

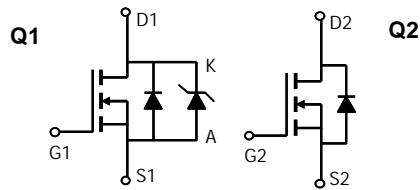
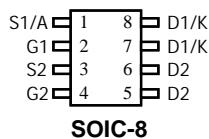
ALPHA & OMEGA
SEMICONDUCTOR

AO4914A

Dual N-Channel Enhancement Mode Field Effect Transistor with Schottky Diode

General Description

The AO4914A uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in DC-DC converters. A Schottky diode is co-packaged in parallel with the synchronous MOSFET to boost efficiency further. Standard product AO4914A is Pb-free (meets ROHS & Sony 259 specifications). AO4914AL is a Green Product ordering option. AO4914A and AO4914AL are electrically identical.



Features

Q1

V_{DS} (V) = 30V $V_{DS}(V)$ = 30V
 I_D = 8.5A (V_{GS} = 10V) I_D = 8.5A (V_{GS} = 10V)
 $R_{DS(ON)} < 18m\Omega$ $< 18m\Omega$ (V_{GS} = 10V)
 $R_{DS(ON)} < 28m\Omega$ $< 28m\Omega$ (V_{GS} = 4.5V)

SCHOTTKY

V_{DS} (V) = 30V, I_F = 3A, $V_F < 0.5V @ 1A$

Absolute Maximum Ratings $T_A=25^\circ C$ unless otherwise noted

Parameter	Symbol	Max Q1	Max Q2	Units
Drain-Source Voltage	V_{DS}	30	30	V
Gate-Source Voltage	V_{GS}	± 20	± 20	V
Continuous Drain Current ^A	I_D	8.5	8.5	A
$T_A=70^\circ C$		6.6	6.6	
Pulsed Drain Current ^B	I_{DM}	30	30	
Power Dissipation	P_D	2	2	W
$T_A=70^\circ C$		1.28	1.28	
Junction and Storage Temperature Range	T_J, T_{STG}	-55 to 150	-55 to 150	°C

Parameter	Symbol	Maximum Schottky	Units
Reverse Voltage	V_{DS}	30	V
Continuous Forward Current ^A	I_F	3	A
$T_A=70^\circ C$		2.2	
Pulsed Diode Forward Current ^B	I_{FM}	20	
Power Dissipation ^A	P_D	2	W
$T_A=70^\circ C$		1.28	
Junction and Storage Temperature Range	T_J, T_{STG}	-55 to 150	°C

Parameter: Thermal Characteristics MOSFET Q1		Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ^A	$t \leq 10s$	$R_{\theta JA}$	48	62.5	°C/W
Maximum Junction-to-Ambient ^A	Steady-State		74	110	
Maximum Junction-to-Lead ^C	Steady-State		35	40	

Parameter: Thermal Characteristics MOSFET Q2		Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ^A	$t \leq 10s$	$R_{\theta JA}$	48	62.5	°C/W
Maximum Junction-to-Ambient ^A	Steady-State		74	110	
Maximum Junction-to-Lead ^C	Steady-State		35	40	

Thermal Characteristics Schottky					
Maximum Junction-to-Ambient ^A	$t \leq 10s$	$R_{\theta JA}$	47.5	62.5	°C/W
Maximum Junction-to-Ambient ^A	Steady-State		71	110	
Maximum Junction-to-Lead ^C	Steady-State		32	40	

A: The value of $R_{\theta JA}$ is measured with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ C$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10s$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ C$. The SOA curve provides a single pulse rating.

