

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 Gbaud

ORDERING INFORMATION

MLC-25-7-X-TL

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Storage Temperature	T _{stg}	-40	85	°C	
Soldering Temperature			260	°C	10 seconds on leads only
Supply Voltage	V _{cc}		6.0	V	V _{cc} - ground
Data AC Voltage	T _{x+} , T _{x-}		2.6	V _{pp}	Differential
Data DC Voltage	T _{x+} , T _{x-}	-10	10	V _{pk}	V (T _{x+} or T _{x-}) - ground

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	T _a	0		70	°C	
Supply Voltage	V _{cc}	3.0	3.3	3.6	V _{DC}	
Baud Rate	BRate		2.488		Gbaud	±100ppm

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 GBaud

MODULE SPECIFICATIONS - ELECTRICAL

Ta = 25° C, Vcc = 3.3V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Current	Icc		140	150	mA	Ta = 25°C, Vcc = 3.3 V
	Icc			175	mA	0° C < Ta < 70°C, 3.0 V < Vcc < 3.6V
TRANSMITTER						
ECL Input (Single Ended)		350	720	1250	mVpp	AC coupled inputs
ECL Input (Differential)		700	1440	2500	mVpp	AC coupled inputs
Input Impedance	Zin		50		ohms	Rin > 100 kohms @ DC
RECEIVER						
ECL Output (Single Ended)		300	750	930	mVpp	AC coupled outputs
ECL Output (Differential)		600	1500	1860	mVpp	AC coupled outputs
Total Jitter	TJ			133	psec	
TTL Signal Detect Output - Low				0.5	V	IOL = -1.6 mA, 1 TTL Unit Load
TTL Signal Detect Output - High		2.4	3.0		V	IOH = 40µA, 1 TTL Unit Load

PERFORMANCE SPECIFICATIONS - OPTICAL 850 nm Laser Multimode

Ta = 25° C, Vcc = 3.3 V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
FIBER LENGTH						
50 µm Core Diameter MMF		150			m	BER < 1.0E-12 @ 2.488GBaud
62.5 µm Core Diameter MMF		100 ¹			m	BER < 1.0E-12 @ 2.488GBaud
TRANSMITTER						
Optical Transmit Power	Popt	-8		-4	dBm	average @ 850 nm
Optical Center	λ	830	850	860	nm	
Spectral Width	Δλ			0.85	nm	RMS
Extinction Ratio	ER	6			dB	P1/P0
Relative Intensity Noise	RIN			-116	dB/Hz	
Total Jitter ²	TJ			113	psec	
Output Rise, Fall Time	t _R , t _F		350	400	psec	20 - 80% values, measured unfiltered
RECEIVER						
Optical Input	λ	770		860	nm	
Optical Input Power	Pr	-14		0	dBm	BER < 1.0E-12
Optical Return Loss	ORL	12	30		dB	
Signal Detect - Asserted	Pa			-14	dBm	measured on transition - low to high
Signal Detect - Deasserted	Pd	-29			dBm	measured on transition - high to low
Signal Detect - Hysteresis	Pa - Pd		1.5	5.0	dB	

Note:

¹This is the link length for at least 95% of the installed fiber base.

²Measured with a 2²³ -1 pseudorandom bit sequence

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V

Small Form Factor (SFF) Transceiver - 2.488 GBaud

MLC-25-7-2-TL PERFORMANCE SPECIFICATIONS - OPTICAL

Ta=25°C, Vcc=3.3V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
FIBER LENGTH						
9.0 μm Core Diameter SMF		2	5		km	BER < 1.0E-12 @ 2.488 GBaud
TRANSMITTER						
Optical Center	λ	1270	1310	1355	nm	
RMS Spectral Width	$\Delta\lambda$			4	nm	RMS
Extinction Ratio	ER	6			dB	P1/P0
Optical Transmit Power	Popt	-10		-3	dBm	average @ 1310 nm
RECEIVER						
Optical Input Power	Pr	-18		-3	dBm	average power for BER < 1.0E-12
Optical Center	λ	1270	1310	1355	nm	
Optical Return Loss	ORL	12	30		dB	
Signal Detect - Asserted	Pa			-18	dBm	measured on transition - low to high
Signal Detect - Deasserted	Pd	-29			dBm	measured on transition - high to low
Signal Detect - Hysteresis	Pa - Pd		1.5	5.0	dB	

