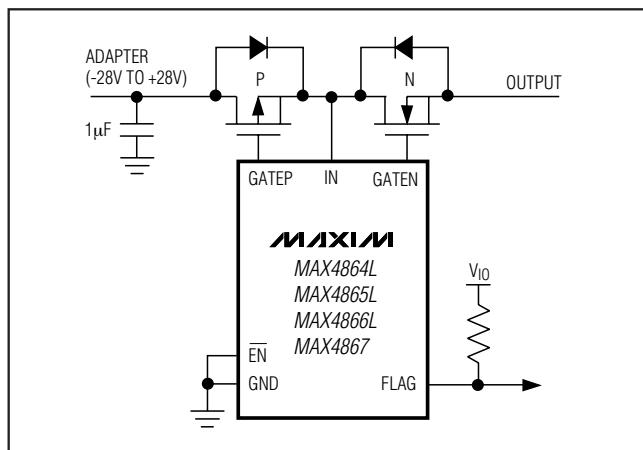


Overvoltage Protection Controllers with Reverse Polarity Protection

General Description

The MAX4864L/MAX4865L/MAX4866L/MAX4867 overvoltage protection controllers protect low-voltage systems against high-voltage faults up to +28V, and negative voltages down to -28V. These devices drive a low-cost complementary MOSFET. If the input voltage exceeds the overvoltage threshold, these devices turn off the n-channel MOSFET to prevent damage to the protected components. If the input voltage drops below ground, the devices turn off the p-channel MOSFET to prevent damage to the protected components. An internal charge pump eliminates the need for external capacitors and drives the MOSFET GATEN for a simple, robust solution.

The overvoltage thresholds are preset to +7.4V (MAX4864L), +6.35V (MAX4865L), +5.8V (MAX4866L), and +4.65V (MAX4867). When the input voltage drops below the undervoltage lockout (UVLO) threshold, the devices enter a low-current standby mode (8.5µA). Also in shutdown (\overline{EN} set to logic-high), the current is reduced further (0.4µA). The MAX4864L/MAX4865L/MAX4866L have a +2.85V UVLO threshold, and the MAX4867 has a +2.5V UVLO threshold.


In addition, a $\pm 15kV$ ESD protection is provided to the input when bypassed with a 1µF capacitor to ground. All devices are offered in a small 6-pin SOT23 and a 6-pin, 2mm x 2mm µDFN package, and are specified for operation over the -40°C to +85°C temperature range.

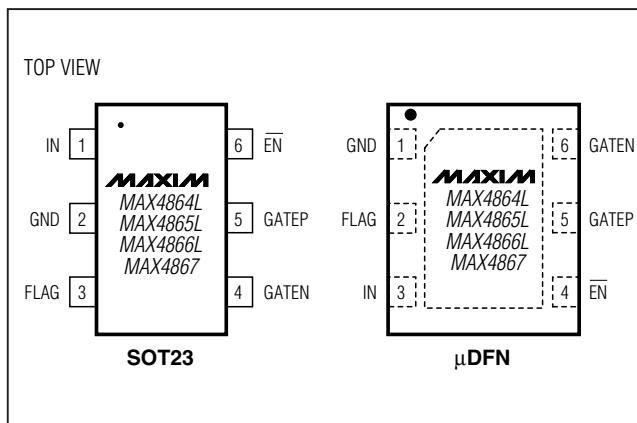
Applications

Cell Phones
Digital Still Cameras

PDAs and Palmtop Devices
MP3 Players

Typical Operating Circuit

Features


- ◆ Overvoltage Protection Up to +28V
- ◆ Reverse Polarity Protection Down to -28V
- ◆ Preset Overvoltage (OV) Trip Level (7.4V, 6.35V, 5.8V, 4.65V)
- ◆ Drive Low-Cost Complementary MOSFET
- ◆ Internal 50ms Startup Delay
- ◆ Internal Charge Pump
- ◆ 8.5µA Standby Current (In UVLO Mode)
- ◆ 0.4µA Shutdown Current
- ◆ Overvoltage Fault FLAG Indicator
- ◆ 6-Pin (2mm x 2mm) µDFN and 6-Pin SOT23 Packages

Ordering Information

PART	PIN-PACKAGE	OV TRIP LEVEL (V)	TOP MARK	PKG CODE
MAX4864LEUT-T	6 SOT23-6	7.40	ABVO	—
MAX4864ELT	6 µDFN	7.40	AAE	L622-1
MAX4865LEUT-T	6 SOT23-6	6.35	ABVP	—
MAX4865ELT	6 µDFN	6.35	AAF	L622-1
MAX4866LEUT-T	6 SOT23-6	5.80	ABVQ	—
MAX4866ELT	6 µDFN	5.80	AAG	L622-1
MAX4867EUT-T	6 SOT23-6	4.65	ABVN	—
MAX4867ELT	6 µDFN	4.65	AAD	L622-1

Note: All devices are specified over the -40°C to +85°C operating range.

Pin Configuration

Functional Diagram appears at end of data sheet.

For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX4864L/MAX4865L/MAX4866L/MAX4867

Overvoltage Protection Controllers with Reverse Polarity Protection

ABSOLUTE MAXIMUM RATINGS

IN to GND	-0.3V to +30V
GATEN, GATEP to GND	-0.3V to +12V
IN to GATEP	-0.3V to +20V
FLAG, \overline{EN} to GND	-0.3V to +6V
Continuous Power Dissipation ($T_A = +70^\circ\text{C}$)	
6-Pin μDFN (2mm x 2mm) (derate 2.1mW/ $^\circ\text{C}$ above $+70^\circ\text{C}$)	168mW
6-Pin SOT23 (derate 8.7mW/ $^\circ\text{C}$ above $+70^\circ\text{C}$)	696mW

