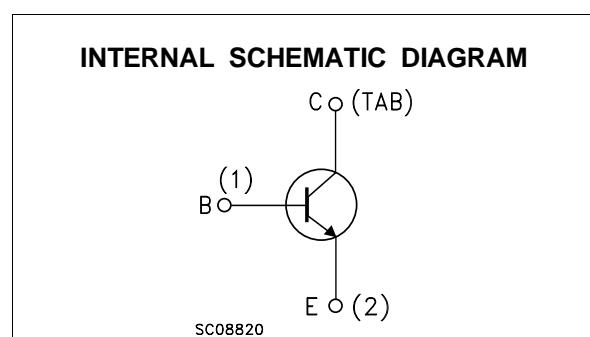
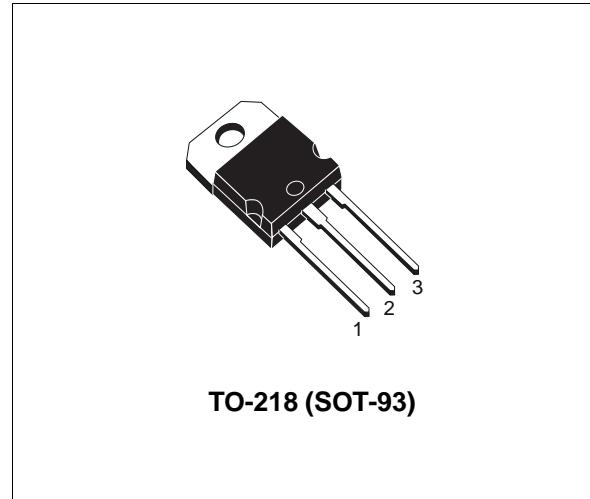


## HIGH POWER NPN SILICON TRANSISTOR



- SGS-THOMSON PREFERRED SALES TYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- HIGH CURRENT CAPABILITY
- FAST SWITCHING SPEED

### APPLICATIONS

- HIGH FREQUENCY AND EFFICIENCY CONVERTERS
- LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

### DESCRIPTION

The BUX98AP is a silicon multiepitaxial mesa NPN transistor in jedec TO-218 plastic package, intended for use in industrial applications from single and three-phase mains operation.



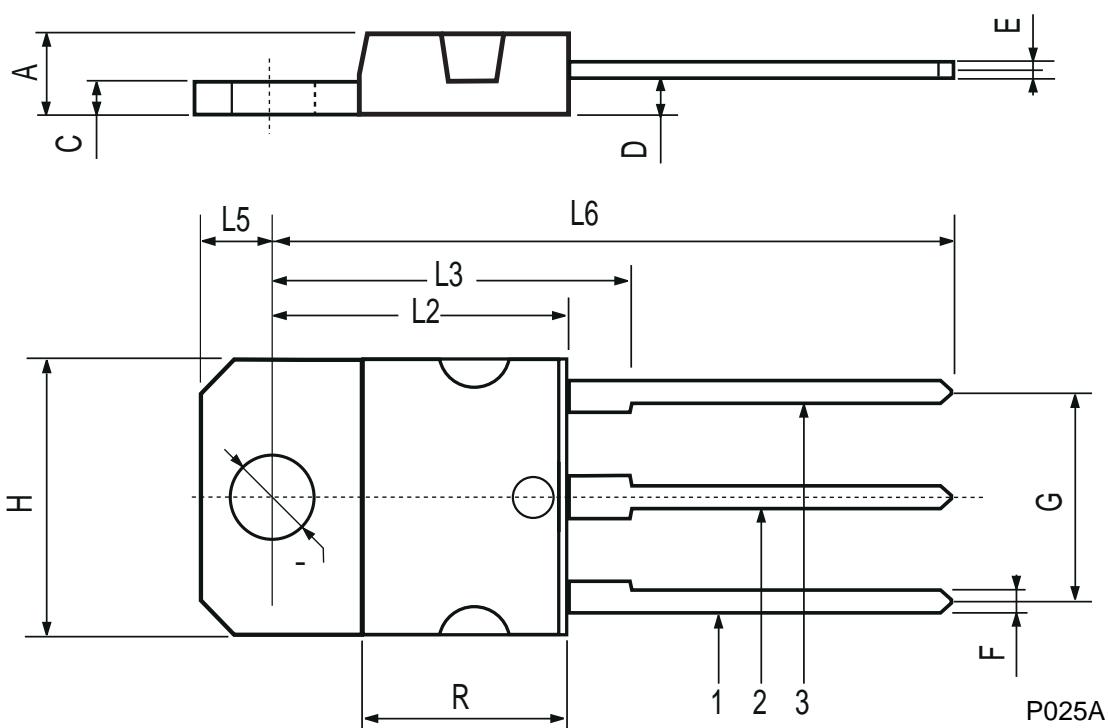
### ABSOLUTE MAXIMUM RATINGS

| Symbol    | Parameter                                                | Value      | Unit |
|-----------|----------------------------------------------------------|------------|------|
| $V_{CER}$ | Collector-Emitter Voltage ( $R_{BE} = \leq 10 \Omega$ )  | 1000       | V    |
| $V_{CES}$ | Collector-Base Voltage ( $V_{BE} = 0$ )                  | 1000       | V    |
| $V_{CEO}$ | Collector-Emitter Voltage ( $I_B = 0$ )                  | 450        | V    |
| $V_{EBO}$ | Emitter-Base Voltage ( $I_C = 0$ )                       | 7          | V    |
| $I_C$     | Collector Current                                        | 24         | A    |
| $I_{CM}$  | Collector Peak Current ( $t_p < 5 \text{ ms}$ )          | 36         | A    |
| $I_B$     | Base Current                                             | 5          | A    |
| $I_{BM}$  | Base Peak Current ( $t_p < 5 \text{ ms}$ )               | 8          | A    |
| $P_{tot}$ | Total Power Dissipation at $T_{case} < 25^\circ\text{C}$ | 200        | W    |
| $T_{stg}$ | Storage Temperature                                      | -65 to 150 | °C   |
| $T_j$     | Max Operating Junction Temperature                       | 150        | °C   |

