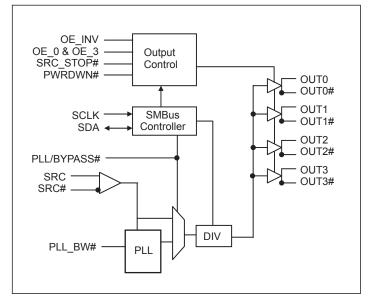
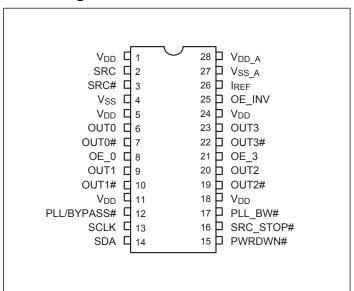


1:4 Clock Driver for Intel PCle® 3.0 Chipsets

Features


- → Phase jitter filter for PCIe 3.0 application
- → Four Pairs of Differential Clocks
- → Low skew < 50ps
- → Low jitter < 50ps cycle-to-cycle
- → < 1 ps additive RMS phase jitter
- → Output Enable for all outputs
- → Outputs tristate control via SMBus
- → Programmable PLL Bandwidth
- → 100 MHz PLL Mode operation
- → 100 400 MHz Bypass Mode operation
- → 3.3V Operation
- → Packaging (Pb-free and Green):
 - -28-Pin SSOP (H28)
 - -28-Pin TSSOP (L28)

Description


The PI6C20400B is a PCIe 3.0 compliant high-speed, low-noise differential clock buffer designed to be companion to PCIe 3.0 clock generator. It is backward compatible with PCIe 1.0 and 2.0 specification.

The device distributes the differential SRC clock from PCIe 3.0 clock generator to four differential pairs of clock outputs either with or without PLL. The clock outputs are controlled by input selection of SRC_STOP#, PWRDWN# and SMBus, SCLK and SDA. When input of either SRC_STOP# or PWRDWN# is low, the output clocks are Tristated. When PWRDWN# is low, the SDA and SCLK inputs must be Tri-stated.

Block Diagram

Pin Configuration

Pinout Table

Pin#	Pin Name	Type	Description
2, 3	SRC & SRC#	Input	0.7V Differential SRC input from PI6C410 clock synthesizer
			3.3V LVTTL input for enabling outputs, active high.
8, 21	OE_0 & OE_3	Input	OE_0 for OUT0 / OUT0#
			OE_3 for OUT3 / OUT3#
			3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN#
25	OE_INV	Input	pins.
		_	When $0 = \text{same stage}$
			When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.
6, 7, 9, 10, 19, 20, 22, 23	OUT[0:3] & OUT[0:3]#	Output	0.7V Differential outputs
12	PLL/BYPASS#	Input	3.3V LVTTL input for selecting fan-out of PLL operation.
13	SCLK	Input	SMBus compatible SCLOCK input
14	SDA	I/O	SMBus compatible SDATA
26	IREF	Input	External resistor connection to set the differential output current
16	SRC_STOP#	Input	3.3V LVTTL input for SRC stop, active low
17	PLL_BW#	Input	3.3V LVTTL input for selecting the PLL bandwidth
15	PWRDWN#	Input	3.3V LVTTL input for Power Down operation, active low
1, 5, 11, 18, 24	V _{DD}	Power	3.3V Power Supply for Outputs
4	VSS	Ground	Ground for Outputs
27	VSS_A	Ground	Ground for PLL
28	VDD_A	Power	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

2

Notes:

 $1. \quad \text{Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.} \\$

Data Byte 0: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Source Pin
	Outputs Mode				
0	0 = Divide by 2	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
	1 = Normal				
	PLL/BYPASS#				
1	0 = Fanout	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
	1 = PLL				
	PLL Bandwidth				
2	0 = High Bandwidth,	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
	1 = Low Bandwidth				
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
	SRC_STOP#				
6	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
	1 = Tristate				
	PWRDWN#				
7	0 = Driven when stopped	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
	1 = Tristate				

Data Byte 1: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 2: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
	assertion of SRC_STOP#				
2	0 = Free running	RW	0 = Free running	OUT1, OUT1#	NA
	1 = Stopped with SRC_Stop#				
3	Reserved				NA
4	Reserved				NA
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
	assertion of SRC_STOP#				
6	0 = Free running	RW	0 = Free running	OUT3, OUT3#	NA
	1 = Stopped with SRC_Stop#				
7	Reserved				NA

Data Byte 3: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	Reserved	RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 3: Control Register

Bit	Descriptions	Type	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Pericom ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	Low	0	$I_{REF} \times 6$ or Float	Low

Power Down (PWRDWN# assertion)

