

HIGH FREQUENCY NPN TRANSISTOR ARRAY

FEATURES

- TWO BUILT-IN DIFFERENTIAL AMPLIFIER CIRCUITS: (Each Transistor has f_T 9 GHz)
- OUTSTANDING h_{FE} LINEARITY
- TWO PACKAGE OPTIONS:
 - μPA102B:** Superior thermal dissipation due to studded 14-pin ceramic package
 - μPA102G:** Reduced circuit size due to 14-pin plastic SOP package for surface mounting

DESCRIPTION AND APPLICATIONS

The μPA102 is a user configurable Silicon bipolar transistor array consisting of two separate differential amplifiers. It is available in a surface mount (14-pin plastic SOP) package and a 14-pin ceramic package. Typical applications include: pulse pattern generators, oscillators, differential amps, high speed comparators, electro-optic signal processing up to 1 Gigabits/second, and advanced cellular phone systems.

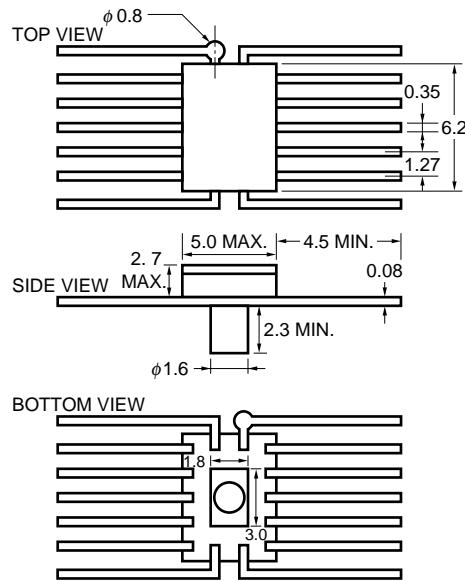
ORDERING INFORMATION

PART NUMBER	PACKAGE
μPA102B-E1	14-pin ceramic package
μPA102G-E1	14-pin plastic SOP (225 mil)

ABSOLUTE MAXIMUM RATINGS ($T_A = +25^\circ\text{C}$)

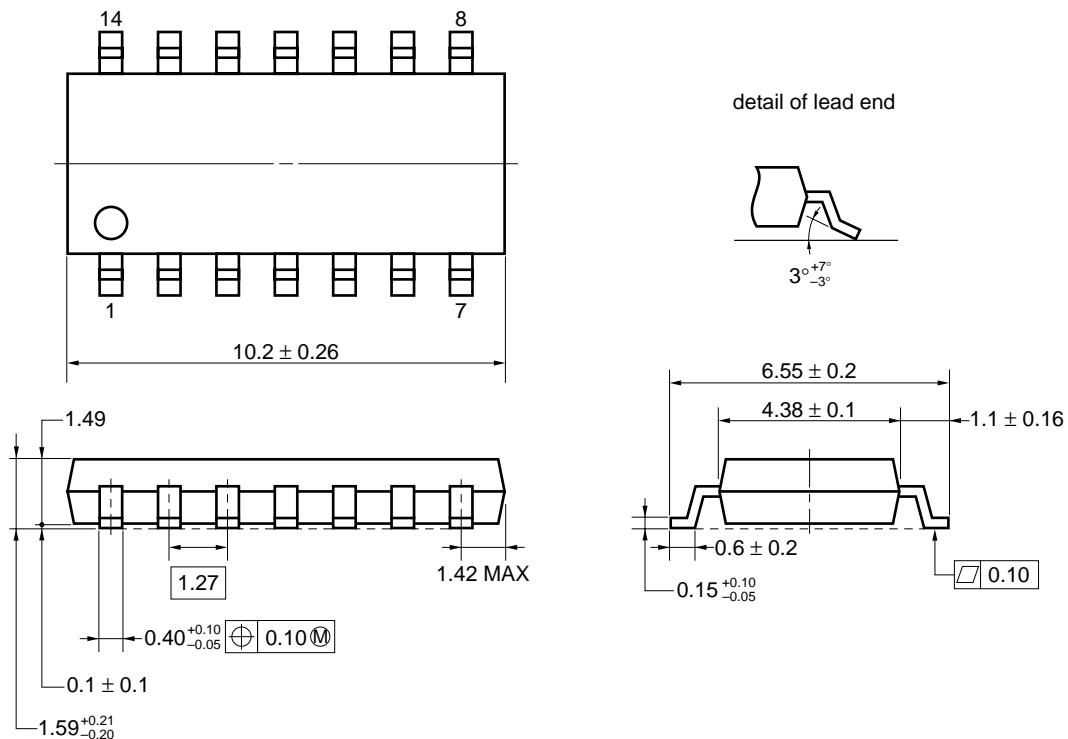
SYMBOLS	PARAMETERS	UNITS	RATINGS
V_{CBO}^*	Collector to Base Voltage	V	15
V_{CEO}^*	Collector to Emitter Voltage	V	6
V_{EBO}^*	Emitter to Base Voltage	V	2.5
I_C^*	Collector Current	mA	40
P_T	Power Dissipation μPA102B μPA102G	mW mW	650 350
T_J	Junction Temperature μPA102B μPA102G	°C °C	200 125
T_{STG}	Storage Temperature μPA102B μPA102G	°C °C	-55 to +200 -55 to +125

* Absolute maximum ratings for each transistor.


