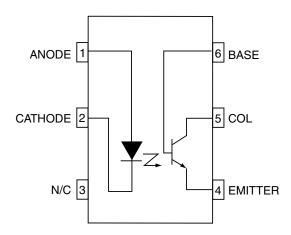


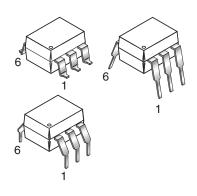
October 2007

H11AG1M Phototransistor Optocoupler

Features

- High efficiency low degradation liquid epitaxial IRED
- Logic level compatible, input and output currents, with CMOS and LS/TTL
- High DC current transfer ratio at low input currents (as low as 200µA)
- Underwriters Laboratory (UL) recognized File #E90700, Volume 2
- IEC 60747-5-2 approved (ordering option V)


Applications


- CMOS driven solid state reliability
- Telephone ring detector
- Digital logic isolation

Description

The H11AG1M device consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled with a silicon phototransistor in a dual in-line package. This device provides the unique feature of the high current transfer ratio at both low output voltage and low input current. This makes it ideal for use in low power logic circuits, telecommunications equipment and portable electronics isolation applications.

Schematic

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Units	
TOTAL DEVI	CE			
T _{STG}	Storage Temperature	-55 to +150	°C	
T _{OPR}	Operating Temperature	-40 to +100	°C	
T _{SOL}	Lead Solder Temperature (Wave Solder)	260 for 10 sec	°C	
P _D	Total Device Power Dissipation @ 25°C (LED plus detector)	260	mW	
	Derate Linearly From 25°C	3.5	mW/°C	
EMITTER				
I _F	Continuous Forward Current	50	mA	
V _R	Reverse Voltage	6	V	
I _F (pk)	Forward Current – Peak (1µs pulse, 300pps)	3.0	А	
P _D	LED Power Dissipation 25°C Ambient	75	mW	
	Derate Linearly From 25°C		mW/°C	
DETECTOR				
P _D	Detector Power Dissipation @ 25°C	150	mW	
	Derate Linearly from 25°C	2.0	mW/°C	
I _C	Continuous Collector Current	50	mA	

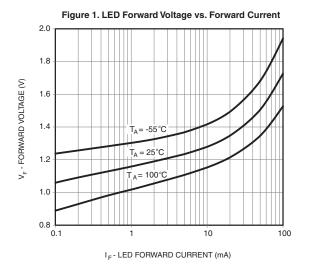
Electrical Characteristics (T_A = 25°C unless otherwise specified.)

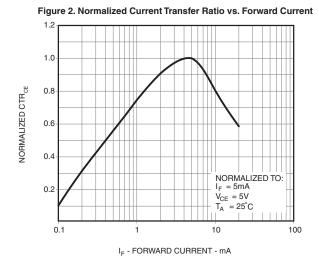
Individual Component Characteristics

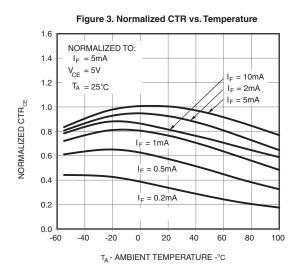
Symbol	Parameters	Test Conditions	Min.	Тур.*	Max.	Units
EMITTER						
V _F	Input Forward Voltage	I _F = 1mA		1.25	1.5	V
I _R	Reverse Leakage Current	V _R = 5V, T _A = 25°C			10	μA
CJ	Capacitance V = 0, f = 1.0MHz				100	pF
DETECTO	R			1		
BV _{CEO}	Breakdown Voltage, Collector to Emitter	I _C = 1.0mA, I _F = 0	30			V
BV _{CBO}	Collector to Base	$I_C = 100 \mu A, I_F = 0$	70			V
BV _{ECO}	Emitter to Collector	I _C = 100μA, I _F = 0	7			V
I _{CEO}	Leakage Current, Collector to Emitter	V _{CE} = 10V, I _F = 0		5	10	μA
C _{CE}	Capacitance	V _{CE} = 10V, f = 1MHz		10		pF
	1	1				

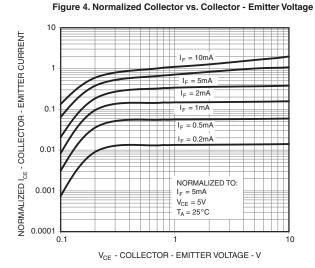
^{*}Typical values at $T_A = 25$ °C.

