



## FPAB30BH60

# PFC SPM® 3 Series for Single-Phase Boost PFC

### Features

- UL Certified No. E209204 (UL1557)
- 600 V - 30 A Single-Phase Boost PFC with Integral Gate Driver and Protection
- Very Low Thermal Resistance Using  $\text{Al}_2\text{O}_3$  DBC Substrate
- Full-Wave Bridge Rectifier and High-Performance Output Diode
- Built-in NTC Thermistor for Temperature Monitoring
- Optimized for 20kHz Switching Frequency
- Isolation Rating: 2500 Vrms/min.

### Applications

- Single-Phase Boost PFC Converter

### Related Source

- [AN-9090 - PFC SPM 3 Series User's Guide](#)
- [AN-9091 - Boost PFC Inductor Design Guide](#)

### General Description

The FPAB30BH60 is a PFC SPM® 3 module providing a fully-featured, high-performance Boost PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBT to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature a full-wave rectifier, and high-performance output diode for additional space savings and mounting convenience

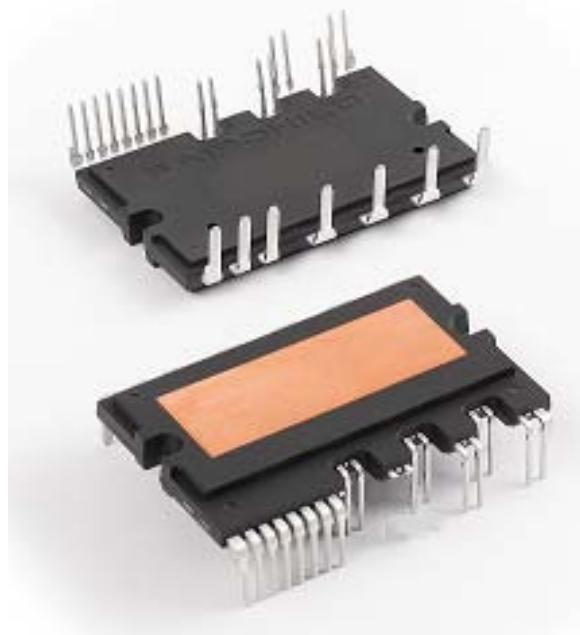



Figure 1. Package Overview

### Package Marking & Ordering Information

| Device     | Device Marking | Package   | Packing Type | Quantity |
|------------|----------------|-----------|--------------|----------|
| FPAB30BH60 | FPAB30BH60     | SPMIA-027 | Rail         | 10       |

## Integrated Power Functions

- PFC converter for single-phase AC / DC power conversion (please refer to Figure 3)

## Integrated Drive, Protection, and System Control Functions

- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- Fault signal: corresponding to OC and UV fault
- Built-in thermistor: temperature monitoring
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

