

NE5500234

4.8 V N-CHANNEL SILICON POWER MOS FET POWER AMPLIFIER FOR DCS1800/PCS1900 HANDSETS

DESCRIPTION

The NE5500234 is an N-channel silicon power MOS FET specially designed as the transmission power amplifier for DCS1800 and PCS1900 handsets. Die are manufactured using our NEWMOS technology (our 0.6 μ m WSi gate lateral MOS FET), housed in a surface mount 3-pin power Minimold (34 PKG) (SOT-89 type) package. The device can deliver 32.5 dBm output power with 50% power added efficiency at 1.9 GHz with 4.8 V supply voltage.

FEATURES

High output power : P_{out} = 32.5 dBm TYP. (V_{DS} = 4.8 V, I_{Dset} = 400 mA, f = 1.9 GHz, P_{in} = 25 dBm)
 High power added efficiency : η_{add} = 50% TYP. (V_{DS} = 4.8 V, I_{Dset} = 400 mA, f = 1.9 GHz, P_{in} = 25 dBm)

High linear gain
 G_L = 11 dB TYP. (V_{DS} = 4.8 V, I_{Dset} = 400 mA, f = 1.9 GHz)

Surface mount package : 3-pin power Minimold (34 PKG) (SOT-89 type)

• Single supply : V_{DS} = 3.0 to 6.0 V

APPLICATIONS

• Digital cellular phones : DCS1800/PCS1900 handsets

- Handheld transceiver : FRS (Family Radio Service), GMRS (General Mobile Radio Service)

• Others : General purpose amplifiers for various applications

<R> ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
NE5500234	NE5500234-AZ	3-pin power minimold (SOT-89, Our code: 34) (Pb-Free : External solder plating)	V2	Magazine case Qty 25 pcs/case
NE5500234-T1	NE5500234-T1-AZ	3-pin power minimold (SOT-89, Our code: 34) (Pb-Free : External solder plating)		12 mm wide embossed taping Source pin face the perforation side of the tape Qty 1 kpcs/reel

Remarks 1. To order evaluation samples, contact your nearby sales office.

Part number for sample order: NE5500234-AZ

2. This product is containing Pb-material inside.

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PU10405EJ02V0DS (2nd edition) Date Published August 2007 NS

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C)

Operation in excess of any one of these parameters may result in permanent damage.

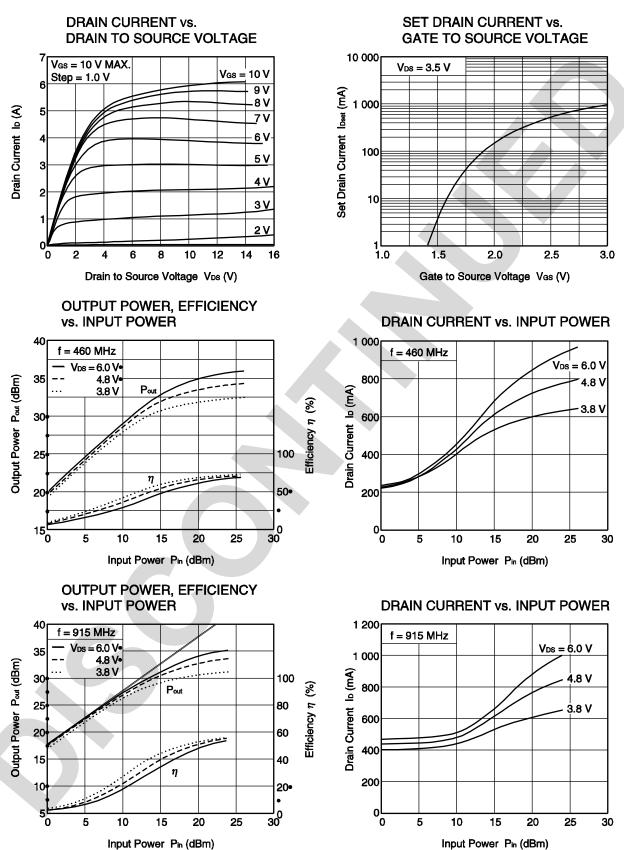
Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	Vps	20	V
Gate to Source Voltage	Vgs	6.0	V
Drain Current	lo	1.0	Α
Total Power Dissipation	Ptot	10	W
Channel Temperature	Tch	125	°C
Storage Temperature	Tstg	-65 to +125	°C