Operating Temperature Range	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{IN} = +5\text{V}$ (MAX4864L/MAX4865L/MAX4866L), $V_{IN} = +4\text{V}$ (MAX4867), $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $C_{GATEN} = 500\text{pF}$, unless otherwise noted. Typical values are at $T_A = +25^\circ\text{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	V_{IN}			1.2		28.0	V
Overvoltage Trip Level	OVLO	V_{IN} rising	MAX4864L	7.0	7.4	7.8	V
			MAX4865L	5.95	6.35	6.75	
			MAX4866L	5.45	5.8	6.15	
			MAX4867	4.35	4.65	4.95	
Overvoltage Lockout Hysteresis			MAX4864L		75		mV
			MAX4865L		65		
			MAX4866L		55		
			MAX4867		50		
Undervoltage Lockout Threshold	UVLO	V_{IN} falling	MAX4864L/MAX4865L/MAX4866L	2.65	2.85	3.05	V
			MAX4867	2.3	2.5	2.7	
Undervoltage Lockout Hysteresis			MAX4864L/MAX4865L/MAX4866L		44		mV
			MAX4867		25		
IN Supply Current	I_{IN}	$\overline{EN} = \text{GND}$	MAX4864L/MAX4865L/MAX4866L	77	120		μA
			MAX4867	68	110		
UVLO Supply Current	I_{UVLO}	$\overline{EN} = \text{GND}$	MAX4864L/MAX4865L/MAX4866L, $V_{IN} = +2.6\text{V}$		8.5	22	μA
			MAX4867, $V_{IN} = +2.2\text{V}$		8	18	
Shutdown Supply Current	I_{SHD}	$\overline{EN} = 1.6\text{V}$	MAX4864L/MAX4865L/MAX4866L, $V_{IN} = 3.6\text{V}$		0.4	2	μA
			MAX4867, $V_{IN} = 3.6\text{V}$		0.4	2	
GATEN Voltage	V_{GATEN}	1 μA load	MAX4864L/MAX4865L/MAX4866L	9	9.83	10	V
			MAX4867	7.5	7.85	8.0	
GATEN Pulldown Current	I_{PD}	$V_{IN} > \text{OVLO}$, $V_{GATEN} = +5.5\text{V}$		12	32	65	mA
GATEP Clamp Voltage	V_{CLAMP}			13.5	16.5	19.5	V
GATEP Pulldown Resistor	R_{GATEP}			32	48	64	$\text{k}\Omega$
FLAG Output-Low Voltage	V_{OL}	$I_{SINK} = 1\text{mA}$			0.4		V
FLAG Leakage Current		$V_{FLAG} = +5.5\text{V}$			1		μA
\overline{EN} Input-High Voltage	V_{IH}			1.5			V
\overline{EN} Input-Low Voltage	V_{IL}				0.4		V

Overvoltage Protection Controllers with Reverse Polarity Protection

ELECTRICAL CHARACTERISTICS (continued)

($V_{IN} = +5V$ (MAX4864L/MAX4865L/MAX4866L), $V_{IN} = +4V$ (MAX4867), $T_A = -40^\circ C$ to $+85^\circ C$, $C_{GATEN} = 500pF$, unless otherwise noted. Typical values are at $T_A = +25^\circ C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
EN Input Leakage Current	I_{LKG}	$\bar{EN} = GND$ or $+5.5V$		1		μA
TIMING						
Startup Delay	t_{START}	$V_{IN} > UVLO$ to $V_{GATEN} > 0.3V$, Figure 1	20	50	80	ms
FLAG Blanking Time	t_{BLANK}	$V_{GATEN} > 0.3V$ to $V_{FLAG} < 0.3V$, Figure 1	20	50	80	ms
GATEN Turn-On Time	t_{GON}	$C_{GATEN} = 500pF$, $V_{GATEN} = 0.3V$ to $+8V$ (MAX4864L/MAX4865L/MAX4866L) $V_{GATEN} = 0.3V$ to $+7V$ (MAX4867), Figure 1		10		ms
GATEN Turn-Off Time	t_{GOFF}	V_{IN} rising at $3V/\mu s$ from $+5V$ to $+8V$ (MAX4864L/MAX4865L/MAX4866L), or from $+4V$ to $+7V$ (MAX4867) $V_{GATEN} = 0.3V$, $C_{GATEN} = 500pF$, Figure 2		7	20	μs
FLAG Assertion Delay	t_{FLAG}	V_{IN} rising at $3V/\mu s$ from $5V$ to $8V$ (MAX4864L/MAX4865L/MAX4866L), or from $+4V$ to $+7V$ (MAX4867), $V_{FLAG} = 0.3V$, Figure 2		3.5		μs
Initial Overvoltage Fault Delay	t_{OVP}	V_{IN} rising at $3V/\mu s$ from $0V$ to $+9V$, time from $V_{IN} = 5V$ to $I_{GATEN} = 80\%$ of I_{PD} (GATEN pulldown current), Figure 3		1.5		μs
Disable Time	t_{DIS}	$\bar{V}_{EN} = +2.4V$, $V_{GATEN} = 0.3V$, Figure 4		2		μs

Note 1: All parts are 100% tested at $+25^\circ C$. Electrical limits across the full temperature range are guaranteed by design and correlation.