## Pin Configuration

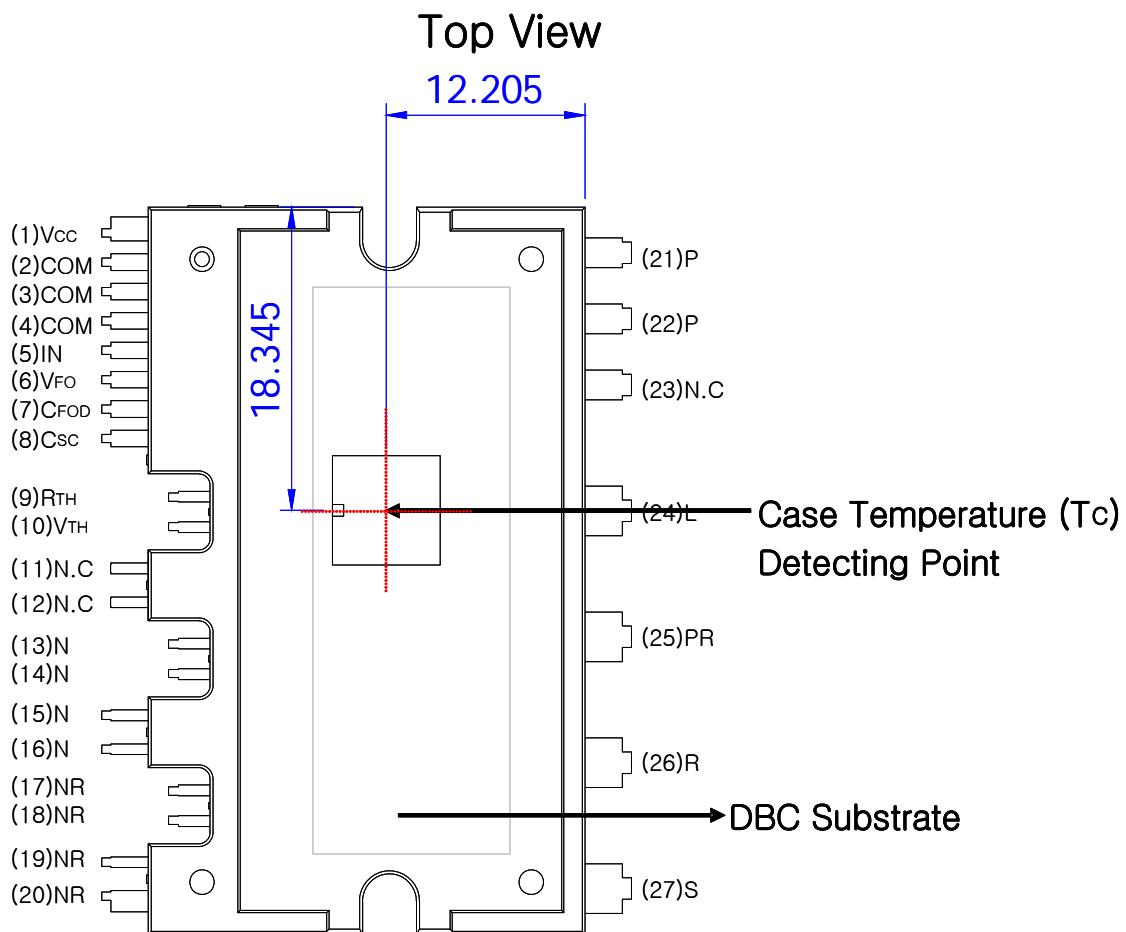
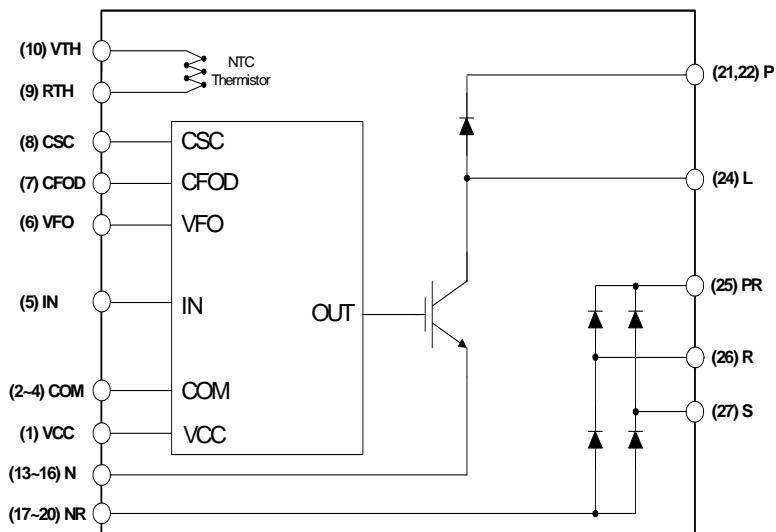



Figure 2. Top View

**Notes :**


1. For the measurement point of case temperature( $T_c$ ), please refer to Figure 2.

## Pin Descriptions

| Pin Number | Pin Name          | Pin Description                                        |
|------------|-------------------|--------------------------------------------------------|
| 1          | V <sub>CC</sub>   | Common Bias Voltage for IC and IGBT Driving            |
| 2,3,4      | COM               | Common Supply Ground                                   |
| 5          | IN                | Signal Input for IGBT                                  |
| 6          | V <sub>FO</sub>   | Fault Output                                           |
| 7          | C <sub>FOD</sub>  | Capacitor for Fault Output Duration Selection          |
| 8          | C <sub>SC</sub>   | Capacitor (Low-Pass Filter) for Over-Current Detection |
| 9          | R <sub>(TH)</sub> | Series Resistor for The Use of Thermistor              |
| 10         | V <sub>(TH)</sub> | Thermistor Bias Voltage                                |
| 11,12      | N.C               | No Connection*                                         |
| 13~16      | N                 | IGBT Emitter                                           |
| 17~20      | N <sub>R</sub>    | Negative DC-Link of Rectifier                          |
| 21,22      | P                 | Positive Rail of DC-Link                               |
| 23         | N.C               | No Connection                                          |
| 24         | L                 | Reactor Connection Pin                                 |
| 25         | P <sub>R</sub>    | Positive DC-Link of Rectifier                          |
| 26         | R                 | AC Input for R-Phase                                   |
| 27         | S                 | AC Input for S-Phase                                   |

\* 11th and 12th pins are cut. Please refer to package outline drawings for more detail.

