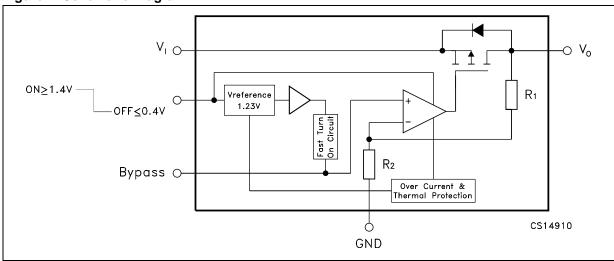


LDS3985 SERIES

ULTRA LOW DROP-LOW NOISE BICMOS 300mA V.REG. FOR USE WITH VERY LOW ESR OUTPUT CAPACITOR

- INPUT VOLTAGE FROM 2.5V TO 6V
- STABLE WITH LOW ESR CERAMIC CAPACITORS
- ULTRA LOW DROPOUT VOLTAGE (150mV TYP. AT 300mA LOAD, 0.4mV TYP. AT 1mA LOAD)
- VERY LOW QUIESCENT CURRENT (85µA TYP. AT NO LOAD, 200µA TYP. AT 300mA LOAD; MAX 1.5µA IN OFF MODE)
- GUARANTEED OUTPUT CURRENT UP TO 300mA
- WIDE RANGE OF OUTPUT VOLTAGE:
 1.25V; 1.35; 1.5V; 1.8V; 2V; 2.1V; 2.2V; 2.5V;
 2.6V; 2.7V; 2.8V; 2.85V; 2.9V; 3V; 3.1V; 3.2V;
 3.3V; 4.7V
- FAST TURN-ON TIME: TYP. 240 μ s [C_O=2.2 μ F, C_{BYP}= 33nF AND I_O=1mA]
- LOGIC-CONTROLLED ELECTRONIC SHUTDOWN
- INTERNAL CURRENT AND THERMAL LIMIT
- OUTPUT LOW NOISE VOLTAGE 30µV_{RMS} OVER 10Hz to 100KHz
- S.V.R. OF 55dB AT 1KHz, 50dB AT 10KHz
- TEMPERATURE RANGE: -40°C TO 125°C


DFN6 SOT23-5L

It is stable with ceramic and high quality tantalum capacitor. The ultra low drop-voltage, low quiescent current and low noise makes it suitable for low power applications and in battery powered systems. Regulator ground current increases only slightly in dropout, further prolonging the battery life. Shutdown Logic Control function is available, this means that when the device is used as local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. Typical applications are in mobile phone and similar battery powered wireless systems, portable information appliances.

DESCRIPTION

The LDS3985 provides up to 300mA, from 2.5V to 6V input voltage.

Figure 1: Schematic Diagram

December 2004 Rev. 1 1/13

Table 1: Absolute Maximum Ratings

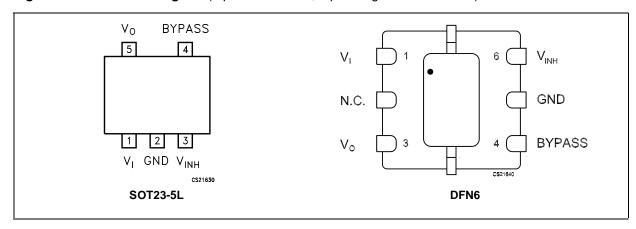
Symbol	Parameter	Value	Unit
VI	DC Input Voltage	-0.3 to 6 (*)	V
Vo	DC Output Voltage	-0.3 to V _I +0.3	V
V _{INH}	INHIBIT Input Voltage	-0.3 to V _I +0.3	V
Io	Output Current	Internally limited	
P _D	Power Dissipation	Internally limited	
T _{STG}	Storage Temperature Range	-65 to 150	°C
T _{OP}	Operating Junction Temperature Range	-40 to 125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter	SOT23-5L	DFN6	Unit
R _{thj-case}	Thermal Resistance Junction-case	81	10	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	255	55	°C/W