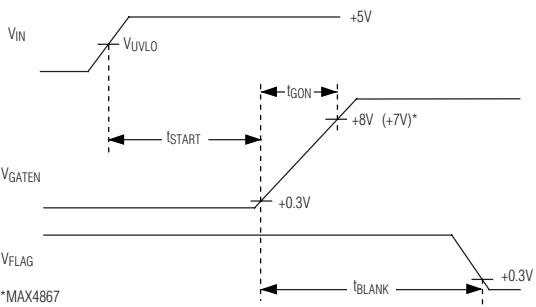


Figure 1. Startup Timing Diagram

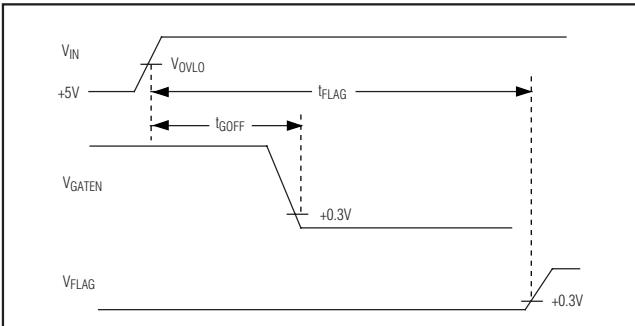


Figure 2. Shutdown Timing Diagram

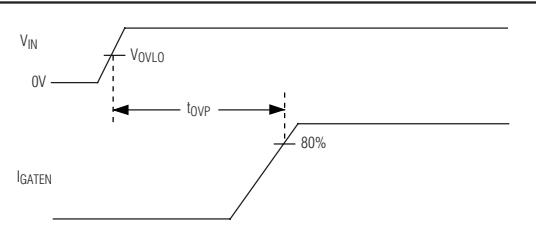
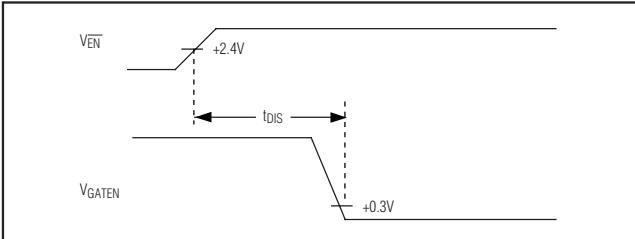
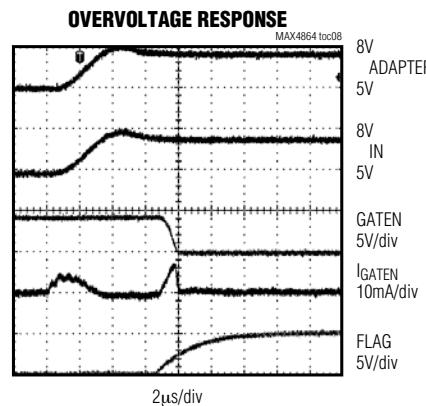
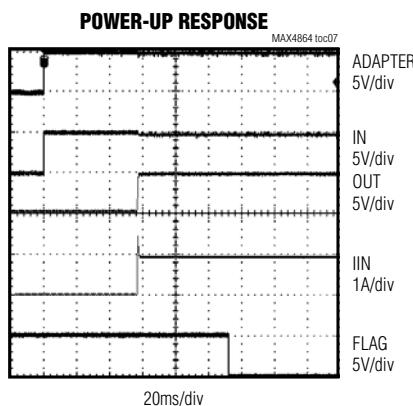
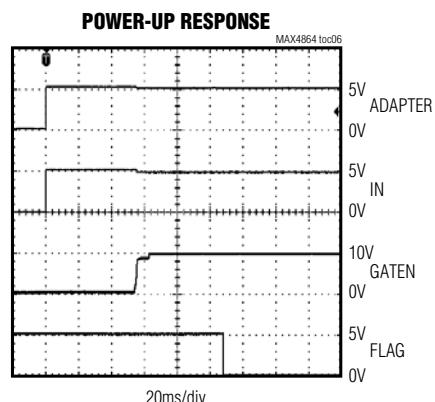
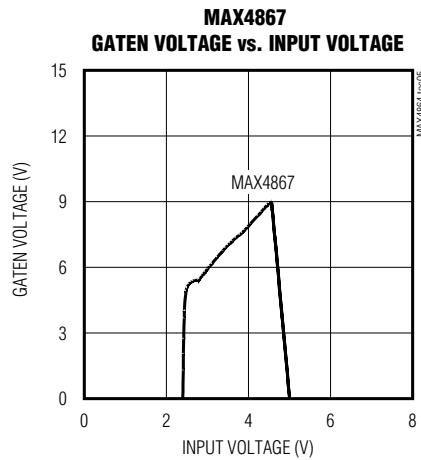
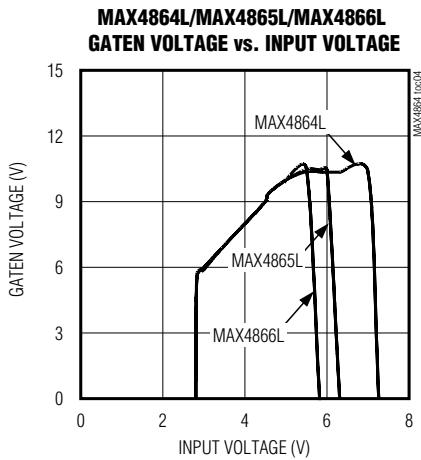
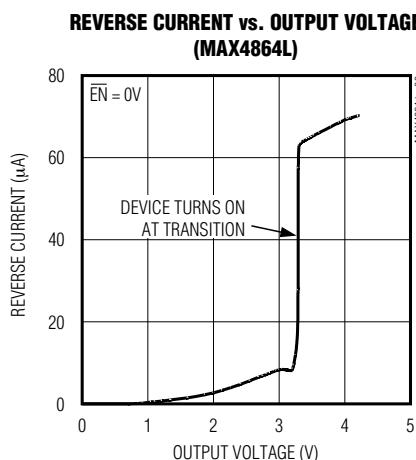
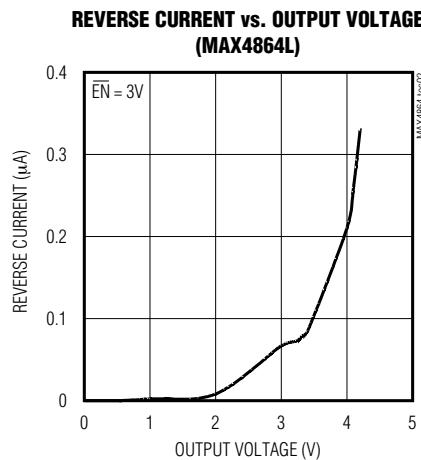
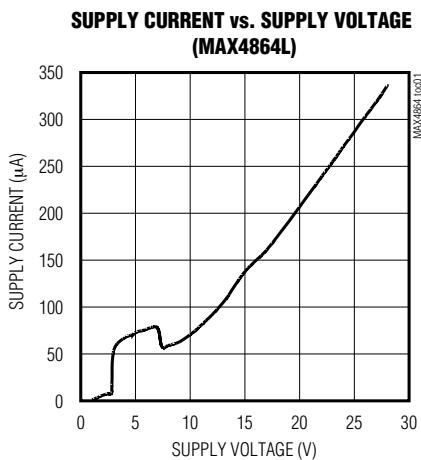