F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

Rev 0: Aug 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Q1 Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu\text{A}, V_{\text{GS}}=0\text{V}$	30			V
I_{DSS}	Zero Gate Voltage Drain Current. (Set by Schottky leakage)	$V_R=30\text{V}$		0.005	0.05	mA
		$V_R=30\text{V}, T_J=125^\circ\text{C}$		3.2	10	
		$V_R=30\text{V}, T_J=150^\circ\text{C}$		12	20	
I_{GSS}	Gate-Body leakage current	$V_{\text{DS}}=0\text{V}, V_{\text{GS}}= \pm 20\text{V}$			100	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{\text{DS}}=V_{\text{GS}}, I_D=250\mu\text{A}$	1	1.7	3	V
$I_{\text{D(ON)}}$	On state drain current	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=5\text{V}$	30			A
$R_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=10\text{V}, I_D=8.5\text{A}$		14.8	18	$\text{m}\Omega$
		$T_J=125^\circ\text{C}$		20.5	25	
g_{FS}	Forward Transconductance	$V_{\text{DS}}=5\text{V}, I_D=8.5\text{A}$		20.6	28	$\text{m}\Omega$
				23		
V_{SD}	Diode+Schottky Forward Voltage	$I_S=1\text{A}$		0.46	0.6	V
I_S	Maximum Body-Diode+Schottky Continuous Current				3.5	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=15\text{V}, f=1\text{MHz}$		955	1250	pF
C_{oss}	Output Capacitance (FET + Schottky)			175		pF
C_{rss}	Reverse Transfer Capacitance			112		pF
R_g	Gate resistance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=0\text{V}, f=1\text{MHz}$		0.5	0.85	Ω
SWITCHING PARAMETERS						
$Q_g(10\text{V})$	Total Gate Charge	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, I_D=8.5\text{A}$		17	23	nC
$Q_g(4.5\text{V})$	Total Gate Charge			9	11.2	nC
Q_{gs}	Gate Source Charge			3.4		nC
Q_{gd}	Gate Drain Charge			4.7		nC
$t_{\text{D(on)}}$	Turn-On DelayTime	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, R_L=1.8\Omega, R_{\text{GEN}}=3\Omega$		5	6.5	ns
t_r	Turn-On Rise Time			6	7.5	ns
$t_{\text{D(off)}}$	Turn-Off DelayTime			19	25	ns
t_f	Turn-Off Fall Time			4.5	6	ns
t_{rr}	Body Diode + Schottky Reverse Recovery Time	$I_F=8.5\text{A}, dI/dt=100\text{A}/\mu\text{s}$		20	24	ns
Q_{rr}	Body Diode + Schottky Reverse Recovery Charge	$I_F=8.5\text{A}, dI/dt=100\text{A}/\mu\text{s}$		9.5	12	nC

A: The value of R_{JJA} is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10\text{s}$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{JJA} is the sum of the thermal impedance from junction to lead R_{JUL} and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The SOA curve provides a single pulse rating.

F. The Schottky appears in parallel with the MOSFET body diode, even though it is a separate chip. Therefore, we provide the net forward drop, capacitance and recovery characteristics of the MOSFET and Schottky. However, the thermal resistance is specified for each chip separately.

Rev 0 : Aug 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Q1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

