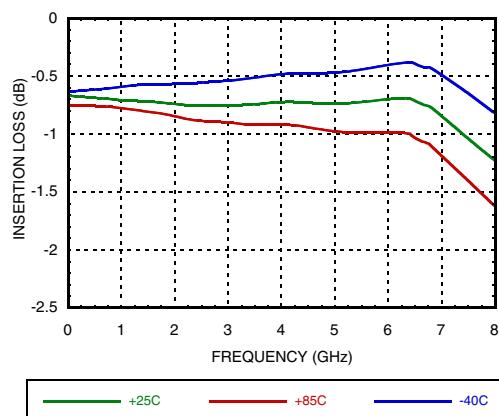
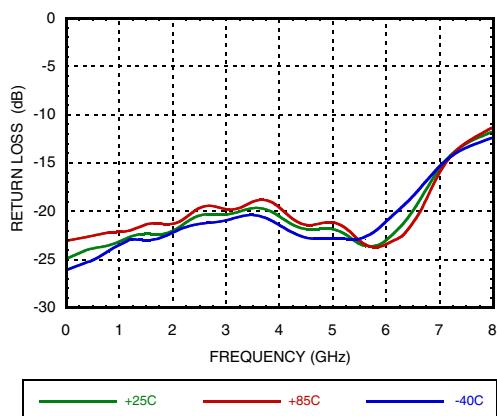
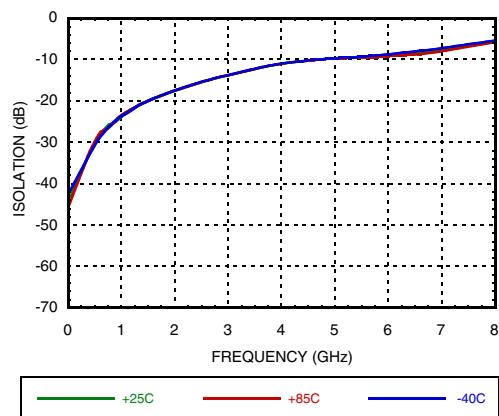
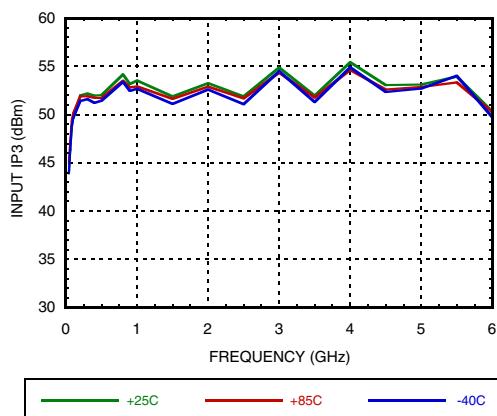
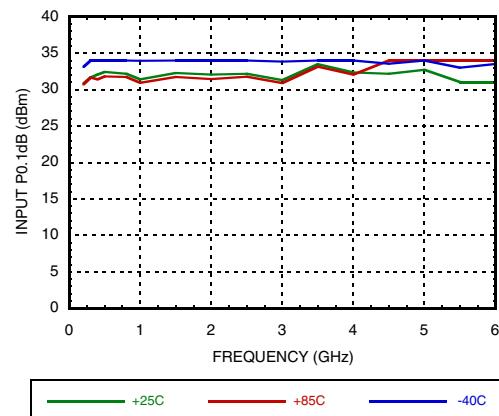


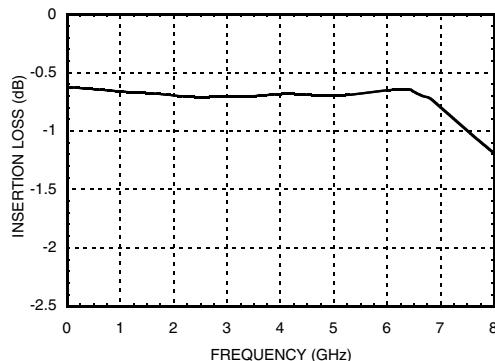
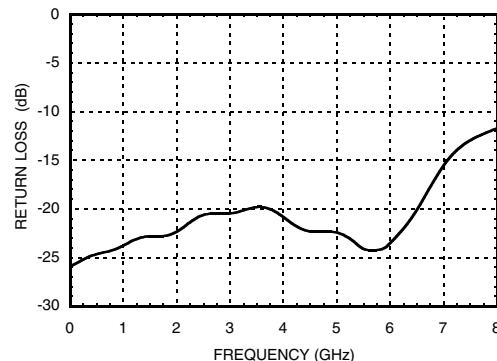
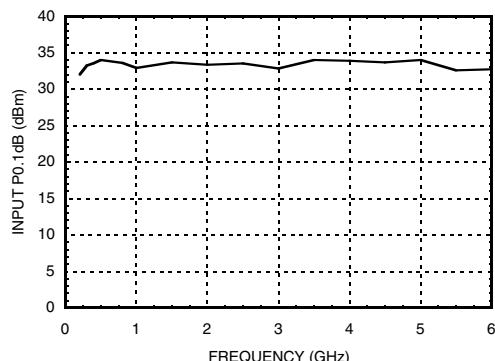
**GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz**
Typical Applications