Figure 3. Power-Up Overvoltage Timing Diagram



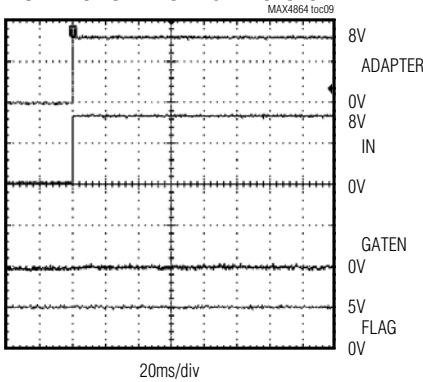








Figure 4. Disable Timing Diagram

MAX4864L/MAX4865L/MAX4866L/MAX4867

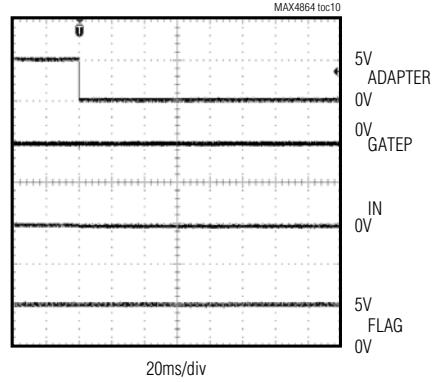
Overvoltage Protection Controllers with Reverse Polarity Protection

Typical Operating Characteristics

($T_A = +25^\circ\text{C}$, unless otherwise noted.)



Overvoltage Protection Controllers with Reverse Polarity Protection


Typical Operating Characteristics (continued)

($T_A = +25^\circ\text{C}$, unless otherwise noted.)

POWER-UP OVERVOLTAGE RESPONSE

NEGATIVE VOLTAGE RESPONSE

Pin Description

PIN		NAME	FUNCTION
MAX4864LEUT/ MAX4865LEUT/ MAX4866LEUT/ MAX4867EUT	MAX4864LELT/ MAX4865LELT/ MAX4866LELT/ MAX4867ELT		
1	3	IN	Voltage Input. IN is both the power-supply input and the overvoltage sense input.
2	1	GND	Ground
3	2	FLAG	Fault-Indication Output. When $\overline{\text{EN}}$ goes high, FLAG becomes high-impedance. FLAG is asserted high during undervoltage lockout and overvoltage lockout conditions. FLAG is deasserted during normal operation. FLAG is an open-drain output.
4	6	GATEN	n-Channel MOSFET Gate-Drive Output. GATEN is the output of an on-chip charge pump. When $V_{UVLO} < V_{IN} < V_{OVLO}$, GATEN is driven high to turn on the external n-channel MOSFET.
5	5	GATEP	p-Channel MOSFET Gate-Drive Output. GATEP is always on when input is above ground and off when input drops below ground.
6	4	$\overline{\text{EN}}$	Active-Low Enable Input. Connect to ground in normal operation. Drive $\overline{\text{EN}}$ high to disable device and enter shutdown mode.

Overvoltage Protection Controllers with Reverse Polarity Protection

Detailed Description

The MAX4864L/MAX4865L/MAX4866L/MAX4867 provide up to +28V overvoltage and negative voltage protection for low voltage systems. When the input voltage exceeds the overvoltage trip level, the MAX4864L/MAX4865L/MAX4866L/MAX4867 turn off a low-cost external n-channel MOSFET to prevent damage to the protected components. The devices also drive an external p-channel MOSFET to protect against negative voltage inputs. An internal charge-pump (see the *Functional Diagram*), drives the MOSFET GATEN for a simple, robust solution. On power-up, the device waits for 50ms before driving GATEN high. The open-drain FLAG output is kept at a high impedance for an additional 50ms after GATEN goes high before deasserting. The FLAG output asserts high immediately to an overvoltage fault.

Undervoltage Lockout (UVLO)

The MAX4864L/MAX4865L/MAX4866L/MAX4867 have a fixed +2.85V typical UVLO level, and the MAX4867 has +2.5V UVLO level. When V_{IN} is less than the UVLO, the GATEN driver is held low and FLAG is asserted.

Overvoltage Lockout (OVLO)

The MAX4864L has a +7.4V typical OVLO threshold; the MAX4865L has +6.35V typical OVLO threshold; the MAX4866L has a +5.8V typical OVLO threshold; and the MAX4867 has a +4.65V typical OVLO threshold. When V_{IN} is greater than OVLO, the GATEN driver is held low and FLAG is asserted.

FLAG Output

The open-drain FLAG output is used to signal to the host system when there is a fault with the input voltage. On power-up, FLAG is held high for 50ms after GATEN turns on, before deasserting. FLAG asserts immediately to overvoltage and undervoltage faults. When the fault condition is removed, FLAG deasserts 50ms after GATEN turns on. Connect a pullup resistor from FLAG to the logic I/O voltage of the host system.

GATEN Driver

An on-chip charge pump is used to drive GATEN above IN, allowing the use of a low-cost n-channel MOSFET. The charge pump operates from the internal +5.5V regulator.

The actual GATEN output voltage tracks approximately two times V_{IN} until V_{IN} exceeds +5.5V, or the OVLO trip level is exceeded, whichever comes first. The MAX4864L has a +7.4V typical OVLO, therefore GATEN remains relatively constant at approximately +10.5V for $+5.5V < V_{IN} < +7.4V$. The MAX4866L has a +5.8V typical OVLO, but this can be as low as +5.5V. The GATEN

output voltage is a function of input voltage, as shown in the *Typical Operating Characteristics*.

GATEP Driver

When the input voltage drops below ground, GATEP goes high turning the external p-channel MOSFET off. When the input voltage goes above ground, GATEP pulls low and turns on the p-channel MOSFET. An internal clamp protects the p-channel MOSFET by insuring that the GATEP-to-IN voltage does not exceed +16V when the input (IN) rises to +28V.

Device Operation

The MAX4864L/MAX4865L/MAX4866L/MAX4867 have an on-board state machine to control device operation. A flowchart is shown in Figure 5. On initial power-up, if $V_{IN} < UVLO$ or if $V_{IN} > OVLO$, GATEN is held at 0V and FLAG is high.

If $UVLO < V_{IN} < OVLO$, the device enters startup after a 50ms internal delay. The internal charge pump is enabled, and GATEN begins to be driven above V_{IN} by the internal charge pump. FLAG is held high during startup until the FLAG blanking period expires, typically 50ms after the GATEN starts going high. At this point, the device is in its on-state.