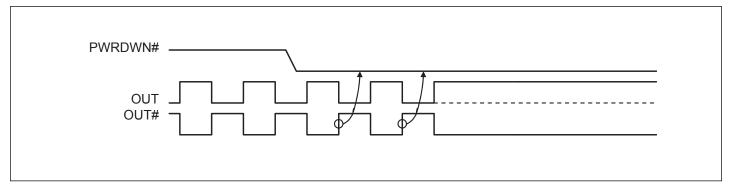


Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

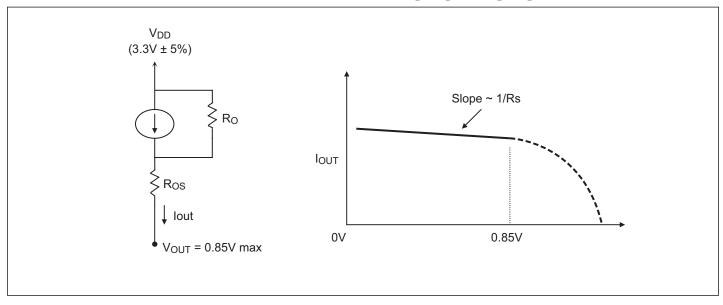


Figure 2. Power down de-assert sequence

Current-mode output buffer characteristics of OUT[0:3], OUT[0:3]#

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R _o	3000Ω	N/A
R _{os}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I_{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32 \text{mA}$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% $I_{NOMINAL}$

Note:

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{он} @ Z
100Ω	$R_{REF} = 475\Omega \ 1\%,$	I 6 I	0.71/ 0.50
(100 Ω differential ≈ 15% coupling ratio)	$I_{REF} = 2.32 \text{mA}$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

^{1.} $\rm I_{NOMINAL}$ refers to the expected current based on the configuration of the device.

Absolute Maximum Ratings (Over operating free-air temperature range)

Symbol	Parameters	Min.	Max.	Units
$V_{_{\mathrm{DD_A}}}$	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
$V_{_{\mathrm{IH}}}$	Input High Voltage		4.6	V
$V_{_{\mathrm{IL}}}$	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Note:

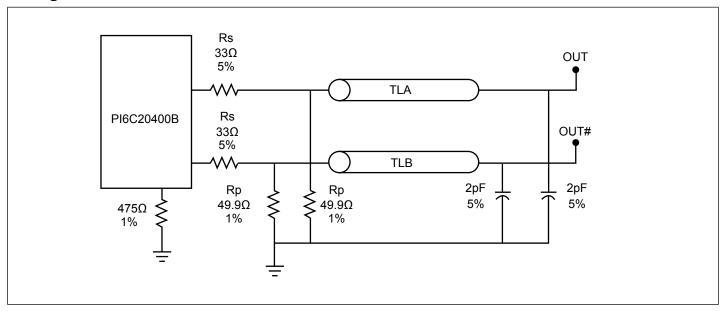
1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Electrical Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD_A} = 3.3 \pm 5\%$)

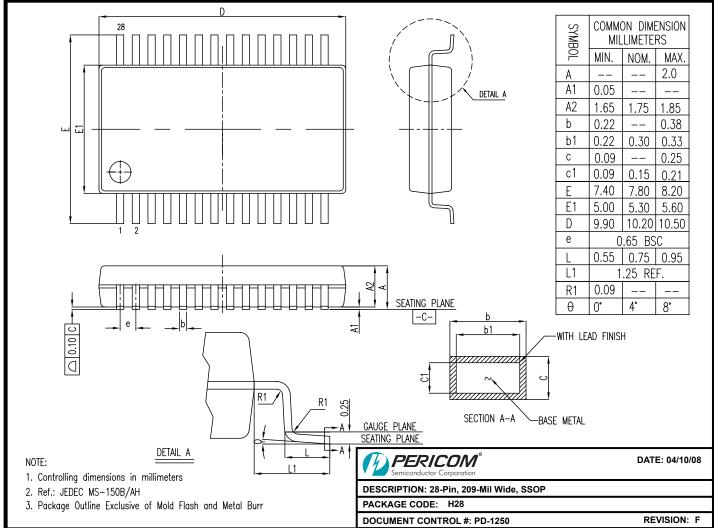
Symbol	Parameters	Condition	Min.	Max.	Units	
V _{DD_A}	3.3V Core Supply Voltage		3.135	3.465		
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	V	
V _{IH}	3.3V Input High Voltage	$V_{ m DD}$ 2.0		$V_{DD} + 0.3$	v	
$V_{_{\rm IL}}$	3.3V Input Low Voltage		$V_{SS} - 0.3$	0.8		
$I_{_{\rm IL}}$	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1mA$	2.4		V	
V _{OL}	3.3V Output Low Voltage	$I_{OL} = 1 \text{mA}$		0.4	V	
I _{OH}	Output High Current	$I_{OH} = 6 \times I_{REF}$	12.2		4	
		$I_{REF} = 2.32 \text{mA}$		15.6	mA	
C _{IN}	Input Pin Capacitance		3	5	Г	
C _{OUT}	Output Pin Capacitance			6	pF	
$L_{_{\mathrm{PIN}}}$	Pin Inductance			7	nH	
I _{DD(BYPASS)}	Power Supply Current (PLL Bypass)	$V_{DD} = 3.465V, F_{CPU} = 100MHz$		90		
I _{DD}	D 0 1 0 1	$V_{\rm DD} = 3.465 V$	Bypass mode	100	mA	
	Power Supply Current	$F_{CPU} = 100MHz$	PLL mode	130		
I _{ss}	Power Down Current	Driven outputs		40		
I _{ss}	Power Down Current	Tristate outputs		12		
T _A	Ambient Temperature		-40	85	°C	

