

1.0A HIGH VOLTAGE SCHOTTKY BARRIER RECTIFIER

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- Ideally Suited for Automatic Assembly
- Low Power Loss, High Efficiency
- Surge Overload Rating to 50A Peak
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Application
- High Temperature Soldering: 260°C/10 Second at Terminal
- Plastic Material: UL Flammability Classification Rating 94V-0

SMB			
Dim	Min	Max	
Α	3.30	3.94	
В	4.06	4.57	
С	1.96	2.21	
D	0.15	0.31	
E	5.00	5.59	
G	0.10	0.20	
Н	0.76	1.52	
J	2.00	2.62	
All Dimensions in mm			

Mechanical Data

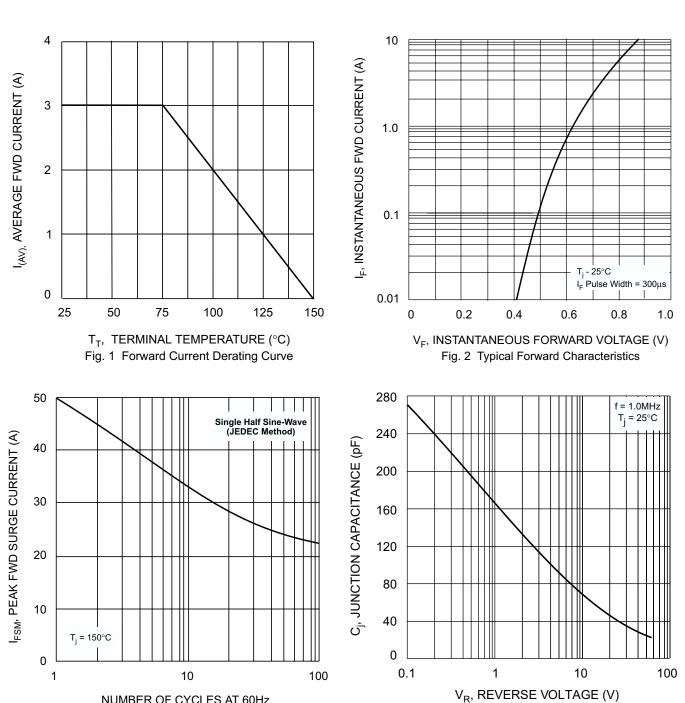
Case: SMB, Molded Plastic

 Terminals: Solder Plated Terminal -Solderable per MIL-STD-202, Method 208

Polarity: Cathode Band or Cathode Notch

Marking: B110LB and Date Code

• Weight: 0.093 grams (approx.)


Maximum Ratings and Electrical Characteristics @ TA = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	B1100LB	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
RMS Reverse Voltage	V _{R(RMS)}	70	V
Average Rectified Output Current $@T_T = 120^{\circ}C$ $@T_T = 100^{\circ}C$	lo	1.0 2.0	А
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	50	А
Forward Voltage @ I _F = 1.0A, T _A = 25°C	V_{FM}	0.75	V
Peak Reverse Current @ T _A = 25°C at Rated DC Blocking Voltage @ T _A = 100°C	I _{RM}	0.5 5.0	mA
Typical Junction Capacitance (Note 2)	Cj	100	pF
Typical Thermal Resistance Junction to Terminal (Note 1)	$R_{ heta JT}$	22	K/W
Operating and Storage Temperature Range	$T_{j,}T_{STG}$	-65 to +150	°C

Notes:

- 1. Valid provided that terminals are kept at ambient temperature.
- 2. Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

NUMBER OF CYCLES AT 60Hz Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

Fig. 4 Typical Junction Capacitance