MLC-25-7-2M-TL PERFORMANCE SPECIFICATIONS - OPTICAL

Ta=25°C, Vcc=3.3V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
FIBER LENGTH						
9.0 μm Core Diameter SMF		10	20		km	BER < 1.0E-12 @ 2.488 GBaud
TRANSMITTER						
Optical Center	λ	1285	1310	1335	nm	
RMS Spectral Width	$\Delta\lambda$			3	nm	RMS
Extinction Ratio	ER	6			dB	P1/P0
Optical Transmit Power	Popt	-8.5		-3	dBm	average @ 1310 nm
RECEIVER						
Optical Input Power	Pr	-18		-3	dBm	average power for BER < 1.0E-12
Optical Center	λ	1270	1310	1355	nm	
Optical Return Loss	ORL	12	30		dB	
Signal Detect - Asserted	Pa			-18	dBm	measured on transition - low to high
Signal Detect - Deasserted	Pd	-29			dBm	measured on transition - high to low
Signal Detect - Hysteresis	Pa - Pd		1.5	5.0	dB	

MLC-25-7-2L-TL PERFORMANCE SPECIFICATIONS - OPTICAL

Ta=25°C, Vcc=3.3V

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
FIBER LENGTH						
9.0 μm Core Diameter SMF		20	25		km	BER < 1.0E-12 @ 2.488 GBaud
TRANSMITTER						
Optical Center	λ	1300	1310	1320	nm	
RMS Spectral Width	$\Delta\lambda$			2	nm	RMS
Extinction Ratio	EP	6			dB	P1/P0
Optical Transmit Power	Popt	-5		0	dBm	average @ 1310 nm
RECEIVER						
Optical Input Power	Pr	-18		-0	dBm	average power for BER < 1.0E-12
Optical Center	λ	1270	1310	1355	nm	
Optical Return Loss	ORL	12	30		dB	
Signal Detect - Asserted	Pa			-18	dBm	measured on transition - low to high
Signal Detect - Deasserted	Pd	-29			dBm	measured on transition - high to low
Signal Detect - Hysteresis	Pa - Pd		1.5	5.0	dB	

TERMINATION CIRCUITS

Inputs to the MLC-25 transmitter are AC coupled and internally terminated through 50 ohms to AC ground. These transceivers can operate with LVPECL or ECL logic levels. The input signal must have at least a 0.35 V peak-to-peak (single ended) signal swing. Output from the receiver section of the module is also AC coupled and is expected to drive into a 50 ohm load. Different termination strategies may be required depending on the particular Serializer/Deserializer chip set used.

The MLC-25 product family is designed with AC coupled data inputs and outputs to provide the following advantages:

- Close positioning of SERDES with respect to transceiver; allows for shorter line lengths and at gigabit speeds reduces EMI.
- Minimum number of external components.
- Internal termination reduces the potential for unterminated stubs which would otherwise increase jitter and reduce transmission margin.

Subsequently, this affords the customer the ability to optimally locate the SERDES as close to the MLC-25 as possible and save valuable real estate on PCI cards and other small circuit assemblies. At gigabit rates this can provide a significant advantage resulting in better transmission performance and accordingly better signal integrity.

AC coupling allows the Methode MLC-25 to be applied across a wider range of applications without modification. This benefits users in terms of enhanced RF performance, reduced component count, tighter layout and fewer design problems.

Figure 1 illustrates the recommended transmit and receive data line terminations and Figure 2 describes an alternative termination approach. Figure 3 illustrates a Thevenin equivalent 50-ohm termination circuit for the SERDES receiver input data lines, which require a +3.3V LVPECL termination. Other equivalent circuits can be readily calculated for other bias voltages.

