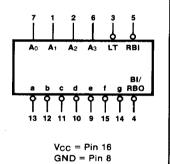
54/7446A • 54/7447A · 54LS/74LS47

BCD TO 7-SEGMENT DECODER/DRIVER

DESCRIPTION — The '46A, '47A and 'LS47 accept four lines of BCD (8421) input data, generate their complements internally and decode the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 40 mA (24 mA for the 'LS47) in the ON (LOW) state and withstand 15 V (30 V for the '46A) in the OFF (HIGH) state with a maximum leakage current of 250 μ A. Auxiliary inputs provide blanking, lamp test and cascadable zero-suppression fuctions. Also see the 'LS247 data sheet.

PINOUT A


Ao 1
16 Vcc
A1 2
15 i
14 i
8
BI/RBO 4
13 i
RBI 5
12 b
A2 6
A3 7
GND 8
9 6

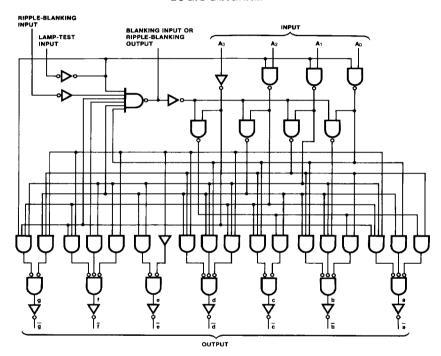
CONNECTION DIAGRAM

- OPEN-COLLECTOR OUTPUTS
- DRIVE INDICATOR SEGMENTS DIRECTLY
- CASCADABLE ZERO-SUPPRESSION CAPABILITY
- LAMP TEST INPUT

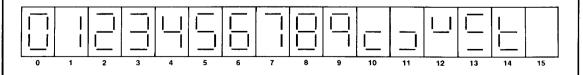
ORDERING CODE: See Section 9

PKGS	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
	ОПТ	V _{CC} = +5.0 V ±5%, T _A = 0°C to +70°C			
Plastic DIP (P)	А	7446APC, 7447APC 74LS47PC		9B	
Ceramic DIP (D)	А	7446ADC, 7447ADC 74LS47DC	5446ADM, 5447ADM 54LS47DM	7B	
Flatpak (F)	А	7446AFC, 7447AFC 74LS47FC	5446AFM, 5447AFM 54LS47FM	4L	

LOGIC SYMBOL


INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW		
A ₀ — A ₃ RBi LT	BCD Inputs	1.0/1.0	0.5/0.25		
	Ripple Blanking Input (Active LOW) Lamp Test Input (Active LOW)	1.0/1.0	0.5/0.25 0.5/0.25		
BI/RBO	Blanking Input (Active LOW) or	-/2.5	-/0.75		
	Ripple Blanking Output (Active LOW)	5.0/5.0	1.25/2.0		
ā — ā	Sammant Culturate (Aution LOH)	0.04/0-	(1.0)		
a-g	Segment Outputs (Active LOW)	OC*/25	OC*/15		
		<u> </u>	(7.5)		


*OC-Open Collector

FUNCTIONAL DESCRIPTION — The '46A, '47A and 'LS47 decode the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display. For example, by grounding the RBI of the highest order decoder and connecting its BI/RBO to RBI of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, ie: by driving RBI of an intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by enternal means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

LOGIC DIAGRAM

NUMERICAL DESIGNATIONS — RESULTANT DISPLAYS

TRUTH TABLE

	INPUTS						OUTPUTS								
DECIMAL OR FUNCTION	LΤ	RBI	A 3	A ₂	A 1	A ₀	BI/RBO	a	b	- c	₫	ē	f	<u>-</u>	NOTE
0 1 2 3	rrrr	н х х х	111	L L L	L H H	L H L	H H H H	LHLL	L L L	L H L	L H L	THLH	L H H	HHLL	1 1
4 5 6 7 8	IIIII	X X X	JJJJI	H H H H L	LLHHL	ידרדר	1 1 1 1	H L H L L	LHHLL		HLLHL	HHLHL	LLLHL	L L H L	
9 10 11 12 13	IIIII	X X X X	IIIII	LLLHH	LHLL	ILIL	IIIII		L H H H	LHLHH	HLLHL	HLHHH	L H H L	L L L	
14 15 BI RBI LT	IIXIL	X X L X	H X K	H X L X	H X L X	L X X X	IIJJI	IIII	H H H L	HHHL	LHHL	L H H L	L H H L	L H H L	2 3 4

NOTES:

- (1) BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.
- (2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.
- (3) When ripple-blanking input (RBI) and inputs A₀, A₁, A₂ and A₃ are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).
- (4) When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS			
01202	1 AllAME 1 Ell	Min	Max	Min	Max	OMITS	CONDITIONS			
Іон	Output HIGH Current	'46		250		Ť	μА	V _{OH} = 30 V	V _{CC} = Max	
ION	OFF State at $\overline{a} - \overline{g}$	'47		250		250	μ^	V _{OH} = 15 V	1 VCC - Max	
los	Output Short Circuit Current at BI/RBO			-4.0	-0.3	-2.0	mA	V _{CC} = Max		
lcc	Power Supply Current	ХМ		85		13	A	V		
	Tower Supply Current		103	1	13	mA	Vcc = Max			

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{C}$ (See Section 3 for waveforms and load configurations)

		54/74	54/74LS		CONDITIONS	
SYMBOL	PARAMETER		C _L = 15 pF R _L = 665 Ω	_		
		Min Max	Min Max			
tPLH tPHL	Propagation Delay A _n to a — g	100 100	100 100	ns	Figs. 3-2, 3-20	
tpLH tpHL	Propagation Delay RBI to a — f	100 100	100 100	ns	<u>Fig</u> s. 3-2, 3-4 LT = HIGH, A ₀ - A ₃ = LOW	