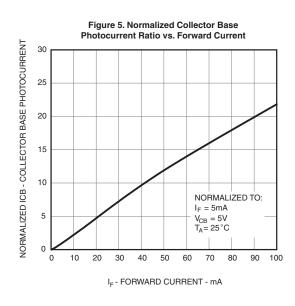
Isolation Characteristics

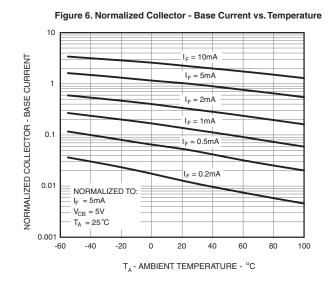

Symbol	Parameter	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	f = 60Hz, t = 1 sec.	7500			V _{AC} PEAK
R _{ISO}	Isolation Resistance	V _{I-O} = 500VDC, T _A = 25°C	10 ¹¹			Ω

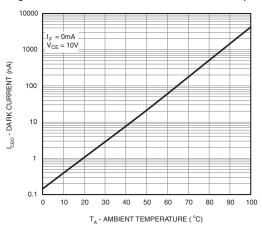

Transfer Characteristics ($T_A = 25$ °C Unless otherwise specified.)

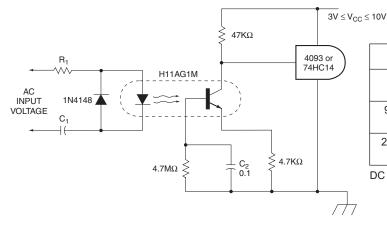

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Units
DC CHARAC	DC CHARACTERISTICS					
CTR	Current Transfer Ratio	I _F = 1mA, V _{CE} = 5V	300			%
		I _F = 1mA, V _{CE} = 0.6V	100			
		I _F = 0.2mA, V _{CE} = 1.5V	100			
V _{CE(SAT)}	Saturation Voltage	$I_F = 2.0 \text{mA}, I_C = 0.5 \text{mA}$.40	V
AC CHARACTERISTICS						
Non-Saturated Switching Times						
t _{on}	Turn-On Time	$R_L = 100\Omega, I_F = 1 \text{mA}, V_{CC} = 5 \text{V}$		5		μs
t _{off}	Turn-Off Time	$R_L = 100\Omega$, $I_F = 1mA$, $V_{CC} = 5V$		5		μs


^{*}Typical values at $T_A = 25$ °C


Typical Performance Curves







Typical Performance Curves (Continued)

Figure 7. Collector-Emitter Dark Current vs. Ambient Temperature

Input	R1	C1	Z
40-90 VRMS	75K	0.1µF	109K
20Hz	1/10W	100V	
95-135 VRMS	180K	12 ηF	285K
60Hz	1/10W	200 V	
200-280 VRMS	390K	6.80 ηF	550K
50/60Hz	1/4W	400 V	

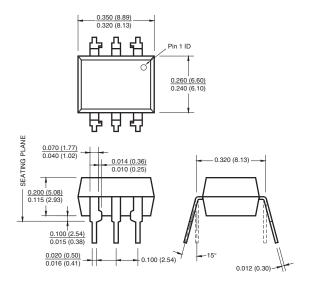
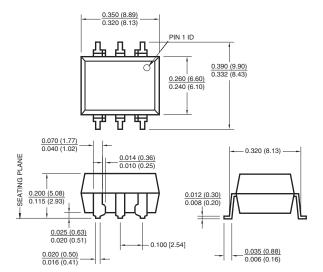
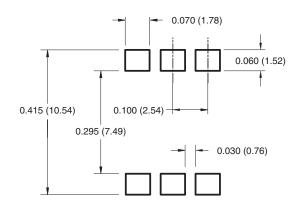

DC component of input voltage is ignored due to C1

Figure 8. Telephone Ring Detector/A.C. Line CMOS Input Isolator


The H11AG1M uses less input power than the neon bulb traditionally used to monitor telephone and line voltages. Additionally, response time can be tailored to ignore telephone dial tap, switching transients and other undesired signals by modifying the value of C2. The high impedance to line voltage also can simply board layout spacing requirements.