Table 3: Order Codes


SOT23-5L	DFN6	OUTPUT VOLTAGES
LDS3985M125R (*)	LDS3985PM12R (*)	1.25 V
LDS3985M135R (*)	LDS3985PM13R (*)	1.35 V
LDS3985M15R (*)	LDS3985PM15R (*)	1.5 V
LDS3985M18R	LDS3985PM18R	1.8 V
LDS3985M20R (*)	LDS3985PM20R (*)	2.0 V
LDS3985M21R (*)	LDS3985PM21R (*)	2.1 V
LDS3985M22R (*)	LDS3985PM22R (*)	2.2 V
LDS3985M25R	LDS3985PM25R	2.5 V
LDS3985M26R (*)	LDS3985PM26R (*)	2.6 V
LDS3985M27R (*)	LDS3985PM27R (*)	2.7 V
LDS3985M28R	LDS3985PM28R	2.8 V
LDS3985M285R (*)	LDS3985PM285R (*)	2.85 V
LDS3985M29R	LDS3985PM29R (*)	2.9 V
LDS3985M30R (*)	LDS3985PM30R (*)	3.0 V
LDS3985M31R (*)	LDS3985PM31R (*)	3.1 V
LDS3985M32R (*)	LDS3985PM32R (*)	3.2 V
LDS3985M33R	LDS3985PM33R	3.3 V
LDS3985M47R (*)	LDS3985PM47R (*)	4.7 V
LDS3985M48R (*)	LDS3985PM48R (*)	4.8 V
LDS3985M49R (*)	LDS3985PM49R (*)	4.9 V
LDS3985M50R (*)	LDS3985PM50R (*)	5.0 V

^(*) Available on request.

2/13

^(*) The input pin is able to withstand non repetitive spike of 6.5V for 200ms.

Figure 2: Connection Diagram (top view for SOT, top through view for DFN6)

Table 4: Pin Description

Pin N° SOT23-5L	Pin N° DFN6	Symbol	Name and Function
1	1	V _I	Input Voltage of the LDO
2	5	GND	Common Ground
3	6	V _{INH}	Inhibit Input Voltage: ON MODE when $V_{INH} \ge 1.2V$, OFF MODE when $V_{INH} \le 0.4V$ (Do not leave floating, not internally pulled down/up)
4	4	BYPASS	Bypass Pin: Connect an external capacitor (usually 10nF) to minimize noise voltage
5	3	Vo	Output Voltage of the LDO
-	2	N.C.	Not Connect.