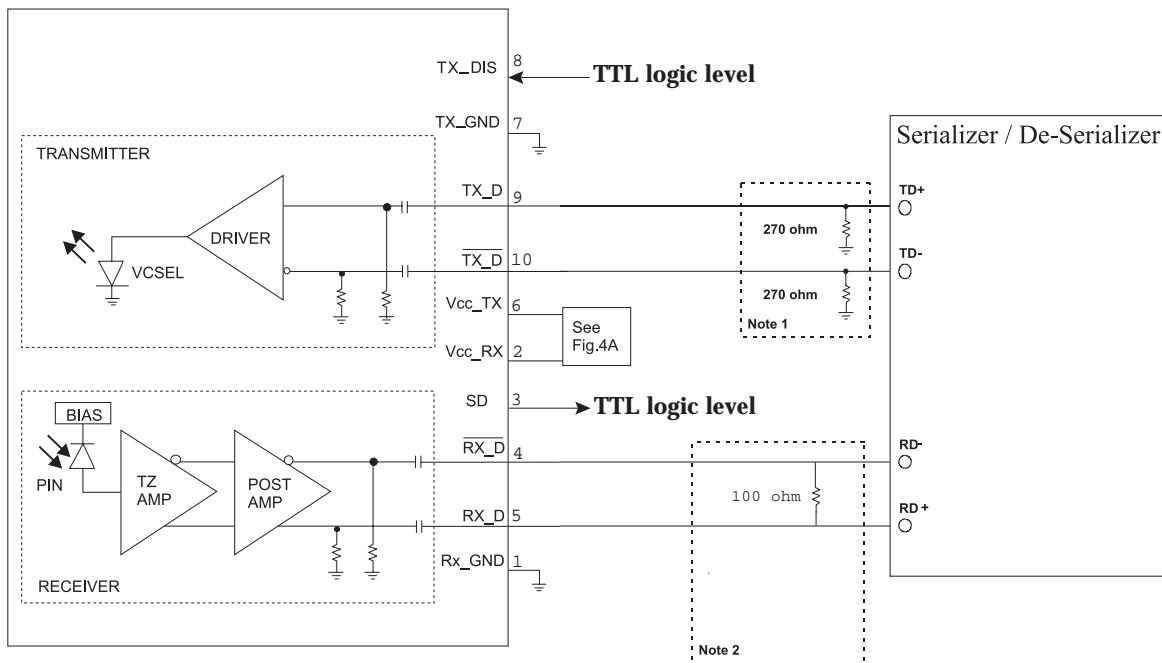


Figure 1. Recommended TRANSMIT and RECEIVE Data Terminations

Notes:

1. Consult the SERDES manufacturer's applications information for biasing required for Tx outputs. Some serializer outputs are internally biased and may not need external bias resistors.
2. Consult SERDES manufacturer's data sheet and application data for appropriate receiver input biasing network.