## Internal Equivalent Circuit and Input/Output Pins



**Figure 3. Internal Block Diagram**

**Absolute Maximum Ratings** ( $T_J = 25^\circ\text{C}$ , unless otherwise specified.)**Converter Part**

| Symbol                 | Item                           | Condition                                                                                                                                 | Rating    | Unit             |
|------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|
| $V_i$                  | Supply Voltage                 | Applied between R - S                                                                                                                     | 264       | $V_{\text{rms}}$ |
| $V_i(\text{Surge})$    | Supply Voltage (Surge)         | Applied between R - S                                                                                                                     | 500       | V                |
| $V_{PN}$               | Output Voltage                 | Applied between P - N                                                                                                                     | 450       | V                |
| $V_{PN}(\text{Surge})$ | Output Voltage (Surge)         | Applied between P - N                                                                                                                     | 500       | V                |
| $V_{CES}$              | Collector - Emitter Voltage    |                                                                                                                                           | 600       | V                |
| $I_{FSM}$              | Peak Forward Surge Current     | Single Half Sine-Wave                                                                                                                     | 250       | A                |
| $I_i$                  | Input Current (100% Load)      | $T_C < 95^\circ\text{C}$ , $V_i = 220 \text{ V}$ , $V_{PN} = 390 \text{ V}$ , $V_{\text{PWM}} = 20 \text{ kHz}$                           | 25        | A                |
| $I_i(125\%)$           | Input Current (125% Load)      | $T_C < 95^\circ\text{C}$ , $V_i = 220 \text{ V}$ , $V_{PN} = 390 \text{ V}$ , $V_{\text{PWM}} = 20 \text{ kHz}$ , 1 Minite Non-Repetitive | 30        | A                |
| $P_C$                  | Collector Dissipation          | $T_C = 25^\circ\text{C}$                                                                                                                  | 169       | W                |
| $T_J$                  | Operating Junction Temperature |                                                                                                                                           | -20 ~ 150 | $^\circ\text{C}$ |

**Notes:**

1. The maximum junction temperature rating of the power chips integrated within the PFC SPM® product is  $150^\circ\text{C}$  (@ $T_C \leq 100^\circ\text{C}$ ). However, to insure safe operation of the PFC SPM product, the average junction temperature should be limited to  $T_{J(\text{ave})} \leq 125^\circ\text{C}$  (@ $T_C \leq 100^\circ\text{C}$ )

**Control Part**

| Symbol   | Item                          | Condition                      | Rating              | Unit |
|----------|-------------------------------|--------------------------------|---------------------|------|
| $V_{CC}$ | Control Supply Voltage        | Applied between $V_{CC}$ - COM | 20                  | V    |
| $V_{IN}$ | Input Signal Voltage          | Applied between IN - COM       | -0.3 ~ $V_{CC}+0.3$ | V    |
| $V_{FO}$ | Fault Output Supply Voltage   | Applied between $V_{FO}$ - COM | -0.3 ~ $V_{CC}+0.3$ | V    |
| $I_{FO}$ | Fault Output Current          | Sink Current at $V_{FO}$ Pin   | 5                   | mA   |
| $V_{SC}$ | Current Sensing Input Voltage | Applied between $C_{SC}$ - COM | -0.3 ~ $V_{CC}+0.3$ | V    |

**Total System**

| Symbol    | Item                              | Condition                                                       | Rating    | Unit             |
|-----------|-----------------------------------|-----------------------------------------------------------------|-----------|------------------|
| $T_C$     | Module Case Operating Temperature |                                                                 | -20 ~ 100 | $^\circ\text{C}$ |
| $T_{STG}$ | Storage Temperature               |                                                                 | -40 ~ 125 | $^\circ\text{C}$ |
| $V_{ISO}$ | Isolation Voltage                 | 60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate | 2500      | $V_{\text{rms}}$ |

**Thermal Resistance**

| Symbol             | Item                                | Condition                    | Min. | Typ. | Max. | Unit                      |
|--------------------|-------------------------------------|------------------------------|------|------|------|---------------------------|
| $R_{\theta(j-c)Q}$ | Junction to Case Thermal Resistance | IGBT                         | -    | -    | 0.74 | $^\circ\text{C}/\text{W}$ |
| $R_{\theta(j-c)F}$ |                                     | FRD                          | -    | -    | 1.44 | $^\circ\text{C}/\text{W}$ |
| $R_{\theta(j-c)R}$ |                                     | Rectifier (per 1 / 4 module) | -    | -    | 2.07 | $^\circ\text{C}/\text{W}$ |