Figure 3: Typical Application Circuit

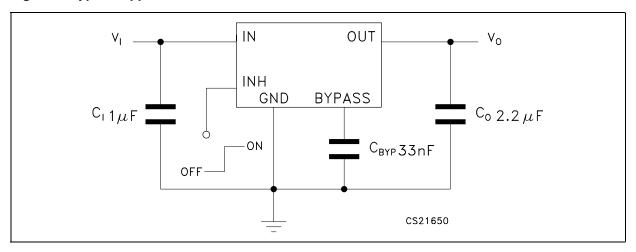


Table 5: Electrical Characteristics For LDS3985 (T_j = 25°C, V_l = $V_{O(NOM)}$ +0.5V, C_l = 1 μ F, C_O = 2.2 μ F C_{BYP} = 33nF, I_O = 1mA, V_{INH} = 1.4V, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VI	Operating Input Voltage		2.5		6	V
Vo	Output Voltage < 2.5V	I _O = 1 mA	-50		50	mV
		T _J = -40 to 125°C	-75		75	
Vo	Output Voltage ≥ 2.5V	I _O = 1 mA	-2		2	% of
		T _J = -40 to 125°C	-3		3	V _{O(NOM)}
ΔV_{O}	Line Regulation (Note 1)	$V_I = V_{O(NOM)} + 0.5 \text{ to } 6 \text{ VT}_J = -40 \text{ to } 125^{\circ}\text{C}$	-0.1		0.1	%/V
		V _O = 4.7 to 5V	-0.19		0.19	
ΔV_{O}	Load Regulation	$I_O = 1$ mA to 300mA $V_O \le 2.5V$ $T_J = -40$ to 125°C		0.005	0.01	%/mA
ΔV _O	Load Regulation	$I_O = 1$ mA to 300mA $V_O \ge 2.5V$ $T_J = -40$ to 125°C		0.0008	0.004	%/mA
ΔV_{O}	Output AC Line Regulation (Note 2)	$V_I = V_{O(NOM)} + 1 V$, $I_O = 300mA$, $t_R = t_F = 30\mu s$		5		mV _{PP}
ΙQ	Quiescent Current	I _O = 0		85		μΑ
	ON MODE: V _{INH} = 1.24V	$I_{O} = 0$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			150	
		I _O = 0 to 300mA		200		
		$I_{O} = 0 \text{ to } 300 \text{mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			300	
	OFF MODE: V _{INH} = 0.4V			0.003		
		T _J = -40 to 125°C			1.5	
V_{DROP}	Dropout Voltage (Note 3)	I _O = 1mA		0.4		mV
		$I_{O} = 1 \text{mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			2	
		I _O = 150mA		60		
		$I_{O} = 150 \text{mA}$ $T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$			100	
		I _O = 300mA		150		
		$I_{O} = 300 \text{mA}$ $T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$			250	
I _{SC}	Short Circuit Current	$R_L = 0$		600		mA
SVR	Supply Voltage Rejection	$V_I = V_{O(NOM)} + 0.25V \pm f = 1KHz$		55		dB
		$V_{RIPPLE} = 0.1V$, $I_{O} = 50 \text{mA}$ For $V_{O(NOM)} < 2.5V$, $V_{I} = 2.55V$		50		
I _{O(PK)}	Peak Output Current	$V_O \ge V_{O(NOM)}$ - 5%	300	550		mA
V_{INH}	Inhibit Input Logic Low	$V_I = 2.5V \text{ to } 6V$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.4	V
	Inhibit Input Logic High		1.4			
I _{INH}	Inhibit Input Current	$V_{INH} = 0.4V$ $V_{I} = 6V$		±1		nA
eN	Output Noise Voltage	$B_W = 10 \text{ Hz to } 100 \text{ KHz}$ $C_O = 2.2 \mu\text{F}$		30		μV_{RMS}
t _{ON}	Turn On Time (Note 4)	C _{BYP} = 33 nF		240		μs
T _{SHDN}	Thermal Shutdown	Note 5		160		°C
co	Output Capacitor	Capacitance (Note 6)	2.2		22	μF
		ESR	5		5000	mΩ

_

Note 1: For $V_{O(NOM)}$ < 2V V_I = 2.5V Note 2: For $V_{O(NOM)}$ =1.25V V_I = 2.5V Note 3: Dropout voltage is the input-to-output voltage difference at which the output voltage is 100mV below its nominal value. This specification does not apply for input voltages below 2.5V.

Note 4: Turn -on time is time measured between the enable input just exceeding V_{INH} High Value and the output voltage just reaching 95% of its nominal value

Note 5: Typical thermal protection hysteresis is 20°C

TYPICAL PERFORMANCE CHARACTERISTICS ($T_j = 25^{\circ}C$, $V_l = V_{O(NOM)} + 0.5V$, $C_l = 1\mu F$, $C_O = 2.2\mu F$, $C_{BYP} = 33nF$, $I_O = 1mA$, $V_{INH} = 1.4V$, unless otherwise specified)

