

Plastic Darlington Complementary Silicon Power Transistors

Plastic Darlington complementary silicon power transistors designed for general purpose amplifier and high-speed switching applications.

- High DC Current Gain
 $h_{FE} = 1400$ (Typ) @ I_C
 $= 2.0$ Adc
- Collector-Emitter Sustaining Voltage — @ 10 mAdc
 $V_{CEO(sus)} = 45$ Vdc (Min) — BD776
 $= 60$ Vdc (Min) — BD777, 778
 $= 80$ Vdc (Min) — BD780
- Reverse Voltage Protection Diode
- Monolithic Construction with Built-in Base-Emitter output Resistor


ON Semiconductor®

<http://onsemi.com>

**DARLINGTON
4-AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
45, 60, 80 VOLTS
15 WATTS**

MAXIMUM RATINGS

Rating	Symbol	BD776	BD777 BD778	BD780	Unit
Collector-Emitter Voltage	V_{CEO}	45	60	80	Vdc
Collector-Base Voltage	V_{CB}	45	60	80	Vdc
Emitter-Base Voltage	V_{EB}		5.0		Vdc
Collector Current — Continuous Peak	I_C		4.0 6.0		Adc
Base Current	I_B		100		mAdc
Total Device Dissipation $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D		15 0.12		W W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}		−65 to +150		$^\circ\text{C}$

CASE 77-08
TO-225AA TYPE

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	8.34	$^\circ\text{C}/\text{W}$
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	83.3	$^\circ\text{C}/\text{W}$

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

BD777

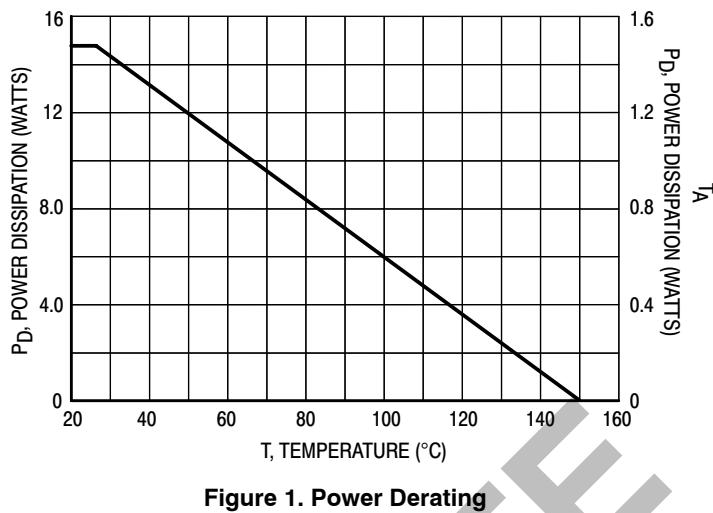


Figure 1. Power Derating

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (1) ($I_O = 10 \text{ mA}_\text{dc}$, $I_B = 0$)	$V_{CEO(\text{sus})}$	45	—	Vdc
BD776 BD777, BD778 BD780		60	—	
		80	—	
Collector Cutoff Current ($V_{CE} = 20 \text{ V}_\text{dc}$, $I_B = 0$) ($V_{CE} = 30 \text{ V}_\text{dc}$, $I_B = 0$) ($V_{CE} = 40 \text{ V}_\text{dc}$, $I_B = 0$)	I_{CEO}	—	100	μA_dc
BD776 BD777, BD778 BD780		—	100	
		—	100	
Collector Cutoff Current ($V_{CB} = \text{Rated}$, $V_{CEO(\text{sus})}$, $I_E = 0$) ($V_{CB} = \text{Rated}$, $V_{CEO(\text{sus})}$, $I_E = 0$, $I_C = 100^\circ\text{C}$)	I_{CBO}	—	1.0	μA_dc
		—	100	
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ V}_\text{dc}$, $I_C = 0$)	I_{EBO}	—	1.0	μA_dc

ON CHARACTERISTICS

DC Current Gain ($I_C = 2.0 \text{ Adc}$, $V_{CE} = 3.0 \text{ Vdc}$)	H_{FE}	750	—	
Collector-Emitter Saturation Voltage ($I_C = 1.5 \text{ Adc}$, $I_B = 6 \text{ mA}_\text{dc}$)	$V_{CE(\text{Sat})}$	—	1.5	Vdc
Base Emitter Saturation Voltage ($I_C = 1.5 \text{ Adc}$, $I_B = 6 \text{ mA}_\text{dc}$)	$V_{BE(\text{Sat})}$	—	2.5	Vdc
Base-Emitter On Voltage ($I_C = 1.5 \text{ Adc}$, $V_{CE} = 3 \text{ Vdc}$)	$V_{BE(\text{On})}$	—	2.3	Vdc
Output Diode Voltage Drop ($I_{EC} = 2.0 \text{ Adc}$)	V_{EC}	—	2.0	Vdc