At any time if V_{IN} drops below UVLO, FLAG is driven high and GATEN is driven to ground.

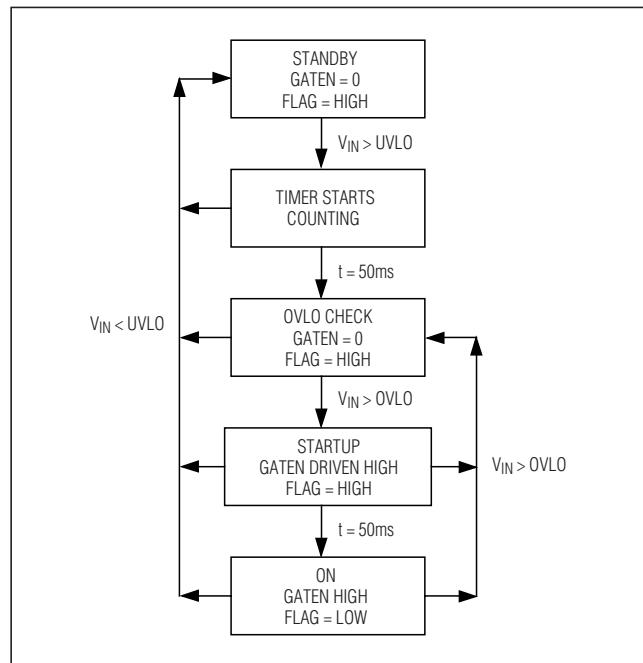


Figure 5. State Diagram

Overvoltage Protection Controllers with Reverse Polarity Protection

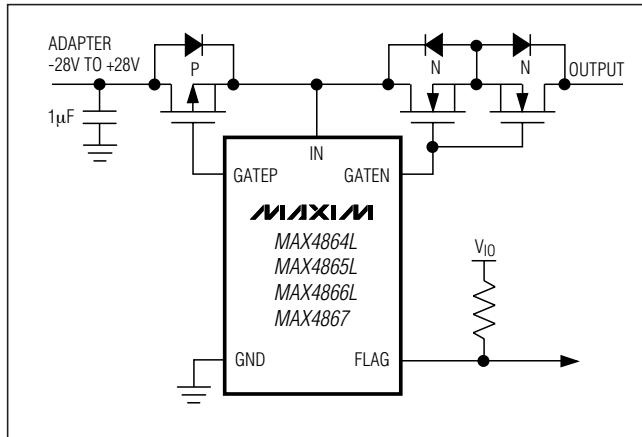


Figure 6. Back-to-Back External MOSFET Configuration

Applications Information

MOSFET Configuration

The MAX4864L/MAX4865L/MAX4866L/MAX4867 can be used with either a complementary MOSFET configuration as shown in the *Typical Operating Circuit*, or can be configured with a single p-channel MOSFET and back-to-back n-channel MOSFETs as shown in Figure 6.

The MAX4864L/MAX4865L/MAX4866L/MAX4867 can drive either a complementary MOSFET or a single p-channel MOSFET and back-to-back n-channel MOSFETs. The back-to-back configuration has almost zero reverse current when the adapter is not present or when the adapter voltage is below the UVLO threshold.

If reverse current leakage is not a concern, a single MOSFET can be used. This approach has half the loss of the back-to-back configuration when used with similar MOSFET types and is a lower cost solution. Note

that if the input is actually pulled low, the output will also be pulled low due to the parasitic body diode in the MOSFET. If this is a concern, then the back-to-back configuration should be used.

MOSFET Selection

The MAX4864L/MAX4865L/MAX4866L/MAX4867 are designed for use with a complementary MOSFET or single p-channel and dual back-to-back n-channel MOSFETs. In most situations, MOSFETs with RDS(ON) specified for a VGS of 4.5V work well. Also the V_DS should be +30V for the MOSFET to withstand the full +28V IN range of the MAX4864L/MAX4865L/MAX4866L/MAX4867. Table 1 shows a selection of MOSFETs which are appropriate for use with the MAX4864L/MAX4865L/MAX4866L/MAX4867.

IN Bypass Considerations

For most applications, bypass ADAPTER to GND with a 1 μ F ceramic capacitor. If the power source has significant inductance due to long lead length, take care to prevent overshoots due to the LC tank circuit and provide protection if necessary to prevent exceeding the +30V absolute maximum rating on IN.

ESD Test Conditions

ESD performance depends on a number of conditions. The MAX4864L/MAX4865L/MAX4866L/MAX4867 are specified for +/-15kV typical ESD resistance on IN when ADAPTER is bypassed to ground with a 1 μ F ceramic capacitor.

Human Body Model

Figure 7 shows the Human Body Model, and Figure 8 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5\text{k}\Omega$ resistor.

MAX4864L/MAX4865L/MAX4866L/MAX4867

Table 1. MOSFET Suggestions

PART	CONFIGURATION/ PACKAGE	V_{GS} MAX (V)	V_{DS} MAX (V)	R_{ON} AT 4.5V (mΩ)	MANUFACTURER
Si5504DC	Complementary MOSFET/1206-8	±20	+30	143 (n-MOSFET)	Vishay Siliconix
			-30	290 (p-MOSFET)	
Si5902DC	Dual/1206-8	±20	+30	143 (n-MOSFET)	
Si1426DH	Single/µDFN-6	±20	+30	115 (n-MOSFET)	
Si5435DC	Single/1206-8	±20	-30	80 (p-MOSFET)	Fairchild Semiconductor
FDC6561AN	Dual/SSOT-6	±20	+30	145 (n-MOSFET)	
FDG315N	Single/µDFN-6	±20	+30	160 (n-MOSFET)	
FDC658P	Single/SSOT-6	±20	-30	75 (p-MOSFET)	
FDC654P	Single/SSOT-6	±20	-30	125 (p-MOSFET)	