**Notes:**

2. For the measurement point of case temperature( $T_C$ ), please refer to Figure 2.

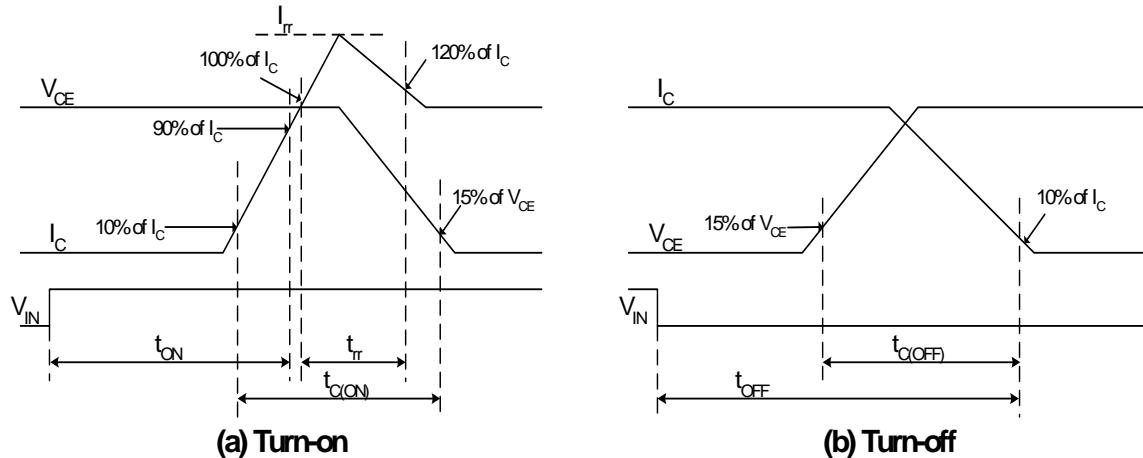
## Electrical Characteristics ( $T_J = 25^\circ\text{C}$ , Unless Otherwise Specified.)

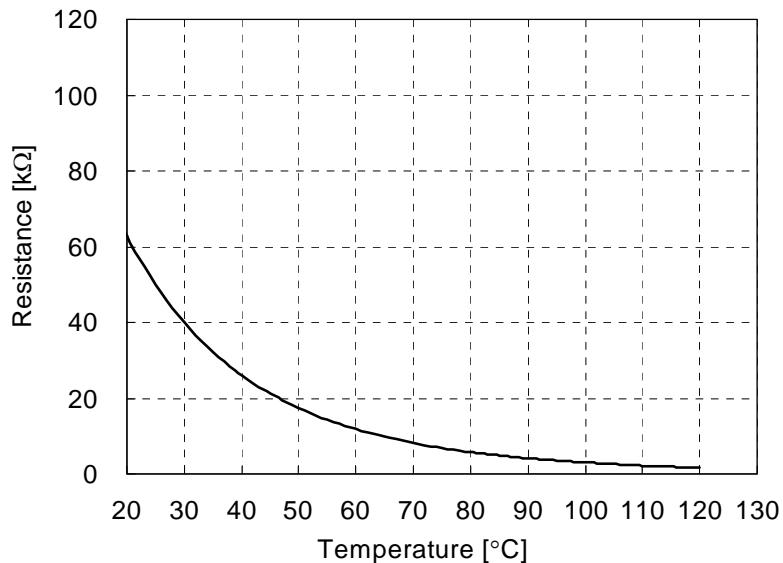
### Converter Part

| Symbol               | Item                                | Condition                                                                                                                                   | Min. | Typ. | Max. | Unit          |
|----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|---------------|
| $V_{CE(\text{SAT})}$ | IGBT Saturation Voltage             | $V_{CC} = 15\text{ V}$ , $V_{IN} = 5\text{ V}$ , $I_C = 30\text{ A}$                                                                        | -    | 2.0  | 2.8  | V             |
| $V_{FF}$             | FRD Forward Voltage                 | $I_F = 30\text{ A}$                                                                                                                         | -    | 1.8  | 2.5  | V             |
| $V_{FR}$             | Rectifier Forward Voltage           | $I_F = 30\text{ A}$                                                                                                                         | -    | 1.2  | 1.5  | V             |
| $t_{ON}$             | Switching Times<br>(Note 3)         | $V_{PN} = 400\text{ V}$ , $V_{CC} = 15\text{ V}$ , $I_C = 30\text{ A}$<br>$V_{IN} = 0\text{ V} \leftrightarrow 5\text{ V}$ , Inductive Load | -    | 650  | -    | ns            |
| $t_{C(ON)}$          |                                     |                                                                                                                                             | -    | 400  | -    | ns            |
| $t_{OFF}$            |                                     |                                                                                                                                             | -    | 620  | -    | ns            |
| $t_{C(OFF)}$         |                                     |                                                                                                                                             | -    | 200  | -    | ns            |
| $t_{rr}$             |                                     |                                                                                                                                             | -    | 60   | -    | ns            |
| $I_{rr}$             |                                     |                                                                                                                                             | -    | 3.5  | -    | A             |
| $I_{CES}$            | Collector - Emitter Leakage Current | $V_{CE} = V_{CES}$                                                                                                                          | -    | -    | 250  | $\mu\text{A}$ |

#### Notes:

3.  $t_{ON}$  and  $t_{OFF}$  include the propagation delay time of the internal drive IC.  $t_{C(ON)}$  and  $t_{C(OFF)}$  are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.