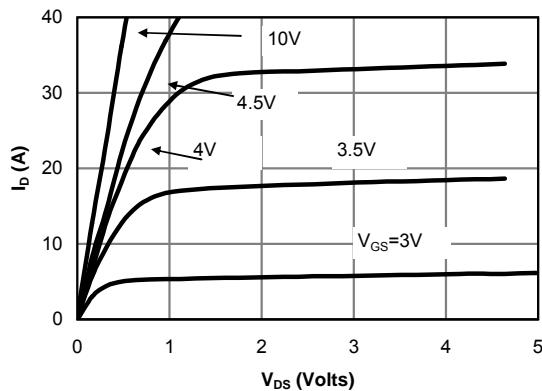


Fig 1: On-Region Characteristics

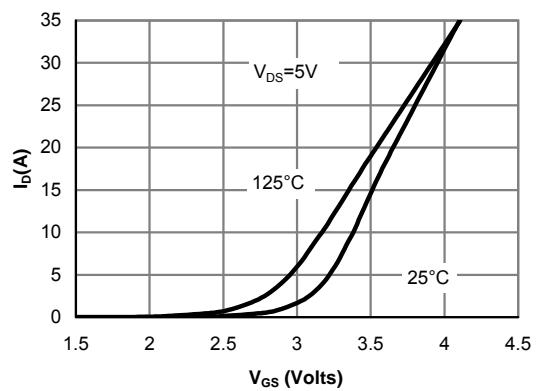


Figure 2: Transfer Characteristics

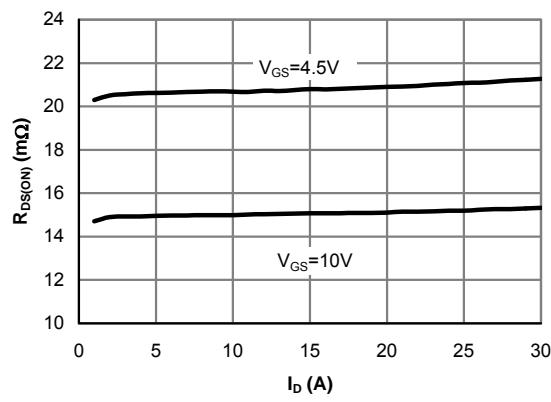


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

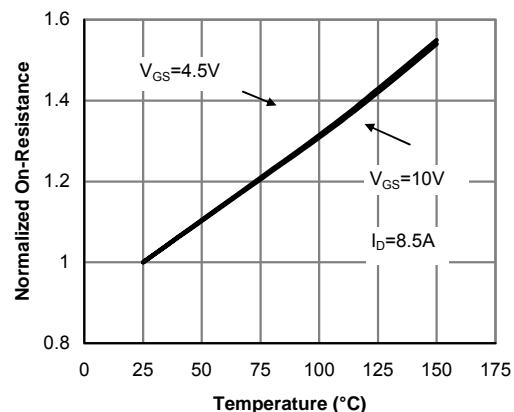


Figure 4: On resistance vs. Junction Temperature