Figure 4: Output Voltage vs Temperature

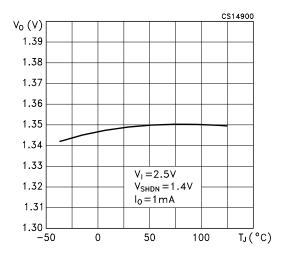


Figure 5: Output Voltage vs Temperature

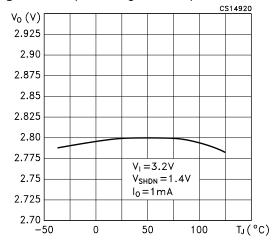


Figure 6: Output Voltage vs Temperature

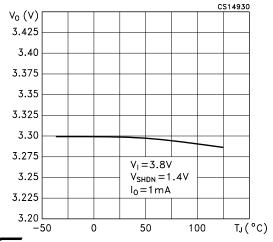


Figure 7: Shutdown Voltage vs Temperature

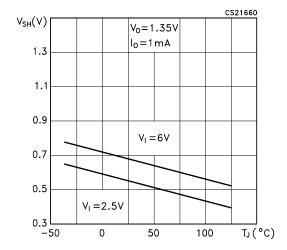


Figure 8: Shutdown Voltage vs Temperature

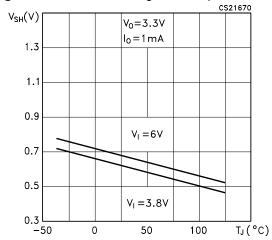


Figure 9: Line Regulation vs Temperature

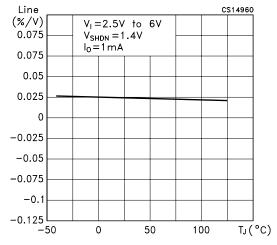


Figure 10: Line Regulation vs Temperature

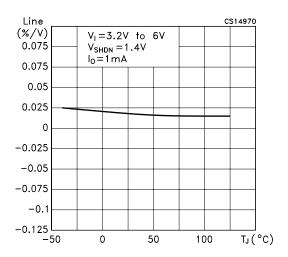


Figure 11: Line Regulation vs Temperature

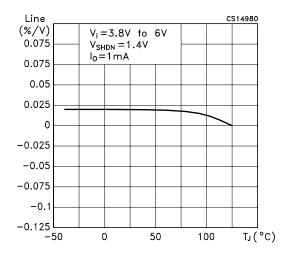


Figure 12: Quiescent Current vs Temperature

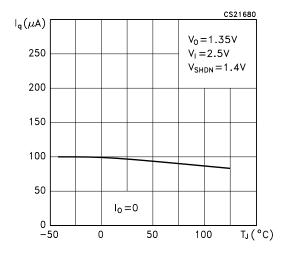
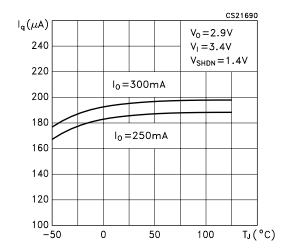



Figure 13: Quiescent Current vs Temperature

Figure 14: Quiescent Current vs Temperature

Figure 15: Supply Voltage Rejection vs Frequency

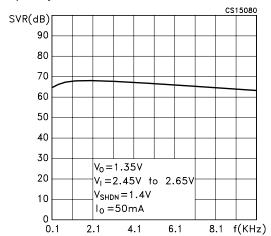


Figure 16: Dropout Voltage vs Temperature

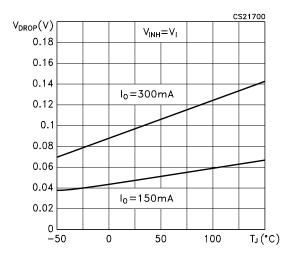
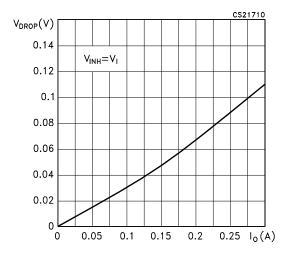
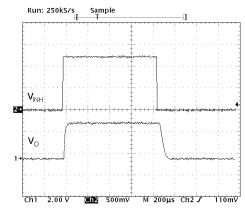
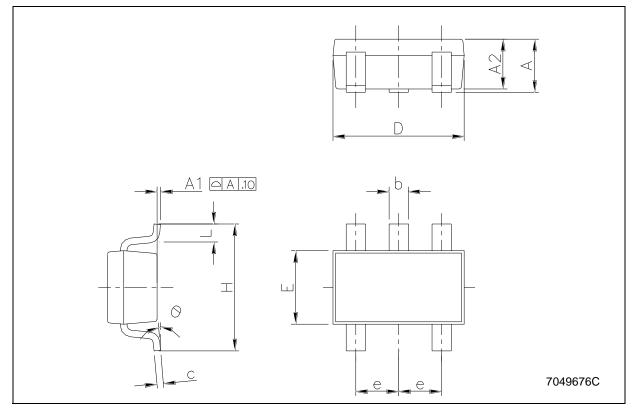
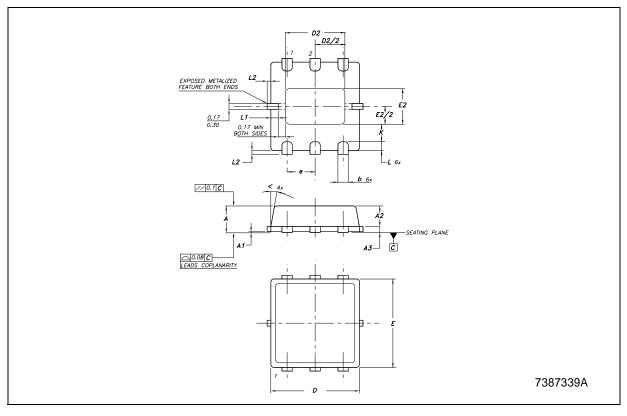