Figure 4. Switching Time Definition

**Control Part**

| Symbol               | Item                                     | Condition                                                             | Min. | Typ. | Max. | Unit |
|----------------------|------------------------------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>QCCL</sub>    | Quiescent V <sub>CC</sub> Supply Current | V <sub>CC</sub> = 15 V, IN = 0 V V <sub>CC</sub> - COM                | -    | -    | 26   | mA   |
| V <sub>FOH</sub>     | Fault Output Voltage                     | V <sub>SC</sub> = 0 V, V <sub>FO</sub> Circuit: 4.7 kΩ to 5 V Pull-up | 4.5  | -    | -    | V    |
| V <sub>FOL</sub>     |                                          | V <sub>SC</sub> = 1 V, V <sub>FO</sub> Circuit: 4.7 kΩ to 5 V Pull-up | -    | -    | 0.8  | V    |
| V <sub>SC(ref)</sub> | Over-Current Trip Level                  | V <sub>CC</sub> = 15 V                                                | 0.45 | 0.5  | 0.55 | V    |
| UV <sub>CCD</sub>    | Supply Circuit Under-Voltage Protection  | Detection Level                                                       | 10.7 | 11.9 | 13.0 | V    |
| UV <sub>CCR</sub>    |                                          | Reset Level                                                           | 11.2 | 12.4 | 13.2 | V    |
| t <sub>FOD</sub>     | Fault-Out Pulse Width                    | C <sub>FOD</sub> = 33 nF (Note 3)                                     | 1.4  | 1.8  | 2.0  | ms   |
| V <sub>IN(ON)</sub>  | ON Threshold Voltage                     | Applied between IN - COM                                              | 2.8  | -    | -    | V    |
| V <sub>IN(OFF)</sub> | OFF Threshold Voltage                    |                                                                       | -    | -    | 0.8  | V    |
| R <sub>TH</sub>      | Resistance of Thermistor                 | at T <sub>TH</sub> = 25°C (Note 4, Figure 5)                          | -    | 50   | -    | kΩ   |
|                      |                                          | at T <sub>TH</sub> = 100°C (Note 4, Figure 5)                         | -    | 2.99 | -    | kΩ   |

**Notes:**

3. The fault-out pulse width t<sub>FOD</sub> depends on the capacitance value of C<sub>FOD</sub> according to the following approximate equation : C<sub>FOD</sub> = 18.3 × 10<sup>-6</sup> × t<sub>FOD</sub>[F]  
 4. T<sub>TH</sub> is the temperature of know case temperature(T<sub>C</sub>), please make the experiment considering your application.

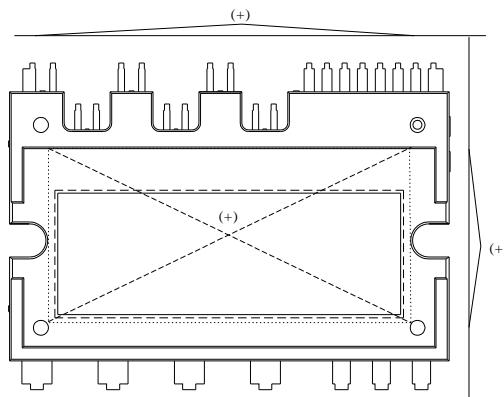
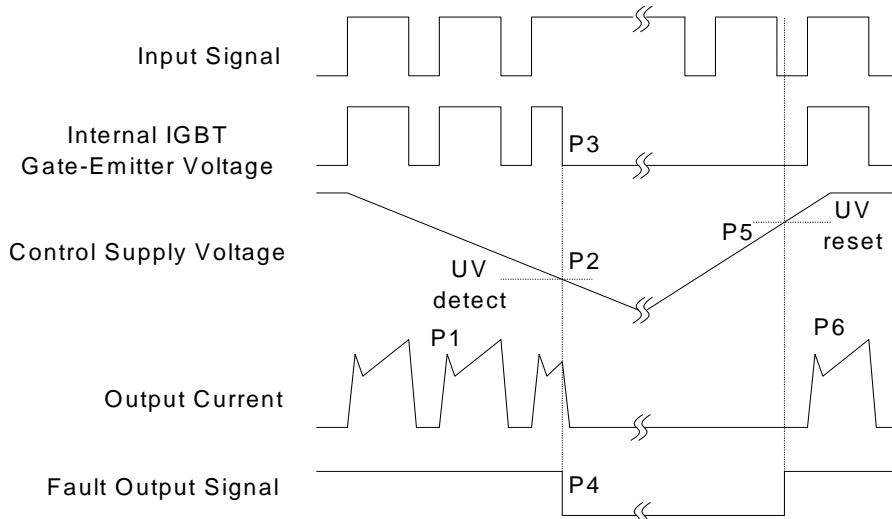
**R-T Graph****Figure 5. R-T Curve of the Built-In Thermistor**

