply
Current vs.
Logic Supply Voltage

Typical Applications

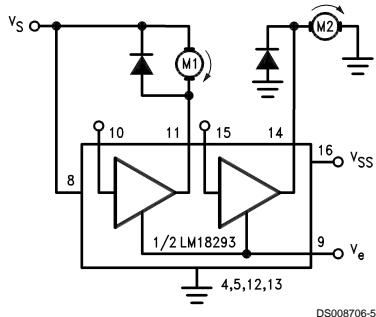


FIGURE 2. DC motor controls (with connections to ground and to the supply voltages)

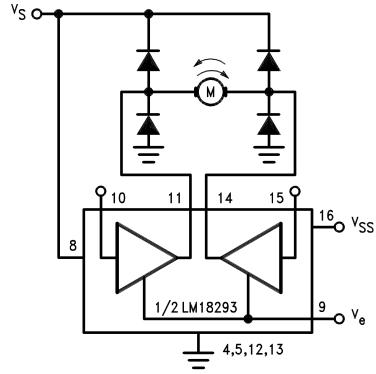


FIGURE 3. Bidirectional DC motor control

TABLE 2. DC Motor Controls

V_E	Pin 10	Pin 15	M1	M2
H	H	H	Fast Motor Stop	Run
H	H	L	Fast Motor Stop	Fast Motor Stop
H	L	H	Run	Run
H	L	L	Run	Fast Motor Stop
L	X	X	Free Running Motor Stop	Free Running Motor Stop

L = Low
H = High
X = Don't care

Bipolar Stepping Motor Control (see Figure 4)

TABLE 4. Full Step Sequencing (Note 4)

V_{IN} 1	V_{IN} 2	Step
L	L	1
L	H	2
H	H	3
H	L	4
L	L	1

Note 4: V_E 1 and V_E 2 = H

TABLE 3. Bidirectional DC Motor Control

Inputs		Function
$V_E = H$	Pin 10 = H	Turn CW
	Pin 15 = L	
	Pin 10 = L	Turn CCW
	Pin 15 = H	
$V_E = L$	Pin 10 = Pin 15	Fast Motor Stop
	Pin 10 = X	Free Running Motor Stop
	Pin 15 = X	Motor Stop

L = Low
H = High
X = Don't care

TABLE 5. Half Step Sequencing

V_E 1	V_E 2	V_{IN} 1	V_{IN} 2	Step
H	L	L	X	1
H	H	L	L	2
L	H	X	L	3
H	H	H	L	4
H	L	H	X	5
H	H	H	H	6
L	H	X	H	7
H	H	L	H	8
H	L	L	X	1

H = High
L = Low
X = Don't care

Bipolar Stepping Motor Control

(see Figure 4) (Continued)

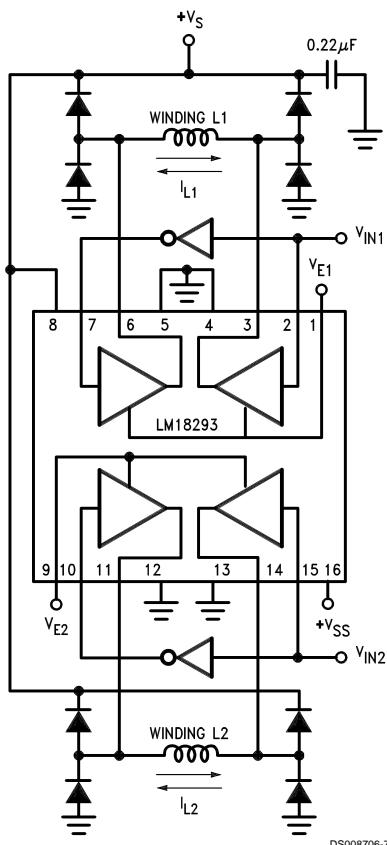


FIGURE 4. Motor Control Block Diagram

Mounting Instructions

The junction to ambient thermal resistance of the LM18293 can be reduced by soldering the ground pins to a suitable copper area of the printed circuit board or to an external heatsink. The graph of Figure 7 which shows the maximum power dissipated and junction to ambient thermal resistance as a function of the side "L" of two equal square copper areas having a thickness of 35μ , as in Figure 6, illustrates this. In addition, it is possible to use an external heatsink (see Figure 5). During soldering the pins temperature must not exceed 230°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground.