## BUX98AP

### THERMAL DATA

|                |                                  |     |      |                      |
|----------------|----------------------------------|-----|------|----------------------|
| $R_{thj-case}$ | Thermal Resistance Junction-case | Max | 0.63 | $^{\circ}\text{C/W}$ |
|----------------|----------------------------------|-----|------|----------------------|


### ELECTRICAL CHARACTERISTICS ( $T_{case} = 25^{\circ}\text{C}$ unless otherwise specified)

| Symbol          | Parameter                                          | Test Conditions                                                                     | Min. | Typ. | Max.     | Unit                         |
|-----------------|----------------------------------------------------|-------------------------------------------------------------------------------------|------|------|----------|------------------------------|
| $I_{CER}$       | Collector Cut-off Current ( $R_{BE} = 10 \Omega$ ) | $V_{CE} = V_{CES}$<br>$V_{CE} = V_{CES}$ $T_{CASE} = 125^{\circ}\text{C}$           |      |      | 1<br>8   | $\mu\text{A}$<br>$\text{mA}$ |
| $I_{CES}$       | Collector Cut-off Current ( $V_{BE} = 0$ )         | $V_{CE} = V_{CES}$<br>$V_{CE} = V_{CES}$ $T_{CASE} = 125^{\circ}\text{C}$           |      |      | 400<br>4 | $\mu\text{A}$<br>$\text{mA}$ |
| $I_{CEO}$       | Collector Cut-off Current ( $I_B = 0$ )            | $V_{CE} = V_{CEO}$                                                                  |      |      | 2        | $\text{mA}$                  |
| $I_{EBO}$       | Emitter Cut-off Current ( $I_C = 0$ )              | $V_{EB} = 5 \text{ V}$                                                              |      |      | 2        | $\text{mA}$                  |
| $V_{CEO(sus)*}$ | Collector-Emitter Sustaining Voltage               | $I_C = 200 \text{ mA}$                                                              | 450  |      |          | $\text{V}$                   |
| $V_{CER(sus)*}$ | Collector-Emitter Sustaining Voltage               | $L = 2\text{mH}$ $I_C = 1 \text{ A}$                                                | 1000 |      |          | $\text{V}$                   |
| $V_{CE(sat)*}$  | Collector-Emitter Saturation Voltage               | $I_C = 16 \text{ A}$ $I_B = 3.2 \text{ A}$                                          |      |      | 1.2      | $\text{V}$                   |
| $V_{BE(sat)*}$  | Base-Emitter Saturation Voltage                    | $I_C = 16 \text{ A}$ $I_B = 3.2 \text{ A}$                                          |      |      | 1.5      | $\text{V}$                   |
| $t_{on}$        | Turn-on Time                                       | $V_{CC} = 150 \text{ V}$ $I_C = 20 \text{ A}$<br>$I_{B1} = -I_{B2} = 4 \text{ A}$   |      |      | 1        | $\mu\text{s}$                |
| $t_s$           | Storage Time                                       |                                                                                     |      |      | 3        | $\mu\text{s}$                |
| $t_f$           | Fall Time                                          |                                                                                     |      |      | 0.8      | $\mu\text{s}$                |
| $t_{on}$        | Turn-on Time                                       | $V_{CC} = 150 \text{ V}$ $I_C = 16 \text{ A}$<br>$I_{B1} = -I_{B2} = 3.2 \text{ A}$ |      |      | 1        | $\mu\text{s}$                |
| $t_s$           | Storage Time                                       |                                                                                     |      |      | 3        | $\mu\text{s}$                |
| $t_f$           | Fall Time                                          |                                                                                     |      |      | 0.8      | $\mu\text{s}$                |

\* Pulsed: Pulse duration = 300  $\mu\text{s}$ , duty cycle = 1.5 %

## TO-218 (SOT-93) MECHANICAL DATA

| DIM. | mm   |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| A    | 4.7  |      | 4.9  | 0.185 |       | 0.193 |
| C    | 1.17 |      | 1.37 | 0.046 |       | 0.054 |
| D    |      | 2.5  |      |       | 0.098 |       |
| E    | 0.5  |      | 0.78 | 0.019 |       | 0.030 |
| F    | 1.1  |      | 1.3  | 0.043 |       | 0.051 |
| G    | 10.8 |      | 11.1 | 0.425 |       | 0.437 |
| H    | 14.7 |      | 15.2 | 0.578 |       | 0.598 |
| L2   | —    |      | 16.2 | —     |       | 0.637 |
| L3   |      | 18   |      |       | 0.708 |       |
| L5   | 3.95 |      | 4.15 | 0.155 |       | 0.163 |
| L6   |      | 31   |      |       | 1.220 |       |
| R    | —    |      | 12.2 | —     |       | 0.480 |
| Ø    | 4    |      | 4.1  | 0.157 |       | 0.161 |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A