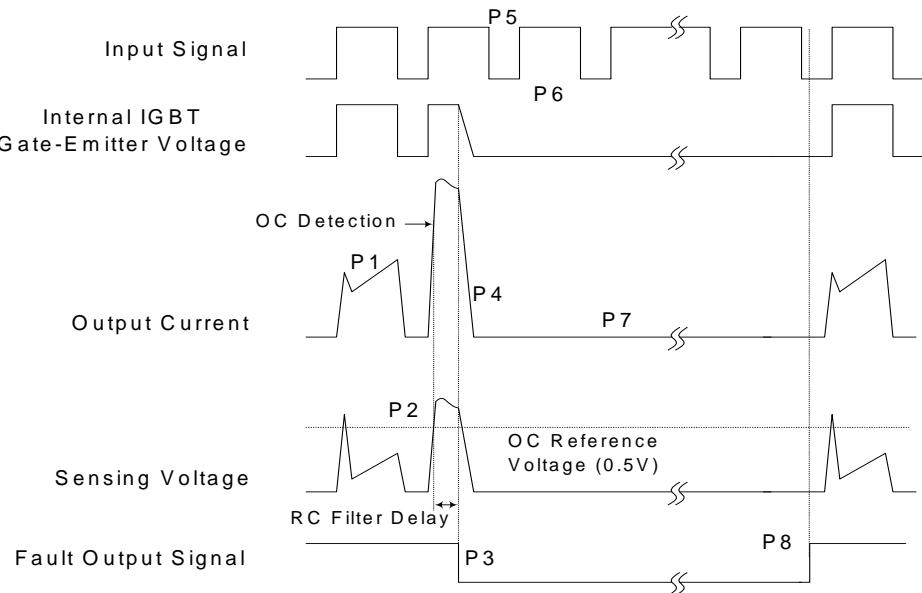
## Recommended Operating Condition

| Symbol       | Item                     | Condition                                                                   | Min. | Typ. | Max. | Unit       |
|--------------|--------------------------|-----------------------------------------------------------------------------|------|------|------|------------|
| $V_i$        | Input Supply Voltage     | Applied between R - S                                                       | 187  | 220  | 253  | $V_{rms}$  |
| $V_{PN}$     | Output Voltage           | Applied between P - N                                                       | -    | 380  | 400  | V          |
| $V_{CC}$     | Control Supply Voltage   | Applied between $V_{CC(L)}$ - COM                                           | 13.5 | 15.0 | 16.5 | V          |
| $dV_{CC}/dt$ | Control Supply Variation |                                                                             | -1   | -    | 1    | $V/\mu s$  |
| $f_{PWM}$    | PWM Input Frequency      | $T_J \leq 150^\circ C$                                                      | -    | 20   | -    | kHz        |
| $I_i$        | Allowable Input Current  | $T_C < 90^\circ C$ , $V_i = 220 V$ , $V_{PN} = 380 V$<br>$V_{PWM} = 20 kHz$ | -    | -    | 30   | $A_{peak}$ |

## Mechanical Characteristics and Ratings

| Item            | Condition          |  | Min. | Typ.  | Max. | Unit    |
|-----------------|--------------------|--|------|-------|------|---------|
| Mounting Torque | Mounting Screw: M3 |  | 0.51 | 0.62  | 0.72 | N•m     |
| Device Flatness | See Figure 6       |  | 0    | -     | +120 | $\mu m$ |
| Weight          |                    |  | -    | 15.00 | -    | g       |