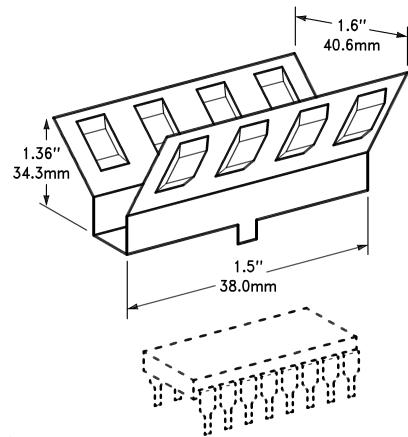


FIGURE 5. Staver External Heat-sink

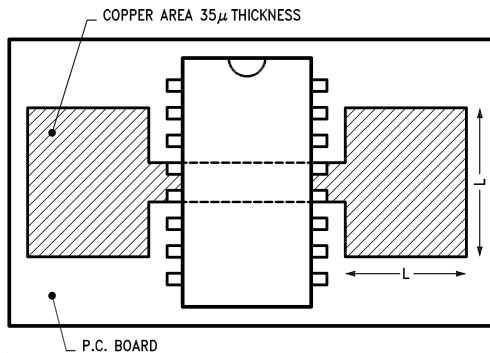


FIGURE 6. PCB Thermal Layout

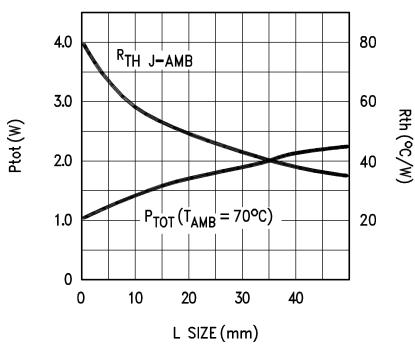
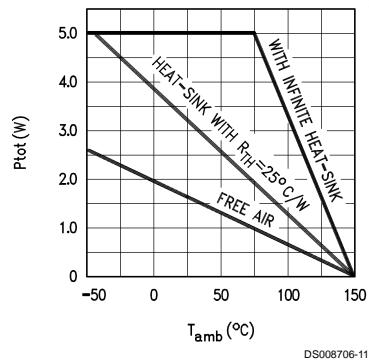



FIGURE 7. Maximum Power Dissipated and Junction to Ambient Thermal Resistance vs. Size

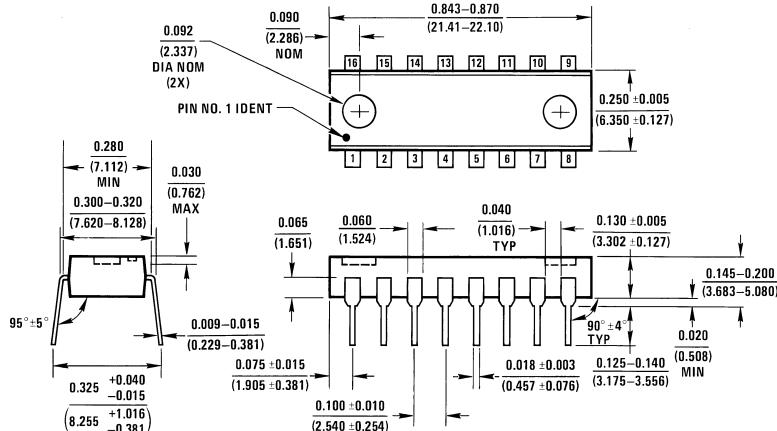

Mounting Instructions (Continued)

FIGURE 8. Maximum Allowable Power Dissipation vs Ambient Temperature

LM18293 Four Channel Push-Pull Driver

Physical Dimensions inches (millimeters) unless otherwise noted

N16A (REV E)

Molded Dual-In-Line Package (N)

Order Number LM18293N

NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com

National Semiconductor
Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179