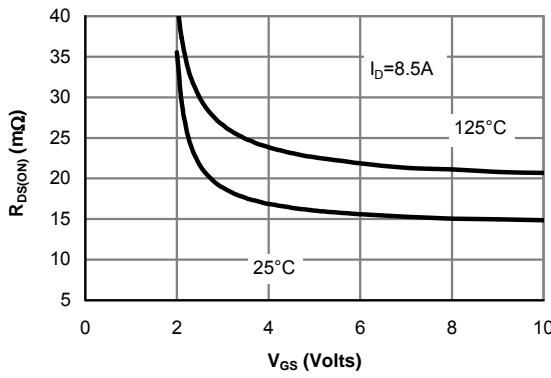
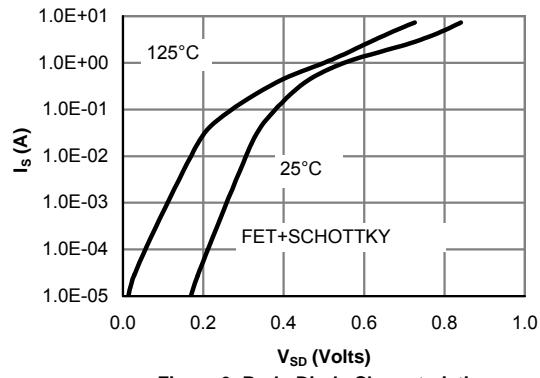
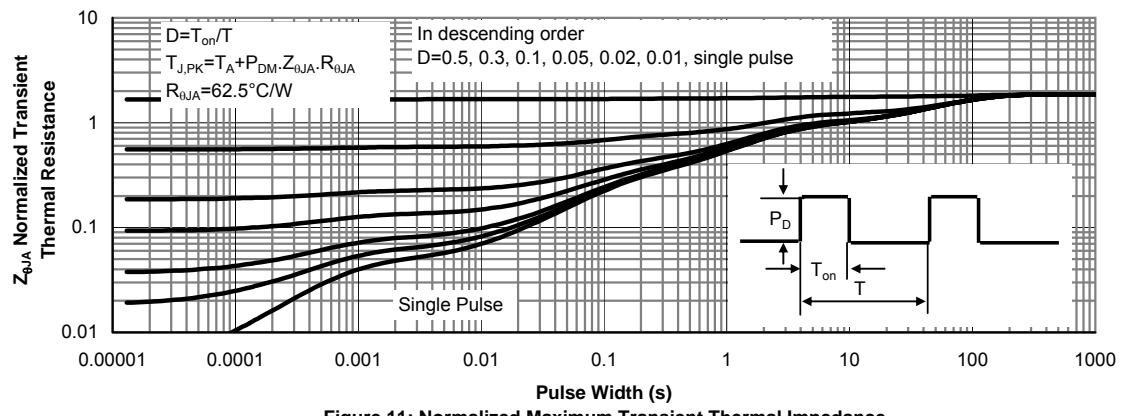
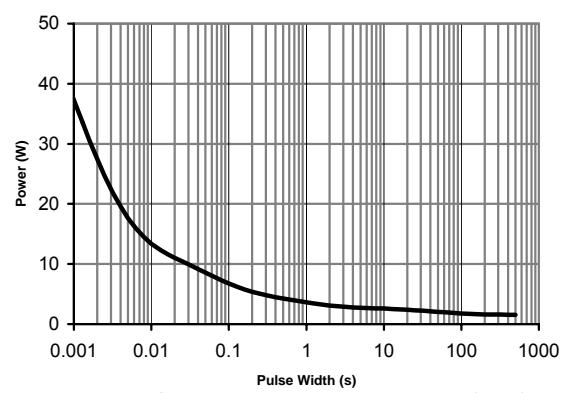
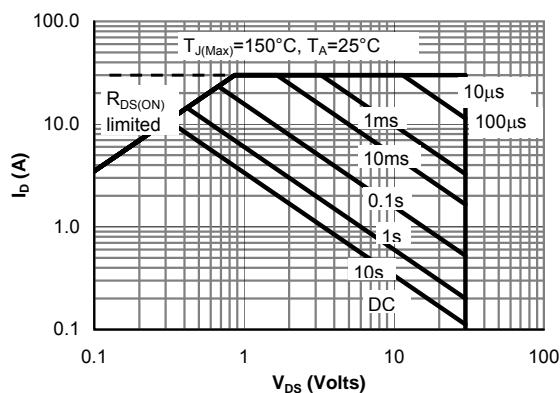
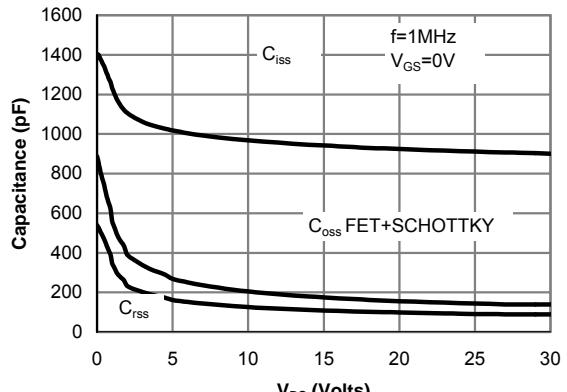
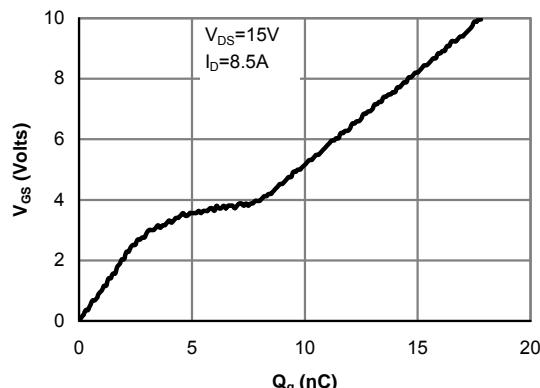








Figure 5: On resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics
(Note F)