The HMC550A / HMC550AE is ideal for:

- RFID & Electronic Toll Collection (ETC)
- Tags, Handsets & Portables
- ISM, WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment






Functional Diagram

Electrical Specifications




$T_A = +25^\circ C$, $Vdd = +3.3 \text{ Vdc}$, $Vctl = 0/+3.3 \text{ Vdc}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	DC - 6.0 GHz		0.7	0.9	dB
Isolation	DC - 2.0 GHz	15	25		
	DC - 6.0 GHz	8	12		dB
Return Loss	DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression	$Vctl = 0/+3.3 \text{ V}$	0.5 - 6.0 GHz	28	32	dBm
Input Third Order Intercept (Two-tone Input Power = +17 dBm Each Tone)	$Vctl = 0/+3.3 \text{ V}$	0.5 - 6.0 GHz		52	dBm
Switching Characteristics t_{RISE}, t_{FALL} (10/90% RF) t_{ON}, t_{OFF} (50% CTL to 10/90% RF)	DC - 6.0 GHz		20 30		ns ns

$T_A = +25^\circ C$, $Vctl$ & Vdd Unpowered

Insertion Loss	DC - 6.0 GHz		0.7	0.9	dB
Return Loss	DC - 6.0 GHz		20		dB
Input Power for 0.1 dB Compression	0.5 - 6.0 GHz	28	33		dBm
Input Third Order Intercept (Two-tone Input Power = +17 dBm Each Tone)	0.5 - 0.6 GHz		52		dBm

**GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz**
SWITCHES - SPST - SMT
Insertion Loss

Return Loss

Isolation

Input IP3 vs. Temperature

Input P0.1dB vs. Temperature

**GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz**
Insertion Loss, Power Off

Return Loss, Power Off

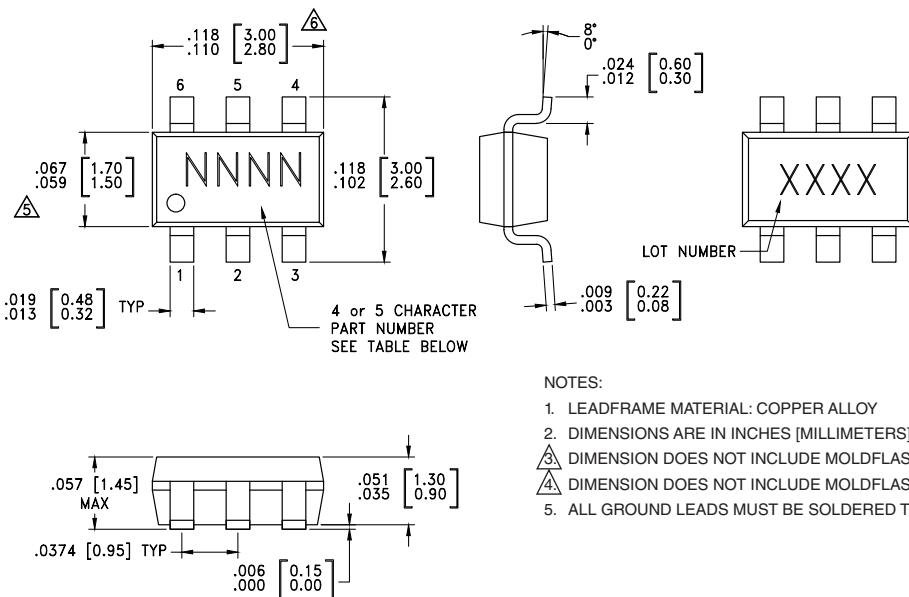
Input P0.1dB, Power Off

Input IP3, Power Off

Operating Conditions

Vdd & $Vctl = 0$ Vdc to $+5$ Vdc; $Vctl_{max} = Vdd + 0.2$ Vdc; Idd & $Ictl = 0.1$ μ A, Typical

Conditions	$Vdd - Vctl \geq +1.2$ Vdc	-0.2 Vdc $< Vdd - Vctl < +0.4$ Vdc
RF1 - RF2	OFF	ON