Figure 6. Flatness Measurement Position

### Time Charts of Protective Function



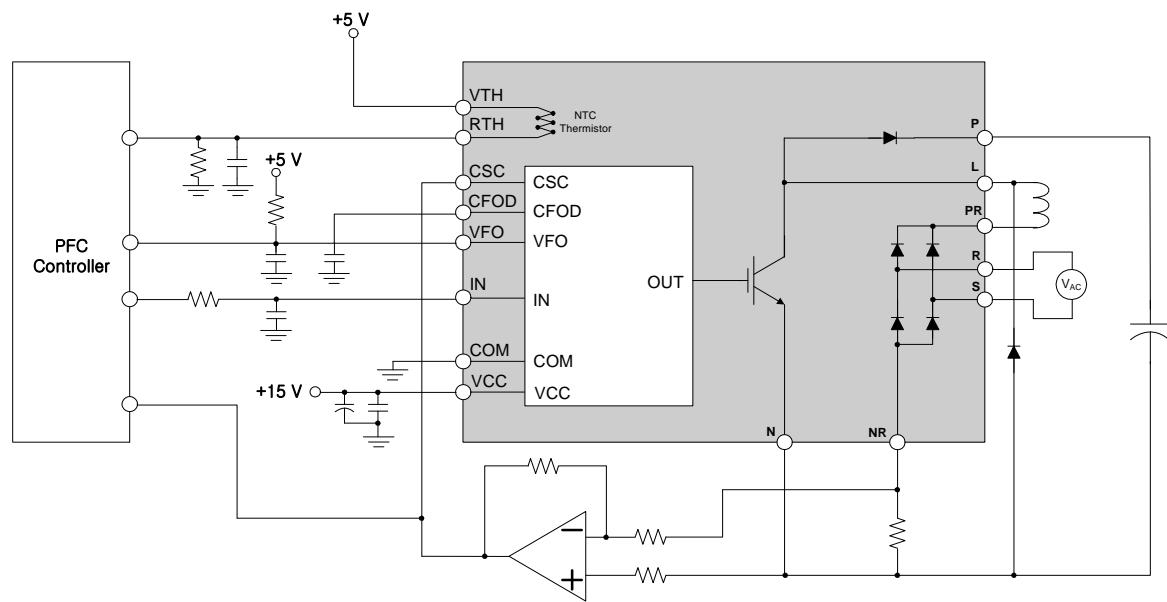
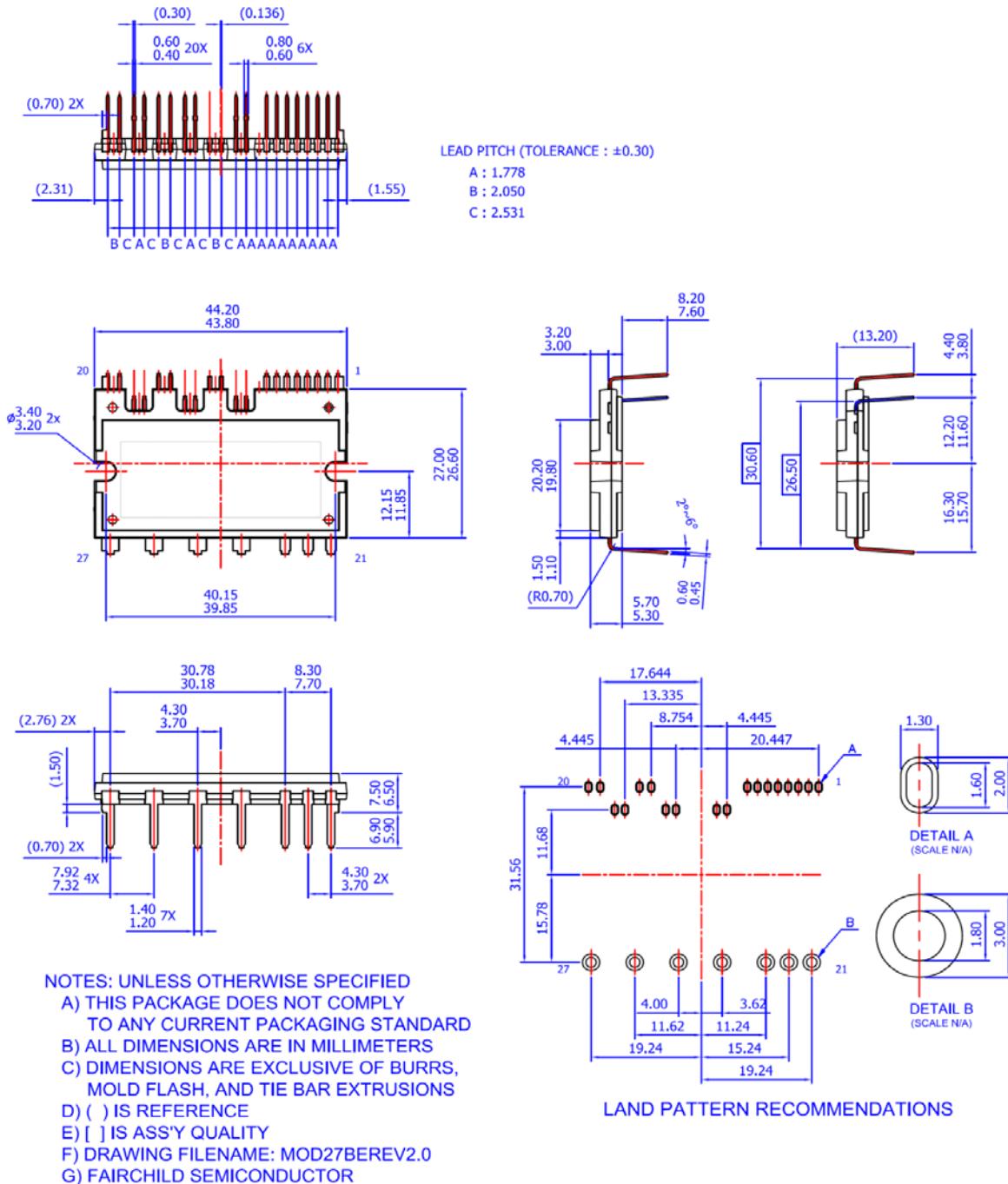