Q1 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q2 Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu\text{A}, V_{\text{GS}}=0\text{V}$	30			V
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}}=24\text{V}, V_{\text{GS}}=0\text{V}$			1	μA
I_{GSS}	Gate-Body leakage current	$V_{\text{DS}}=0\text{V}, V_{\text{GS}}= \pm 20\text{V}$			5	
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{\text{DS}}=V_{\text{GS}}, I_D=250\mu\text{A}$	1	1.7	3	V
$I_{\text{D(ON)}}$	On state drain current	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=5\text{V}$	30			A
$R_{\text{DS(ON)}}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=10\text{V}, I_D=8.5\text{A}$		14.8	18	$\text{m}\Omega$
		$V_{\text{GS}}=4.5\text{V}, I_D=6\text{A}$	$T_J=125^\circ\text{C}$	22	27	
g_{FS}	Forward Transconductance	$V_{\text{DS}}=5\text{V}, I_D=8.5\text{A}$		23		S
V_{SD}	Diode+Schottky Forward Voltage	$I_S=1\text{A}$		0.75	1	V
I_S	Maximum Body-Diode+Schottky Continuous Current				3	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=15\text{V}, f=1\text{MHz}$		955	1250	pF
C_{oss}	Output Capacitance			145		pF
C_{rss}	Reverse Transfer Capacitance			112		pF
R_g	Gate resistance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=0\text{V}, f=1\text{MHz}$		0.5	0.85	Ω
SWITCHING PARAMETERS						
$Q_g(10\text{V})$	Total Gate Charge	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, I_D=8.5\text{A}$		17	24	nC
Q_g	Total Gate Charge			9	12	nC
Q_{gs}	Gate Source Charge			3.4		nC
Q_{gd}	Gate Drain Charge			4.7		nC
$t_{\text{D(on)}}$	Turn-On Delay Time	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=15\text{V}, R_L=1.8\Omega, R_{\text{GEN}}=3\Omega$		5	6.5	ns
t_r	Turn-On Rise Time			6	7.5	ns
$t_{\text{D(off)}}$	Turn-Off Delay Time			19	25	ns
t_f	Turn-Off Fall Time			4.5	6	ns
t_{rr}	Body Diode Reverse Recovery Time	$I_F=8.5\text{A}, dI/dt=100\text{A}/\mu\text{s}$		16.7	21	ns
Q_{rr}	Body Diode Reverse Recovery Charge	$I_F=8.5\text{A}, dI/dt=100\text{A}/\mu\text{s}$		6.7	10	nC

A: The value of R_{QJA} is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The value in any given application depends on the user's specific board design. The current rating is based on the $t \leq 10\text{s}$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{QJA} is the sum of the thermal impedance from junction to lead R_{JUL} and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ\text{C}$. The SOA curve provides a single pulse rating.

Rev 0 : Aug 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Q2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