Examples of Typical Operating Conditions - Idd & $Ictl = 0.1$ μ A, Typical

Vdd (V)	0 (Unpowered)	1.6		2.2		3.3		5.0	
$Vctl$ (V)	0 (Unpowered)	0	> 1.2	< 1.0	> 1.8	< 2.1	> 2.9	< 3.8	> 4.6
RF1 - RF2	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON

**GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz**
Absolute Maximum Ratings

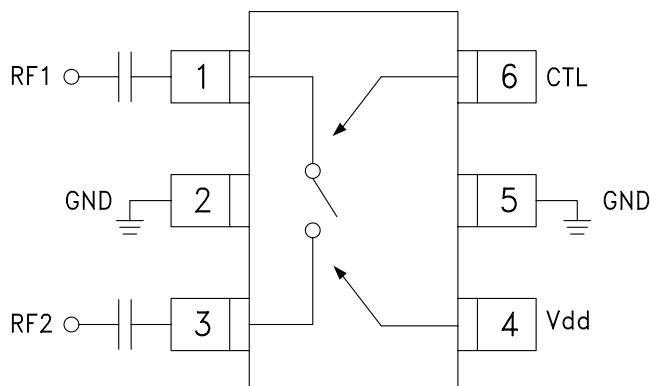
RF Input Power (Vctl = 0/+3.3V)	+34 dBm
Supply Voltage (Vdd)	+12 Vdc
Control Voltage Range (Vctl)	-0.2 to +(Vdd + 0.2) Vdc
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 5.54 mW/ °C above 85°C)	0.360 W
Thermal Resistance	180.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

DC blocks are required at ports RF1 and RF2.

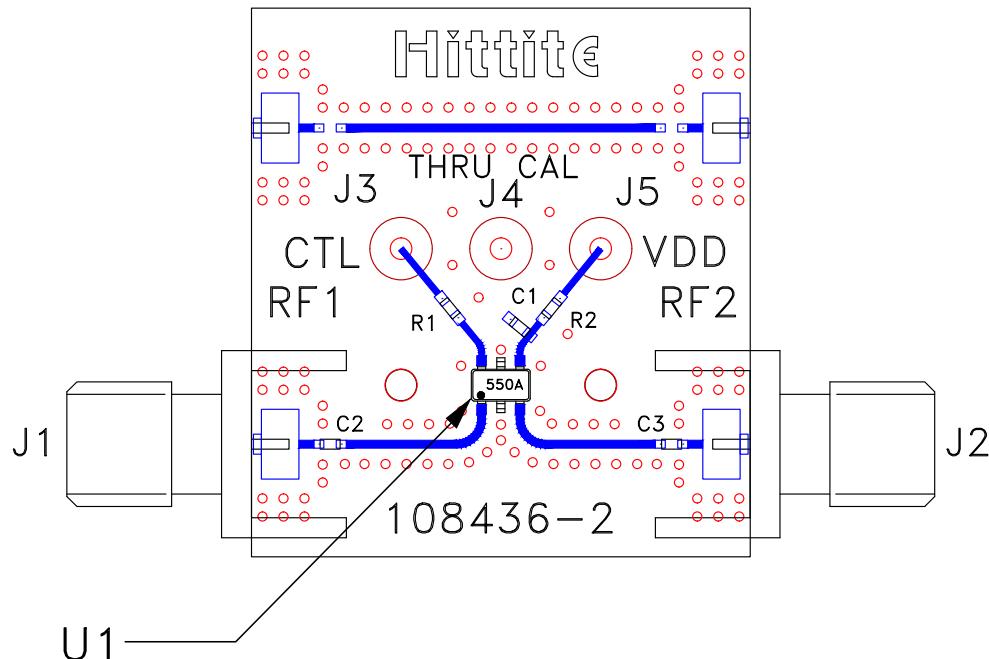
**ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS**
Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC550A	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	550A XXXX
HMC550AE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	550AE XXXX


[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C


[3] 4-Digit lot number XXXX

**GaAs MMIC SPST
FAILSAFE SWITCH, DC - 6 GHz**
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3	RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
2, 5	GND	These pins must be connected to RF ground.	
4	Vdd	Supply Voltage	
6	Vctl	See truth and control voltage tables.	

Typical Application Circuit

Note:

1. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

Evaluation PCB

List of Materials for Evaluation PCB 109266 - HMC550A^[1]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J5	DC Pin
C1	1,000 pF Capacitor, 0402 Pkg.
C2 - C3	100 pF capacitor, 0402 Pkg.
R1, R2	100 Ohm Resistor, 0402 Pkg.
U1	HMC550A / HMC550AE SPST Switch
PCB [2]	108436 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.