P1 : Normal operation: IGBT ON and conducting current  
 P2 : Under-voltage detection  
 P3 : IGBT gate interrupt  
 P4 : Fault signal generation  
 P5 : Under-voltage reset  
 P6 : Normal operation: IGBT ON and conducting current

Figure 7. Under-Voltage Protection



P1 : Normal operation: IGBT ON and conducting current  
 P2 : Over current detection  
 P3 : IGBT gate interrupt / fault signal generation  
 P4 : IGBT is slowly turned off  
 P5 : IGBT OFF signal  
 P6 : IGBT ON signal: but IGBT cannot be turned on during the fault output activation  
 P7 : IGBT OFF state  
 P8 : Fault output reset and normal operation start

Figure 8. Over-Current Protection




**Figure 9. Application Example**

**Notes:**

5. Each capacitors should be located as close to PFC SPM® product pins as possible.
6. It's recommended that anti-parallel diode should be connected with IGBT.

## Detailed Package Outline Drawings



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or data on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide therm and conditions, specifically the the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

<http://www.fairchildsemi.com/dwg/MO/MOD27BE.pdf>



## TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

|                                                                                              |                                                |                                                                                          |
|----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|
| AccuPower™                                                                                   | F-PFS™                                         | Sync-Lock™                                                                               |
| AX-CAP®*                                                                                     | FRFET®                                         | SYSTEM GENERAL®                                                                          |
| BitSiC™                                                                                      | Global Power Resource™                         | TinyBoost®                                                                               |
| Build it Now™                                                                                | GreenBridge™                                   | TinyBuck®                                                                                |
| CorePLUS™                                                                                    | Green FPS™                                     | TinyCalc™                                                                                |
| CorePOWER™                                                                                   | Green FPS™ e-Series™                           | TinyLogic®                                                                               |
| CROSSVOLT™                                                                                   | Gmax™                                          | TINYOPTO™                                                                                |
| CTL™                                                                                         | GTO™                                           | TinyPower™                                                                               |
| Current Transfer Logic™                                                                      | IntelliMAX™                                    | TinyPWM™                                                                                 |
| DEUXPEED®                                                                                    | ISOPLANAR™                                     | TinyWire™                                                                                |
| Dual Cool™                                                                                   | Making Small Speakers Sound Louder and Better™ | TransSiC™                                                                                |
| EcoSPARK®                                                                                    | MegaBuck™                                      | TriFault Detect™                                                                         |
| EfficientMax™                                                                                | MICROCOUPLER™                                  | TRUECURRENT®                                                                             |
| ESBC™                                                                                        | MicroFET™                                      | µSerDes™                                                                                 |
|  Fairchild® | MicroPak™                                      |  UHC® |
| Fairchild Semiconductor®                                                                     | MicroPak2™                                     | Ultra FRFET™                                                                             |
| FACT Quiet Series™                                                                           | MillerDrive™                                   | UniFET™                                                                                  |
| FACT®                                                                                        | MotionMax™                                     | VCX™                                                                                     |
| FAST®                                                                                        | mWSaver®                                       | VisualMax™                                                                               |
| FastvCore™                                                                                   | OptoHit™                                       | VoltagePlus™                                                                             |
| FETBench™                                                                                    | OPTOLOGIC®                                     | XS™                                                                                      |
| FPS™                                                                                         | OPTOPLANAR®                                    |                                                                                          |
|                                                                                              |                                                |                                                                                          |

|                                                                                     |                                       |
|-------------------------------------------------------------------------------------|---------------------------------------|
| PowerTrench®                                                                        | Saving our world, 1mW/W/kW at a time™ |
| PowerXS™                                                                            | SignalWise™                           |
| Programmable Active Droop™                                                          | SmartMax™                             |
| QFET®                                                                               | SMART START™                          |
| QS™                                                                                 | Solutions for Your Success™           |
| Quiet Series™                                                                       | SPM®                                  |
| RapidConfigure™                                                                     | STEALTH™                              |
|  ™ | SuperFET®                             |
|                                                                                     | SuperSOT™-3                           |
|                                                                                     | SuperSOT™-6                           |
|                                                                                     | SuperSOT™-8                           |
|                                                                                     | SupreMOS®                             |
|                                                                                     | SyncFET™                              |

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, [www.fairchildsemi.com](http://www.fairchildsemi.com), under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

## PRODUCT STATUS DEFINITIONS

### Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. I66