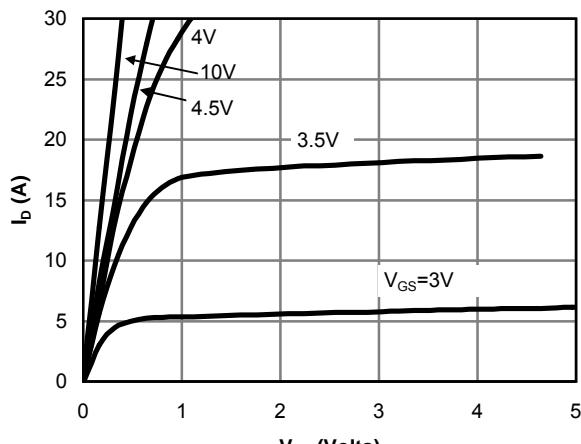


Fig 1: On-Region Characteristics

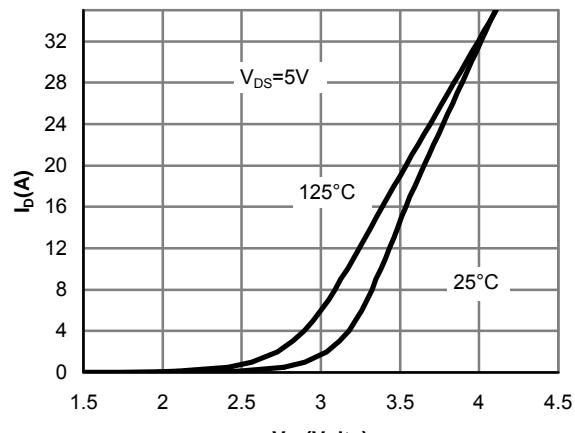


Figure 2: Transfer Characteristics

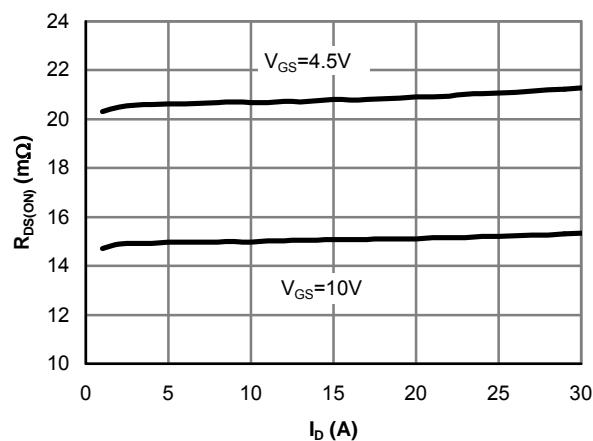


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

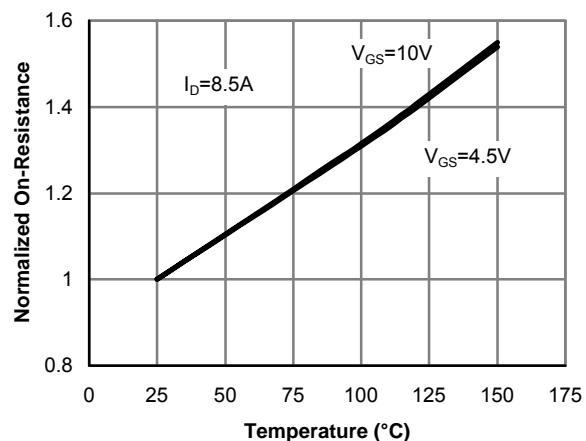


Figure 4: On-Resistance vs. Junction Temperature

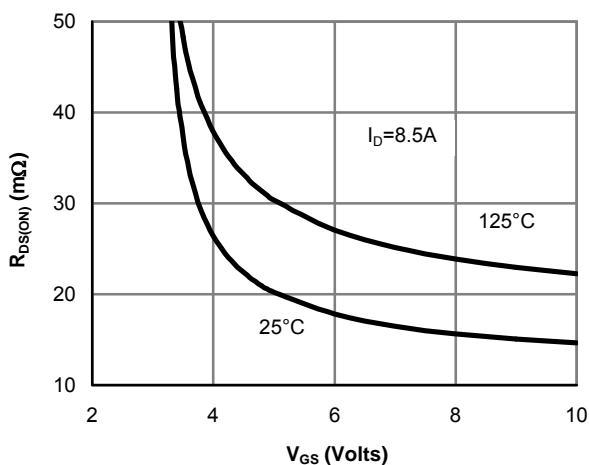