Figure 17: Dropout Voltage vs Output Current

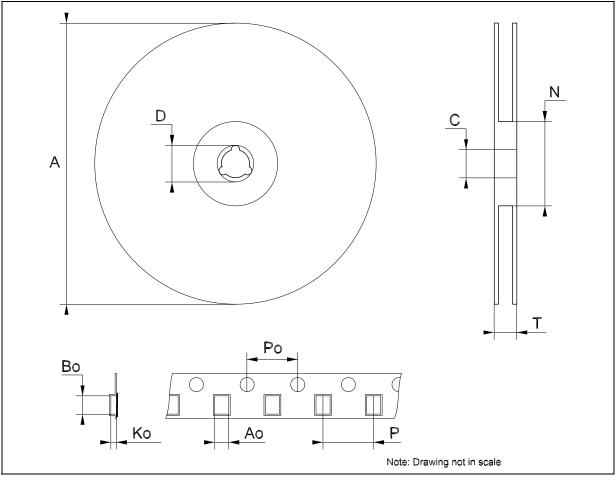




Figure 18: Inhibit Transient

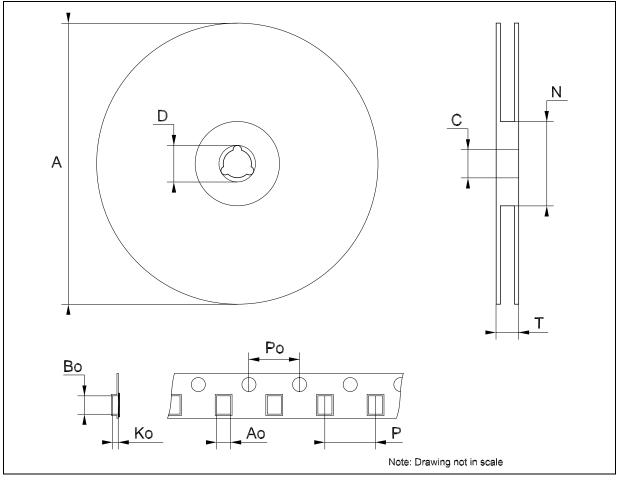
 V_I = 5V, I_O = 1mA, V_{INH} = 0 to 1.2V, C_I = C_O = 1 μF (cer), C_{BYP} = 10nF, T_R = T_F = 1 μs


SOT23-5L MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.90		1.45	35.4		57.1
A1	0.00		0.10	0.0		3.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	1.50		1.75	59.0		68.8
е		0.95			37.4	
Н	2.60		3.00	102.3		118.1
L	0.10		0.60	3.9		23.6


DFN6 (3x3) MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.80		1.00	31.5		39.4
A1	0		0.05	0.0		2.0
A2	0.65		0.75	25.6		29.5
A3		0.20			7.9	
b	0.33		0.43	13.0		16.9
D	2.90	3.00	3.10	114.2	118.1	122.0
D2	1.92		2.12	75.6		83.5
Е	2.90	3.00	3.10	114.2	118.1	122.0
E2	1.11		1.31	43.7		51.6
е		0.95			37.4	
L	0.20		0.45	7.9		17.7
L1		0.24			9.4	
L2			0.13			5.1
K	0.20			7.9		


Tape & Reel SOT23-xL MECHANICAL DATA

DIM.		mm.			inch		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			180			7.086	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			14.4			0.567	
Ao	3.13	3.23	3.33	0.123	0.127	0.131	
Во	3.07	3.17	3.27	0.120	0.124	0.128	
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58	
Ро	3.9	4.0	4.1	0.153	0.157	0.161	
Р	3.9	4.0	4.1	0.153	0.157	0.161	

Tape & Reel QFNxx/DFNxx (3x3) MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			18.4			0.724	
Ao		3.3			0.130		
Во		3.3			0.130		
Ko		1.1			0.043		
Po		4			0.157		
Р		8			0.315		

LDS3985 SERIES

Table 6: Revision History

Date	Revision	Description of Changes
02-Dic-2004	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