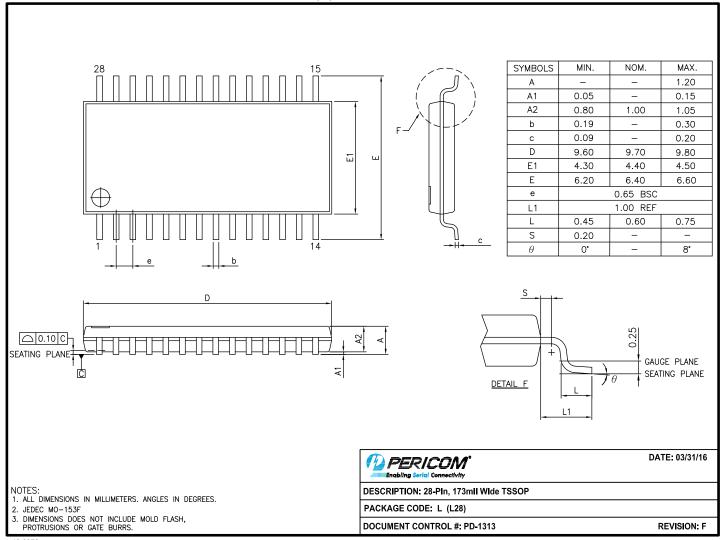
AC Switching Characteristics ($V_{DD} = 3.3 \pm 5\%$, $V_{DD_A} = 3.3 \pm 5\%$)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units	
F_{in}	PLL Mode		95		105	MHz	
	Bypass Mode		100		400	MHz	
T_{rise}/T_{fall}^{2}	Rise and Fall Time (measured between 0.175V to 0.525V)		175		700	ps	
DT _{rise} /DT _{fall} ²	Rise and Fall Time Variation				125	ps	
T_{pd}	PLL Mode				±250	ps	
	Non-PLL Mode		2.5		6.5	ns	
T _{jitter} ^{3, 4}	Cycle – Cycle Jitter				50	ps	
V_{HIGH}^{2}	Voltage High including overshoot		660		1150	mV	
V_{LOW}^{-2}	Voltage Low including undershoot		-300			mV	
V_{cross}^{-2}	Absolute crossing point voltages		250		550	mV	
DV _{cross} ²	Total Variation of Vcross over all edges				140	mV	
T_{DC}^{-3}	Duty Cycle		45		55	%	
t _{jphPCIeG1}	Phase Jitter, PLL Mode	PCIe Gen1		30	86	ps (p-p)	
t _{jphPCIeG2}		PCIE_2_0_8MHz_1_5M_H3_ STEP, Low Freq.		0.7	3	ps (rms)	
		PCIE_2_0_8MHz_1_5M_H3_ STEP, High Freq.		2	3.1		
$\mathbf{t}_{\mathrm{jphPCIeG3}}$		PCIE_3_0_2MHz_5M_H3_ FIRST, Low Freq.		2	3		
		PCIE_3_0_2MHz_5M_H3_ FIRST, High Freq.		0.47	1		
$t_{jphPCIeG1}$		PCIe Gen1		0	0.001	ps (p-p)	
t _{jphPCIeG2}	Additive Phase Jitter, Bypass Mode	PCIE_2_0_8MHz_1_5M_H3_ FIRST, Low Freq.		0	0.001	ps (rms)	
		PCIE_2_0_8MHz_1_5M_H3_ FIRST, High Freq.		0	0.001		
t _{jphPCIeG3}		PCIE_3_0_2MHz_5M_H3_ FIRST, Low Freq.		0	0.001	ps (IIIIs)	
		PCIE_3_0_2MHz_5M_H3_ FIRST, High Freq.		0	0.001		


Notes:

- 1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.
- 2. Measurement taken from Single Ended waveform.
- 3. Measurement taken from Differential waveform.
- 4. Measurement taken using M1 data capture analysis tool.
- 5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter. $(T_{jadd} = \sqrt{(output\ jitter)^2 (input\ jitter)^2}$


Configuration Test Load Board Termination


Packaging Mechanical: 28-Pin SSOP (H)

Packaging Mechanical: 28-Pin TSSOP (L)

 $Note: For \ latest\ package\ info,\ please\ check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/pa$

Ordering Information(1-3)

Ordering Code	Package Code	Package Description
PI6C20400BHE	Н	28-pin, 209-mil wide (SSOP)
PI6C20400BHEX	Н	28-pin, 209-mil wide (SSOP), Tape & Reel
PI6C20400BLE	L	28-pin, 173-mil wide (TSSOP)
PI6C20400BLEX	L	28-pin, 173-mil wide (TSSOP), Tape & Reel

Notes:

- 1. IThermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

12

Copyright © 2016, Diodes Incorporated www.diodes.com