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 GBaud

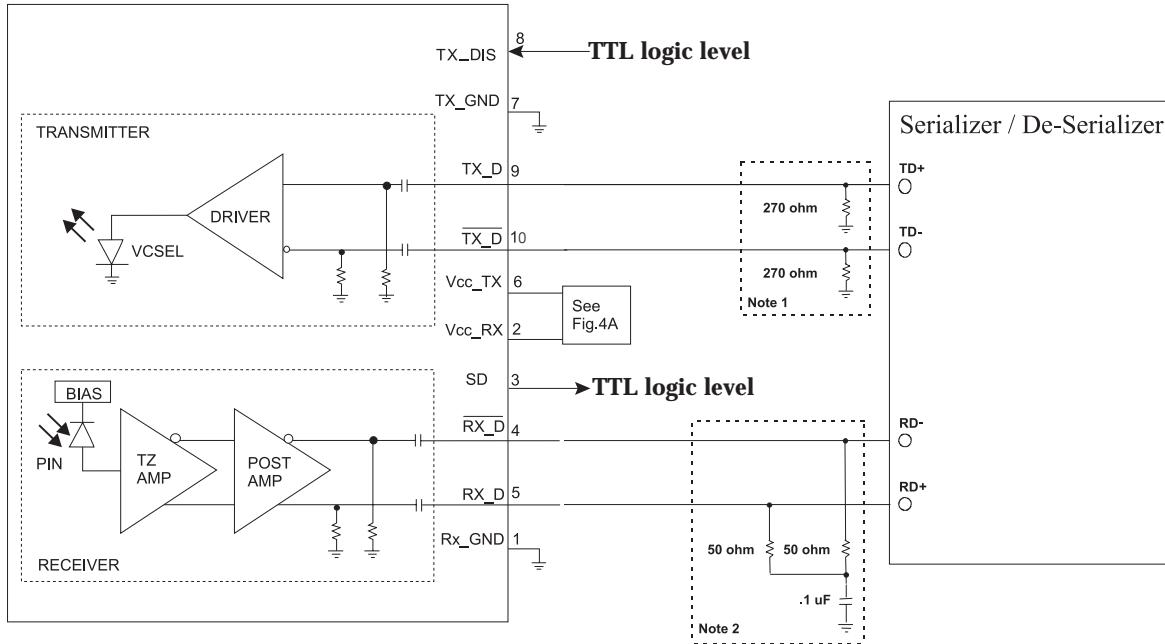


Figure 2. Alternative TRANSMIT and RECEIVE Data Terminations

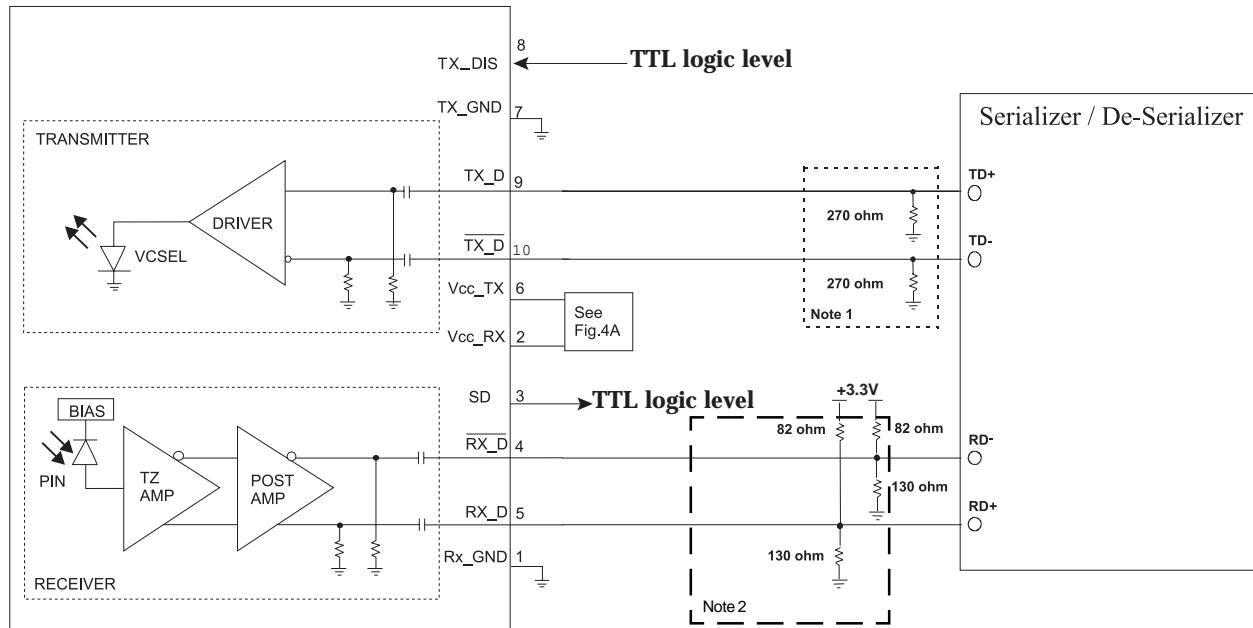
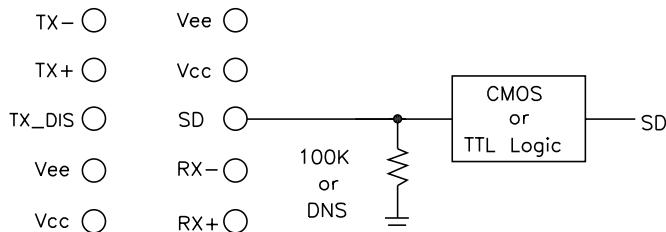
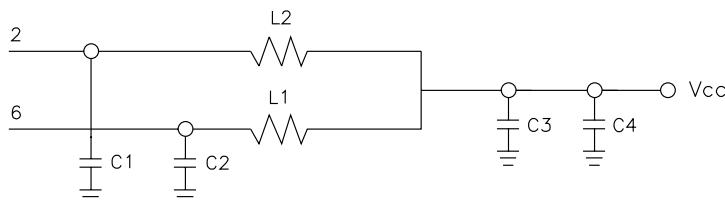


Figure 3. Thevenin Equivalent RECEIVE Data Terminations

Notes:

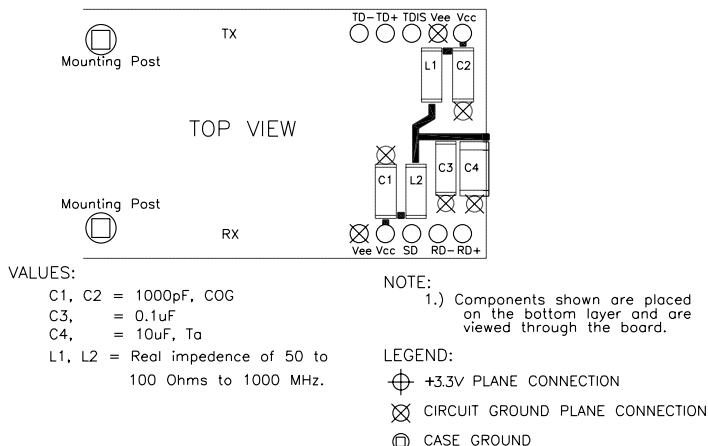

1. Consult the SERDES manufacturer's applications information for biasing required for Tx outputs. Some serializer outputs are internally biased and may not need external bias resistors.
2. Consult SERDES manufacturer's data sheet and application data for appropriate receiver input biasing network.