Overvoltage Protection Controllers with Reverse Polarity Protection

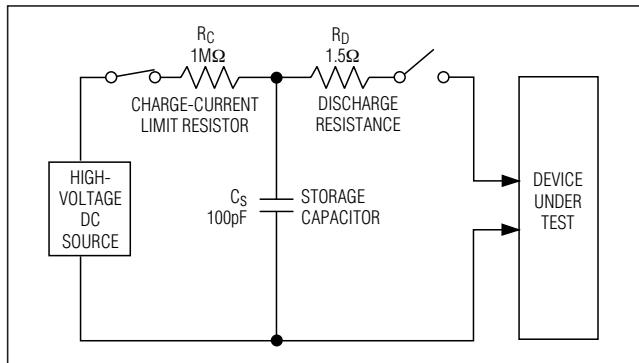


Figure 7. Human Body ESD Test Model

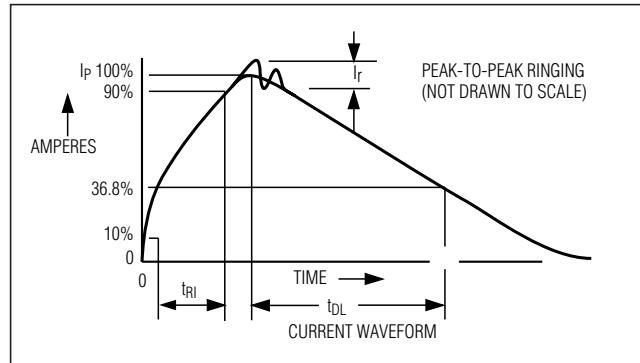


Figure 8. Human Body Current Waveform

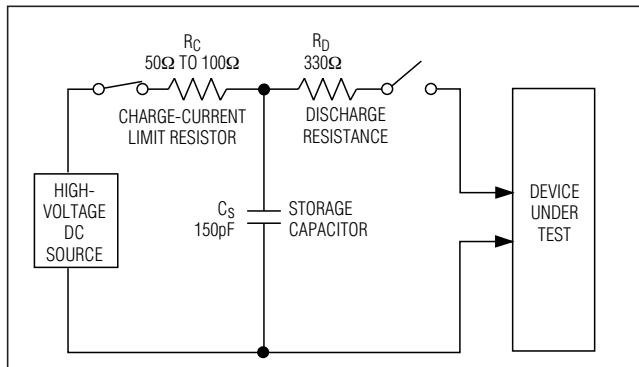


Figure 9. IEC 1000-4-2 ESD Test Model

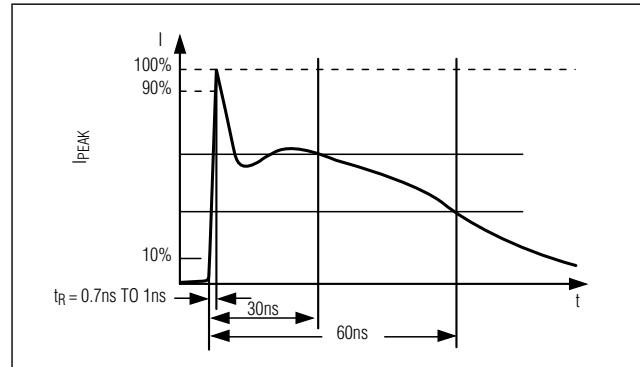


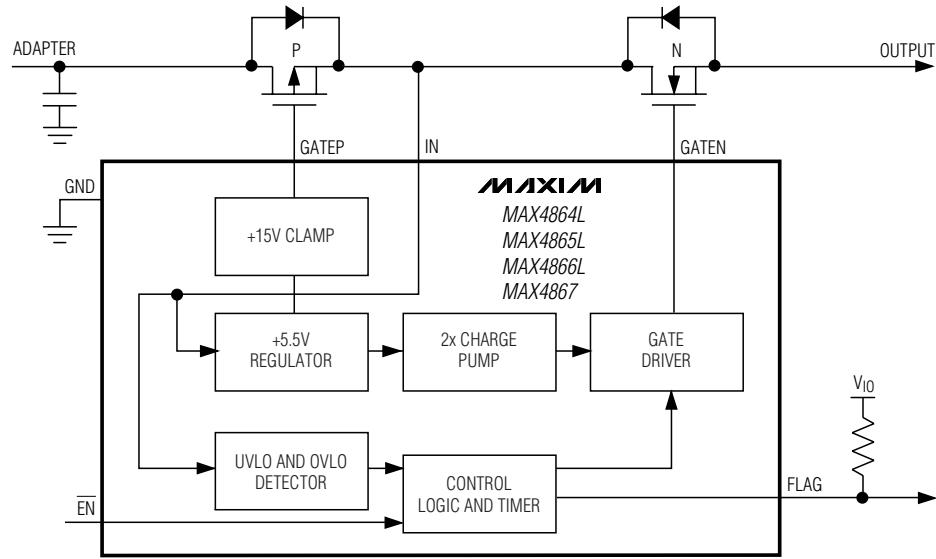
Figure 10. IEC 1000-4-2 ESD Generator Current Waveform

IEC 1000-4-2
Since January 1996, all equipment manufactured and/or sold in the European Union has been required to meet the stringent IEC 1000-4-2 specification. The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to ICs. The MAX4864L/MAX4865L/MAX4866L/MAX4867 help users design equipment that meets Level 3 of IEC 1000-4-2, without additional ESD-protection components.

The main difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 9), the ESD-withstand voltage measured to this standard is gen-

erally lower than that measured using the Human Body Model. Figure 10 shows the current waveform for the $\pm 8\text{kV}$ IEC 1000-4-2 Level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charger probe. The Contact Discharge method connects the probe to the device before the probe is energized.