Caution electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (UNIT: mm)

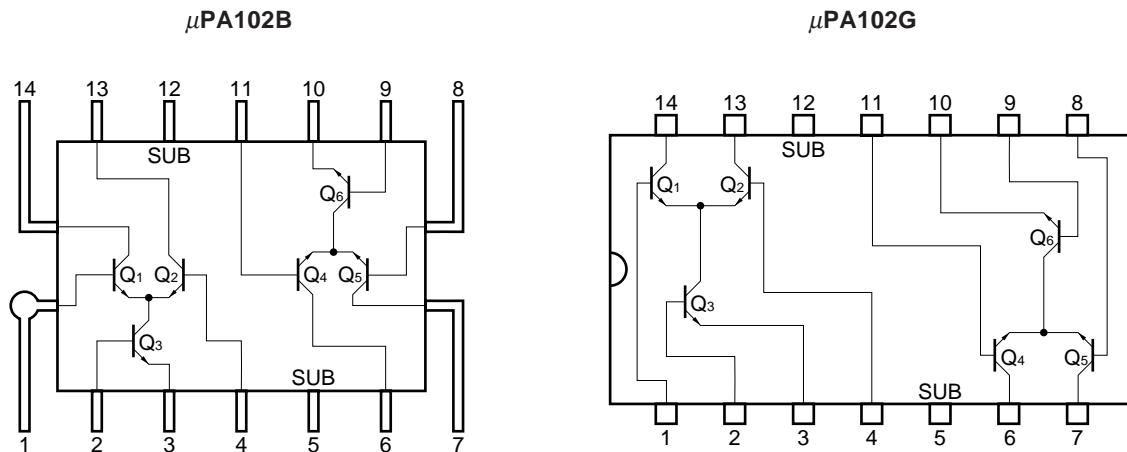

μPA102B

14 PIN CERAMIC PACKAGE

μPA102G

★ 14 PIN PLASTIC SOP (225 mil)

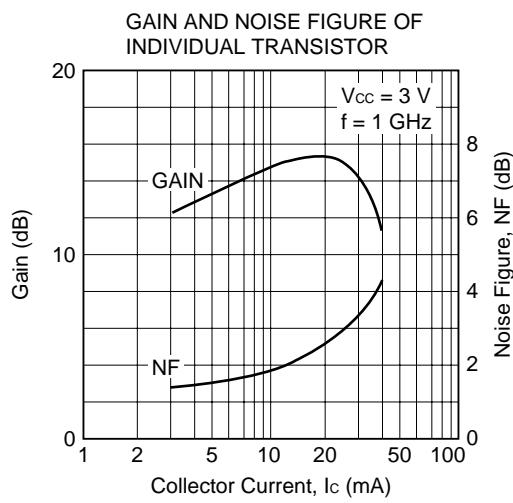
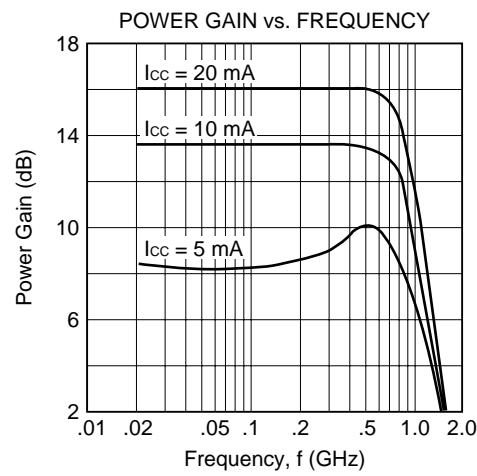
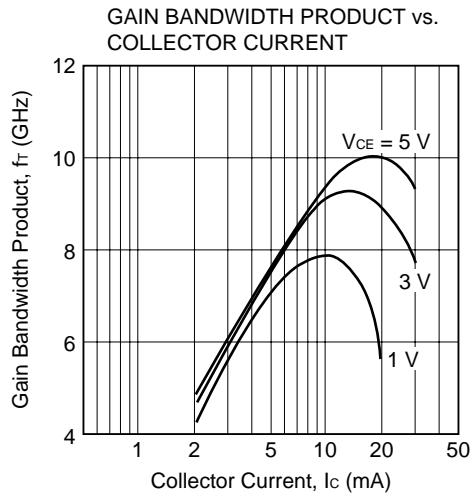
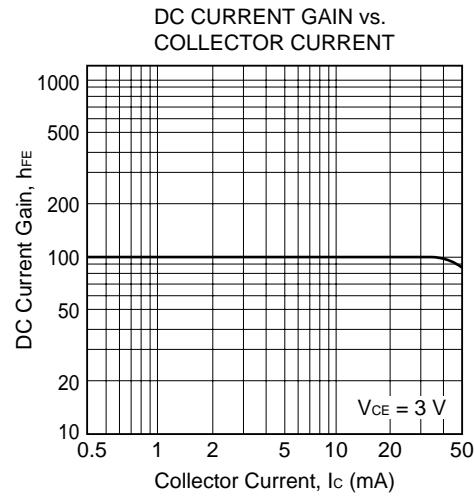
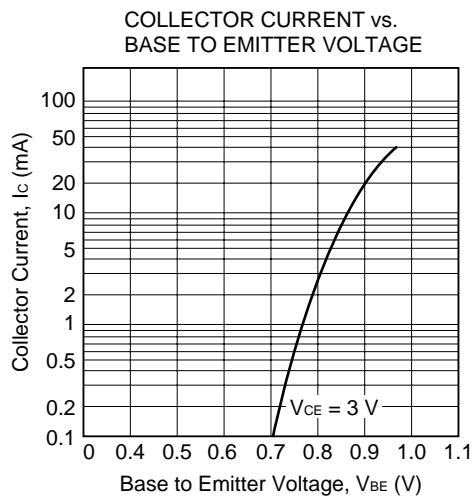
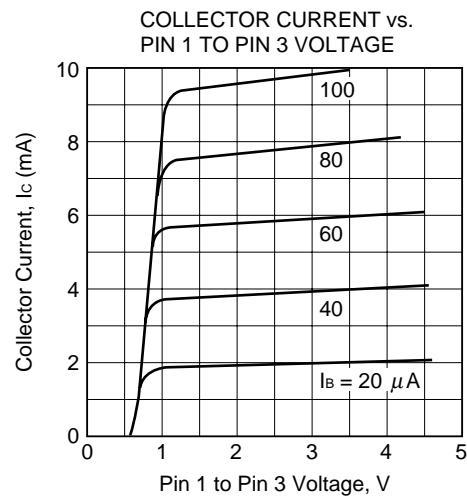
NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.