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 GBaud


SIGNAL DETECT

The MLC-25 transceivers are equipped with TTL signal detect outputs. The TTL option eliminates the need for a PECL to TTL level shifter in most applications. The SFF adhoc industry standard provides for a TTL level Signal Detect output.

POWER COUPLING


A suggested layout for power and ground connections is given in figure 4B below. Connections are made via separate voltage and ground planes. The mounting posts are at case ground and should not be connected to circuit ground. The ferrite bead should provide a real impedance of 50 to 100 ohms at 100 to 1000 MHz. Bypass capacitors should be placed as close to the 10-pin connector as possible.

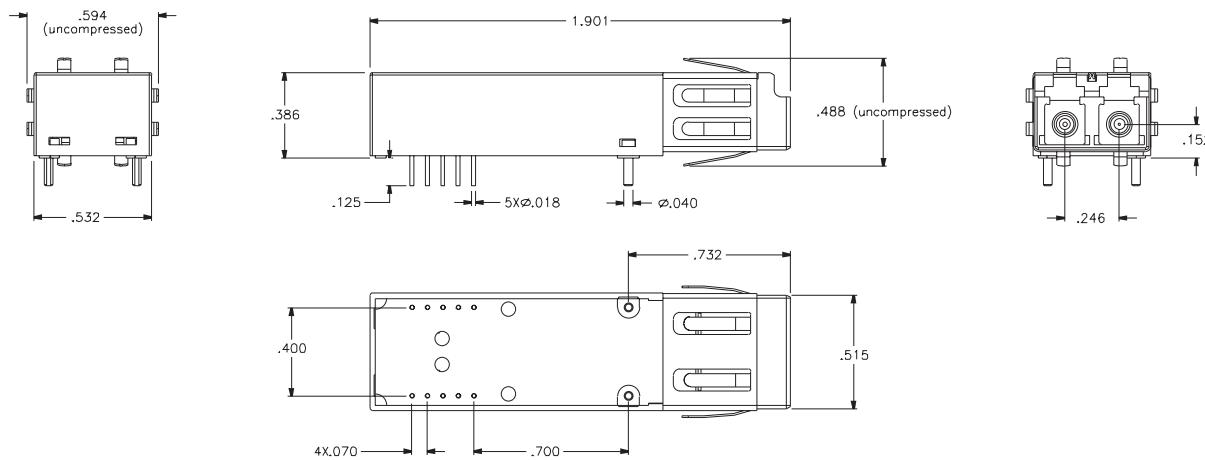
VALUES:

C1, C2 = 1000pF, COG
 C3, = 0.1uF
 C4, = 10uF, Ta
 L1, L2 = Real impedance of 50 to
 100 Ohms to 1000 MHz.

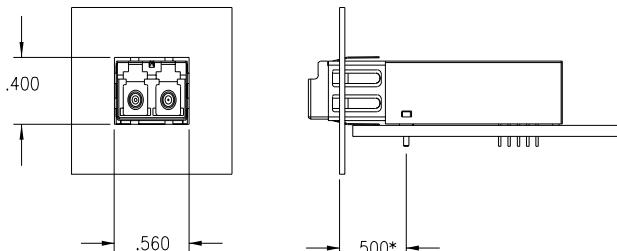
Figure 4A. Suggested Power Coupling - Electrical Schematic