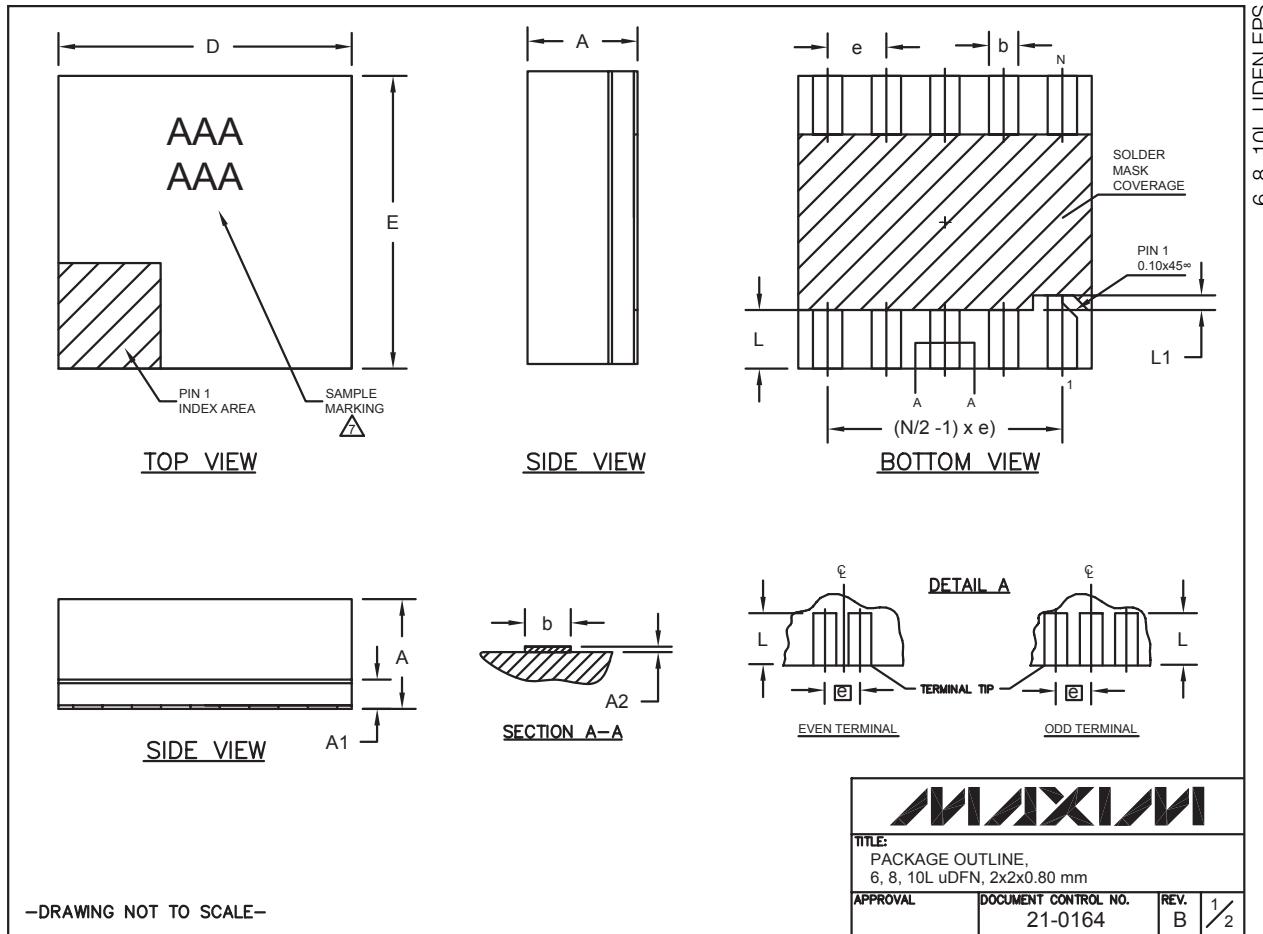
Chip Information


TRANSISTOR COUNT: 727

PROCESS TECHNOLOGY: BiCMOS

Overvoltage Protection Controllers with Reverse Polarity Protection

Functional Diagram


MAX4864L/MAX4865L/MAX4866L/MAX4867

Overvoltage Protection Controllers with Reverse Polarity Protection

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Overvoltage Protection Controllers with Reverse Polarity Protection

Package Information (continued)

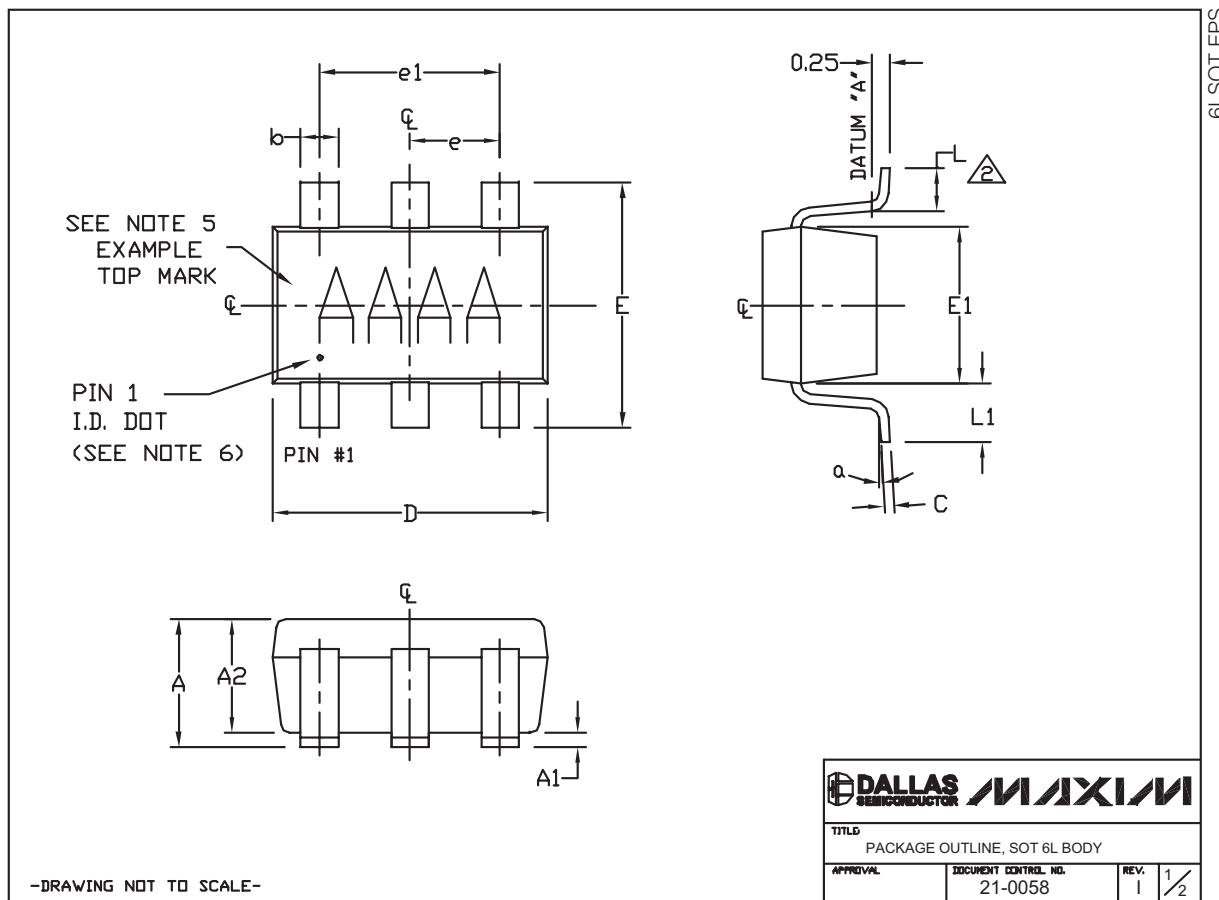
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.
A	0.70	0.75	0.80
A1	0.15	0.20	0.25
A2	0.020	0.025	0.035
D	1.95	2.00	2.05
E	1.95	2.00	2.05
L	0.30	0.40	0.50
L1	0.10 REF.		