See connection diagram for description of leads.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $T_A = +25^\circ\text{C}$ μPA102B , μPA102G common)


SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN.	TYP.	MAX.
I_{CBO}	Collector Cutoff Current at $V_{CB} = 5$ V, $I_E = 0$ (Q1, Q2, Q4, Q5)	μA			1.0
I_{EBO}	Emitter Cutoff Current at $V_{EB} = 1$ V, $I_C = 0$ (Q3, Q6)	μA			1.0
h_{FE}	Direct Current Amplification at $V_{CE} = 3$ V, $I_C = 1$ mA (Q3, Q6)		40	100	250
h_{FE1}/h_{FE2}	Direct Current Amplification Ratio at $V_{CE} = 3$ V, $I_C = 1$ mA, (Q3, Q6)		0.9	1.0	1.1
C_{CB}	Collector to Base Capacitance at $V_{CB} = 3$ V, $f = 1$ MHz (Q1, Q2, Q4, Q5)	pF		0.9	1.8
C_{EB}	Emitter to Base Capacitance at $V_{EB} = 0$, $f = 1$ MHz (Q3, Q6)	pF		1.4	2.8
C_{CS}	Collector/Substrate Capacitance at $V_{CS} = 3$ V, $f = 1$ MHz (Q1, Q2, Q4, Q5)	pF		1.4	2.8
f_T	Gain Bandwidth Product* at $V_{CE} = 3$ V, $I_C = 10$ mA	GHz		9.0	

* Measured by installing a single transistor in a Micro-X package; the value shown is a reference value.







CONNECTION DIAGRAM (Top View)

TEST CIRCUIT SCHEMATIC* (For Electrical Characteristics Measurements excluding fr)

* See performance characteristics for voltage.

TYPICAL PERFORMANCE CHARACTERISTICS ($T_A = +25^\circ\text{C}$)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
- (3) Design circuits connected Sub pin to the lowest voltage to prevent latch-up.
- (4) Design circuits as each pin voltage difference within 15 V maximum.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

μPA102G

Soldering process	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Package peak temperature: 235 °C, Hour: within 30 s. (more than 210 °C), Time: 2 times, Limited days: no. <small>Note</small>	IR35-00-2
VPS	Package peak temperature: 215 °C, Hour: within 40 s. (more than 200 °C), Time: 2 times, Limited days: no. <small>Note</small>	VP15-00-2
Wave soldering	Soldering tub temperature: less than 260 °C, Hour: within 10 s. Time: 1 time, Limited days: no. <small>Note</small>	WS60-00-1
Pin part heating	Pin area temperature: less than 300 °C, Hour: within 3 s./pin Limited days: no. <small>Note</small>	

μPA102B

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 10 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit*: None	
Partial heating method	Terminal temperature: 260 °C or below, Flow time: 10 seconds or below, Exposure limit*: None	

Note It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- **The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.**
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.