Figure 5: On-Resistance vs. Gate-Source Voltage

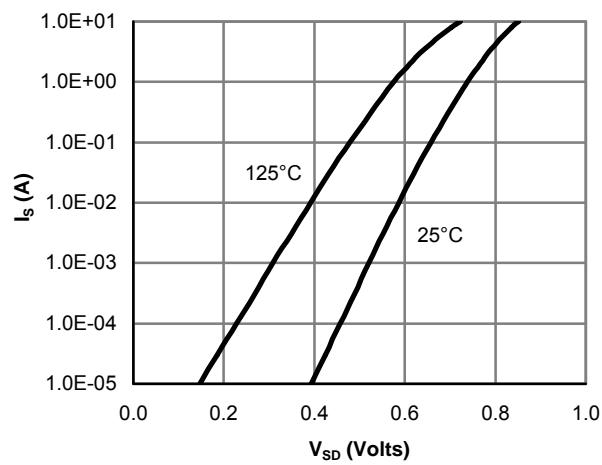
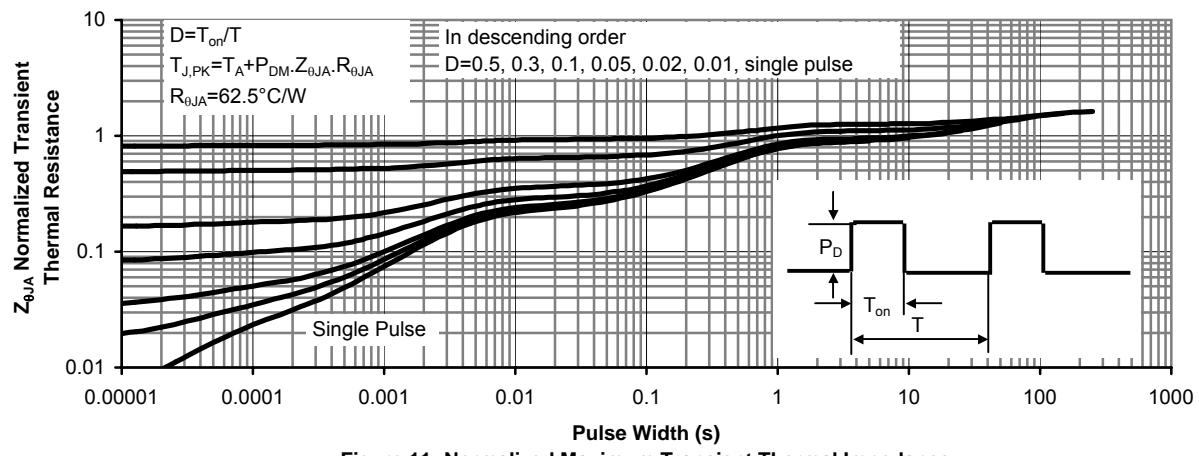
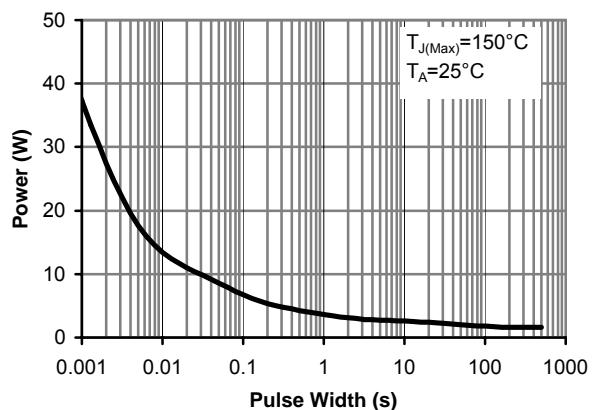
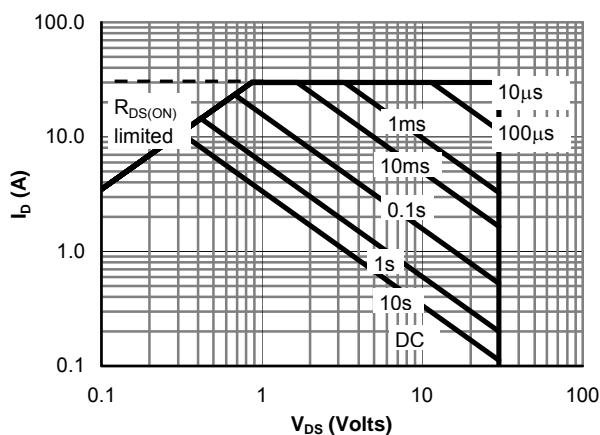
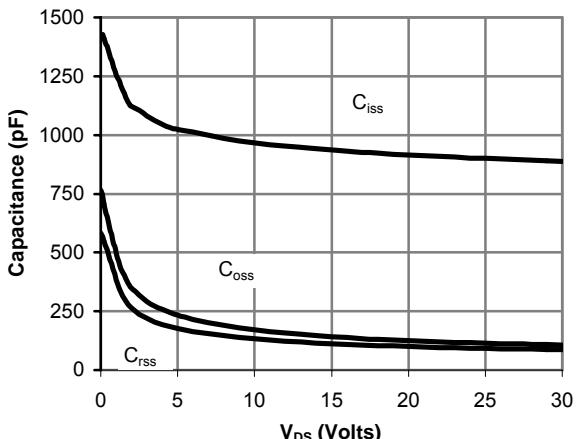
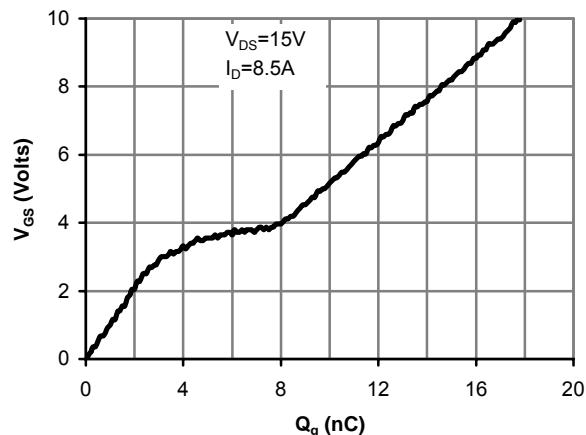







Figure 6: Body-Diode Characteristics

Q2 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