Figure 4B. Suggested Power Coupling - Component Placement

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 GBaud

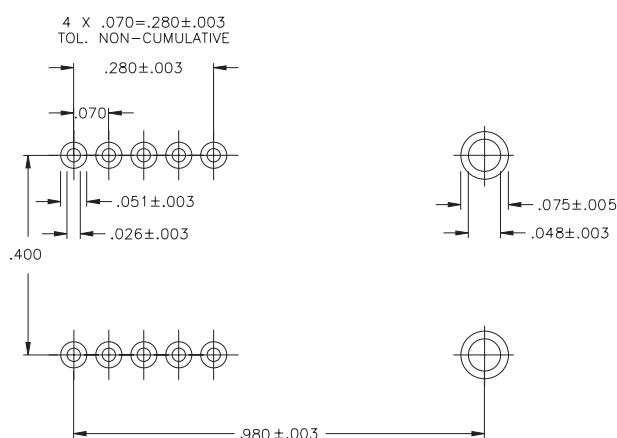


EMI and ESD CONSIDERATIONS


Metode optoelectronic transceivers offer a metalized plastic case and a special chassis grounding clip. As shown in the drawing, this clip connects the module case to chassis ground when installed flush through the panel cutout. The grounding clip in this way brushes the edge of the cutout in order to make a proper contact. The use of a grounding clip also provides increased electrostatic protection and helps reduce radiated emissions from the module or the host circuit board through the chassis faceplate. The attaching posts are at case potential and may be connected to chassis ground. They should not be connected to circuit ground.

Plastic optical subassemblies are used to further reduce the possibility of radiated emissions by eliminating the metal from the transmitter and receiver diode housings which extend into the connector space. By providing a non-metal receptacle for the optical cable ferrule, the gigabit speed RF electrical signal is isolated from the connector area thus preventing radiated energy leakage from these surfaces to the outside of the panel.

MECHANICAL DIMENSIONS –



PANEL CUTOUT DIMENSIONS

*DIMENSION REFERRED TO OUTSIDE WALL

SUGGESTED PCB LAND PATTERN

MLC-25-7-X-TL Optical ATM OC-48 --- +3.3V Small Form Factor (SFF) Transceiver - 2.488 GBaud

PHYSICAL DESCRIPTION

The MLC-25 features a compact design with a standard LC duplex connector for fiber optic connections. The 10-pin connector (70 mil spacing) provides the electrical connection for all operation. With a height of 9.8 mm the MLC-25 fits mezzanine card applications. An epoxy encapsulation provides excellent protection from environmental hazards and assists in heat dissipation for all components. Two wave-solderable posts are provided for attaching the package to the circuit board without the need for multiple attachment operations.

ELECTRICAL INTERFACE, PIN DESCRIPTIONS

PIN 1	RX_GND	Ground
PIN 2	Vcc_RX	+3.3 volt supply for the Receiver Section
PIN 3	SD	Receiver Signal Detect TTL output. Active high on this line indicates a received optical signal.
PIN 4	RX_D	Receiver Data Inverted Differential Output
PIN 5	RX_D	Receiver Data Non-Inverted Differential Output
PIN 6	Vcc_TX	+3.3 volt supply for the Transmitter Section
PIN 7	TX_GND	Ground
PIN 8	TX_DIS	Transmitter Disable
PIN 9	TX_D	Transmitter Data Non-Inverted Differential Input
PIN 10	TX_D	Transmitter Data Inverted Differential Input
Attaching Posts	The attaching posts are at case potential and may be connected to chassis ground. They should not be connected to circuit ground.	

Optoelectronic Products

7444 West Wilson Avenue • Chicago, IL 60656
708/867-9600 • 800/323-6858 • Fax: 708/867-0996
email: optoinfo@methode.com
<http://www.methode.com>

IMPORTANT NOTICE

Methode Electronics reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Methode advises its customers to obtain the latest version of the publications to verify, before placing orders, that the information being relied on is current. Methode Electronics Small Form Factor (SFF) products are covered under U.S. Patent Numbers 5,812,582 and 5,864,468.

Methode Electronics warrants performance of its optical link products to current specifications in accordance with Methode Electronics standard warranty. Testing and other quality control techniques are utilized to the extent that Methode Electronics has determined it to be necessary to support this warranty. Specific testing of all parameters of each optical link product is not necessarily performed on all optical link products.

Methode Electronic products are not designed for use in life support appliances, devices, or systems where malfunction of a Methode Electronics product can reasonably be expected to result in a personal injury. Methode Electronics customers using or selling optical link products for use in such applications do so at their own risk and agree to fully indemnify Methode Electronics for any damages resulting from such improper use or sale.

Methode Electronic assumes no liability for Methode Electronics applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does Methode Electronics warrant or represent that a license, either expressed or implied is granted under any patent right, copyright, or intellectual property right, and makes no representations or warranties that these products are free from patent, copyright, or intellectual property rights.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Methode Electronics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.