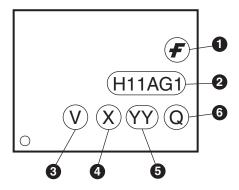
Package Dimensions

Through Hole


Surface Mount

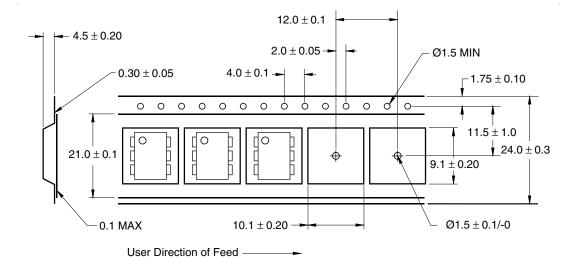
0.4" Lead Spacing

Recommended Pay Layout for Surface Mount Leadform


Note:

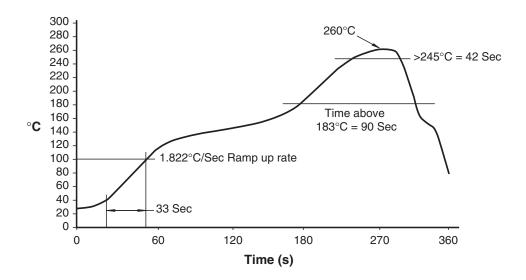
All dimensions are in inches (millimeters)

Ordering Information


Suffix Example		Option		
No Suffix H11AG1M		Standard Through Hole Device (50 units per tube)		
S	H11AG1SM	Surface Mount Lead Bend		
SR2 H11AG1SR2M		Surface Mount; Tape and Reel (1,000 units per reel)		
T H11AG1TM		0.4" Lead Spacing		
V H11AG1VM		VDE 0884		
TV H11AG1TVM		VDE 0884, 0.4" Lead Spacing		
SV H11AG1SVM		VDE 0884, Surface Mount		
SR2V H11AG1SR2VM		VDE 0884, Surface Mount, Tape & Reel (1,000 units per reel)		

Marking Information

Definiti	Definitions			
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '7'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			


Tape Dimensions

Note:

All dimensions are in inches (millimeters)

Reflow Soldering Profile

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SuperSOT™-8 Green FPS™ Power247® POWEREDGE® Build it Now™ Green FPS™ e-Series™ SyncFET™ Power-SPM™ The Power Franchise® CorePLUS™ GTO™ p wer PowerTrench® CROSSVOLT™ i-Lo™ Programmable Active Droop™ CTL™ IntelliMAX™ Current Transfer Logic™ QFET[®] TinyBoost™ ISOPLANAR™ EcoSPARK® TinyBuck™ QSTM MegaBuck™ TinyLogic[®] QT Optoelectronics™ MICROCOUPLER™ $\mathsf{Fairchild}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$ Quiet Series™ TINYOPTO™ MicroFET™ TinyPower™ RapidConfigure™ Fairchild Semiconductor® MicroPak™ TinyPWM™ SMART START™ FACT Quiet Series™ MillerDrive™ TinyWire™ SPM[®] **FACT**® Motion-SPM™ FAST® OPTOLOGIC® STEALTH™ μSerDes™ SuperFET™ UHC® OPTOPLANAR® FastvCore™ UniFET™ FPS™ SuperSOT™-3 $\mathsf{FRFET}^{\mathbb{R}}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SuperSOT™-6

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

PDP-SPM™

Power220®

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 VCX^{TM}

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev I31