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$)	f_T	20	—	MHz
	Symbol	Min	Typ	Unit
Turn-On Time ($I_C = 250 \text{ mA}$, $V_{CE} = 2 \text{ V}$)	t_{on}	—	250	ns
BD775-777 BD776-778-780		—	150	
Turn-Off Time ($I_C = 250 \text{ mA}$, $V_{CE} = 2 \text{ V}$)	t_{off}	—	600	ns
BD775-777 BD776-778-780		—	400	

BD777

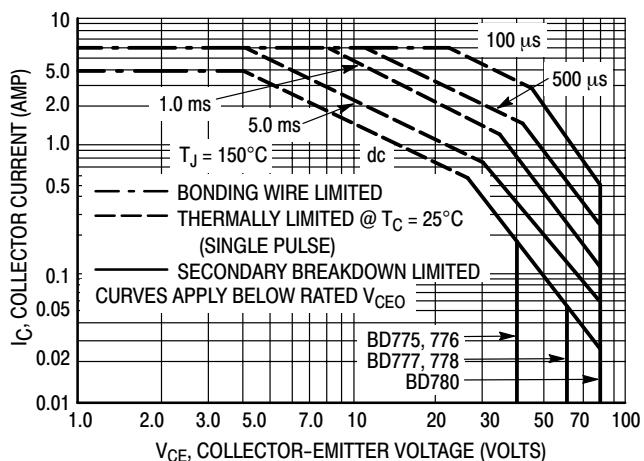


Figure 2. Active Region Safe Operating Area

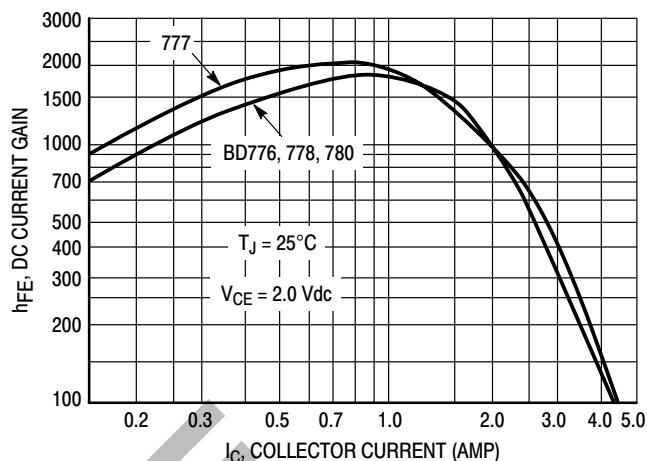


Figure 3. Typical DC Current Gain

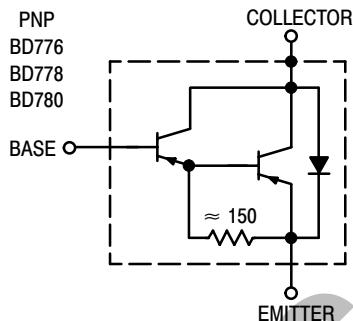
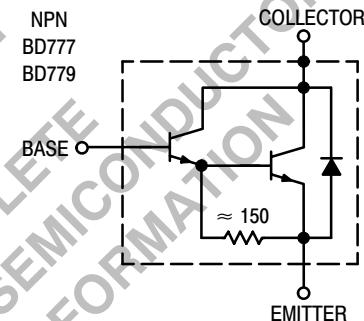
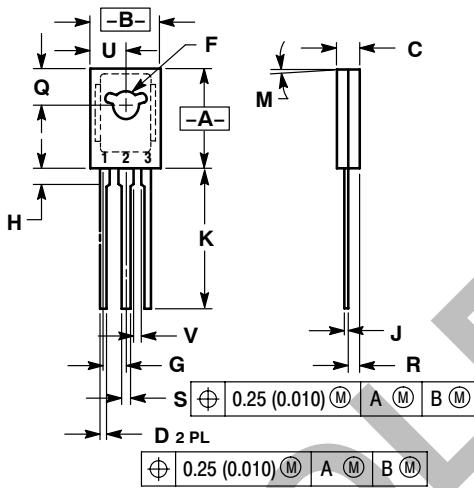




Figure 4. Darlington Circuit Schematic

PACKAGE DIMENSIONS

CASE 77-08
TO-225AA TYPE
ISSUE V

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.425	0.435	10.80	11.04
B	0.295	0.305	7.50	7.74
C	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094	BSC	2.39	BSC
H	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5° TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.055	1.15	1.39
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
V	0.040	---	1.02	---

STYLE 1:
 1. Emitter
 2. Collector
 3. Base

ON Semiconductor and **ON** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
 P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
 USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
 Sales Representative