PACKAGE VARIATIONS				
PKG. CODE	N	e	b	(N/2 -1) x e
L622-1	6	0.65 BSC	0.30±0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25±0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20±0.03	1.60 REF.

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08mm.
3. WARPAGE SHALL NOT EXCEED 0.10mm.
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. "N" IS THE TOTAL NUMBER OF LEADS.
6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
7. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
8. ONLY 8L PACKAGE COMPLIES TO JEDEC MO252.
9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PbFREE (+) PACKAGE CODES.


-DRAWING NOT TO SCALE-

TITLE: PACKAGE OUTLINE, 6, 8, 10L uDFN, 2x2x0.80 mm		
APPROVAL	DOCUMENT CONTROL NO. 21-0164	REV. B

Overvoltage Protection Controllers with Reverse Polarity Protection

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Overvoltage Protection Controllers with Reverse Polarity Protection

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

<p>NOTES:</p> <ol style="list-style-type: none"> 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. FOOT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A & LEAD SURFACE. 3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR. MOLD FLASH, PROTRUSION OR METAL BURR SHOULD NOT EXCEED 0.25mm. 4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING. 5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT. (SEE EXAMPLE TOP MARK) 6. PIN 1 I.D. DOT IS 0.3mm Ø MIN. LOCATED ABOVE PIN 1. 7. MEETS JEDEC MO17B, VARIATION AB. 8. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP. 9. LEAD TO BE COPLANAR WITHIN 0.1mm. 10. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 	<table border="1"> <thead> <tr> <th>SYMBOL</th><th>MIN</th><th>NOMINAL</th><th>MAX</th></tr> </thead> <tbody> <tr> <td>A</td><td>0.90</td><td>1.25</td><td>1.45</td></tr> <tr> <td>A1</td><td>0.00</td><td>0.05</td><td>0.15</td></tr> <tr> <td>A2</td><td>0.90</td><td>1.10</td><td>1.30</td></tr> <tr> <td>b</td><td>0.35</td><td>0.40</td><td>0.50</td></tr> <tr> <td>C</td><td>0.08</td><td>0.15</td><td>0.20</td></tr> <tr> <td>D</td><td>2.80</td><td>2.90</td><td>3.00</td></tr> <tr> <td>E</td><td>2.60</td><td>2.80</td><td>3.00</td></tr> <tr> <td>E1</td><td>1.50</td><td>1.625</td><td>1.75</td></tr> <tr> <td>L</td><td>0.35</td><td>0.45</td><td>0.60</td></tr> <tr> <td>L1</td><td colspan="3">0.60 REF.</td></tr> <tr> <td>e1</td><td colspan="3">1.90 BSC.</td></tr> <tr> <td>e</td><td colspan="3">0.95 BSC.</td></tr> <tr> <td>α</td><td>0°</td><td>2.5°</td><td>10°</td></tr> </tbody> </table> <p>PKG CODES: U6-1, U6-2, U6-4, U6C-8, U6SN-1, U6CN-2, U6S-3, U6F-5, U6F-6, U6FH-5, U6FH-6</p>	SYMBOL	MIN	NOMINAL	MAX	A	0.90	1.25	1.45	A1	0.00	0.05	0.15	A2	0.90	1.10	1.30	b	0.35	0.40	0.50	C	0.08	0.15	0.20	D	2.80	2.90	3.00	E	2.60	2.80	3.00	E1	1.50	1.625	1.75	L	0.35	0.45	0.60	L1	0.60 REF.			e1	1.90 BSC.			e	0.95 BSC.			α	0°	2.5°	10°
SYMBOL	MIN	NOMINAL	MAX																																																						
A	0.90	1.25	1.45																																																						
A1	0.00	0.05	0.15																																																						
A2	0.90	1.10	1.30																																																						
b	0.35	0.40	0.50																																																						
C	0.08	0.15	0.20																																																						
D	2.80	2.90	3.00																																																						
E	2.60	2.80	3.00																																																						
E1	1.50	1.625	1.75																																																						
L	0.35	0.45	0.60																																																						
L1	0.60 REF.																																																								
e1	1.90 BSC.																																																								
e	0.95 BSC.																																																								
α	0°	2.5°	10°																																																						
-DRAWING NOT TO SCALE-	<table border="1"> <tr> <td colspan="3"> DALLAS SEMICONDUCTOR </td></tr> <tr> <td colspan="3">TITLE: PACKAGE OUTLINE, SOT 6L BODY</td></tr> <tr> <td>APPROVAL</td><td>DOCUMENT CONTROL NO.</td><td>REV.</td></tr> <tr> <td></td><td>21-0058</td><td>1 / 2</td></tr> </table>	DALLAS SEMICONDUCTOR			TITLE: PACKAGE OUTLINE, SOT 6L BODY			APPROVAL	DOCUMENT CONTROL NO.	REV.		21-0058	1 / 2																																												
DALLAS SEMICONDUCTOR																																																									
TITLE: PACKAGE OUTLINE, SOT 6L BODY																																																									
APPROVAL	DOCUMENT CONTROL NO.	REV.																																																							
	21-0058	1 / 2																																																							

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 13