RECOMMENDED OPERATING CONDITIONS

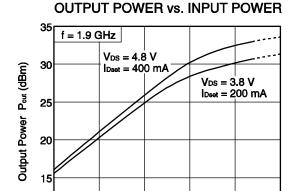
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS		3.0	4.8	6.0	V
Gate to Source Voltage	Vgs		0	2.0	3.5	V
Drain Current	lσ	Duty Cycle ≤ 50%, Ton ≤ 1 s	-	0.75	1.0	Α
Input Power	Pin	f = 1.9 GHz, Vps = 4.8 V	-	ı	27	dBm

ELECTRICAL CHARACTERISTICS

(TA = +25°C, unless otherwise specified, using our standard test fixture.)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leakage Current	Igso	Vgs = 6.0 V	-	_	100	nA
Drain to Source Leakage Current (Zero Gate Voltage Drain Current)	IDSS	V _{DS} = 8.5 V	_	-	100	nA
Gate Threshold Voltage	Vth	V _{DS} = 4.8 V, I _{DS} = 1 mA	1.0	1.4	2.0	V
Thermal Resistance	Rth	Channel to Case	-	10	-	°C/W
Transconductance	gm	V _{DS} = 4.8 V, I _{DS} = 500 mA	-	840	-	mS
Drain to Source Breakdown Voltage	BVDSS	loss = 10 μ A	20	24	-	V
Output Power	Pout	f = 1.9 GHz, V _{DS} = 4.8 V,	31.5	32.5	-	dBm
Drain Current	lο	Pin = 25 dBm,	_	610	_	mA
Power Added Efficiency	η add	I _{Dset} = 400 mA (RF OFF)	43	50	=	%
Linear Gain Note	G∟		I	11.0	-	dB

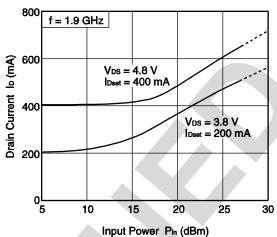
Note $P_{in} = 10 \text{ dBm}$


DC performance is 100% testing. RF performance is testing several samples per wafer.

Wafer rejection criteria for standard devices is 1 reject for several samples.

<R> TYPICAL CHARACTERISTICS (TA = +25°C)

Remark The graphs indicate nominal characteristics.

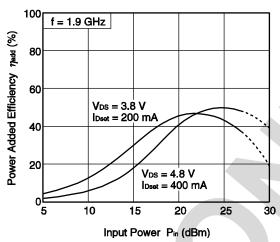


15

10^L 5

10

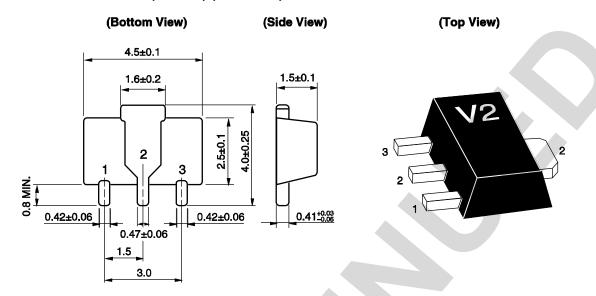
DRAIN CURRENT vs. INPUT POWER


POWER ADDED EFFICIENCY vs. INPUT POWER

Input Power Pin (dBm)

20

25


30

Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

3-PIN POWER MINIMOLD (34 PKG) (UNIT: mm)

PIN CONNECTIONS

- 1. Drain
- 2. Source
- 3. Gate

<R> RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).