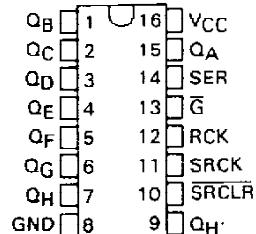


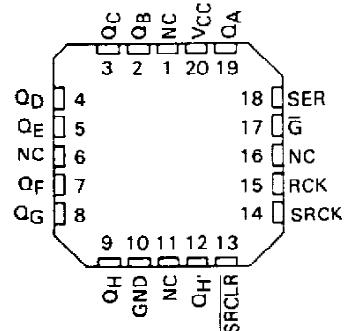
SN54LS595, SN54LS596, SN74LS595, SN74LS596 8-BIT SHIFT REGISTERS WITH OUTPUT LATCHES

SDLS006

D2634, JANUARY 1981 . REVISED MARCH 1988

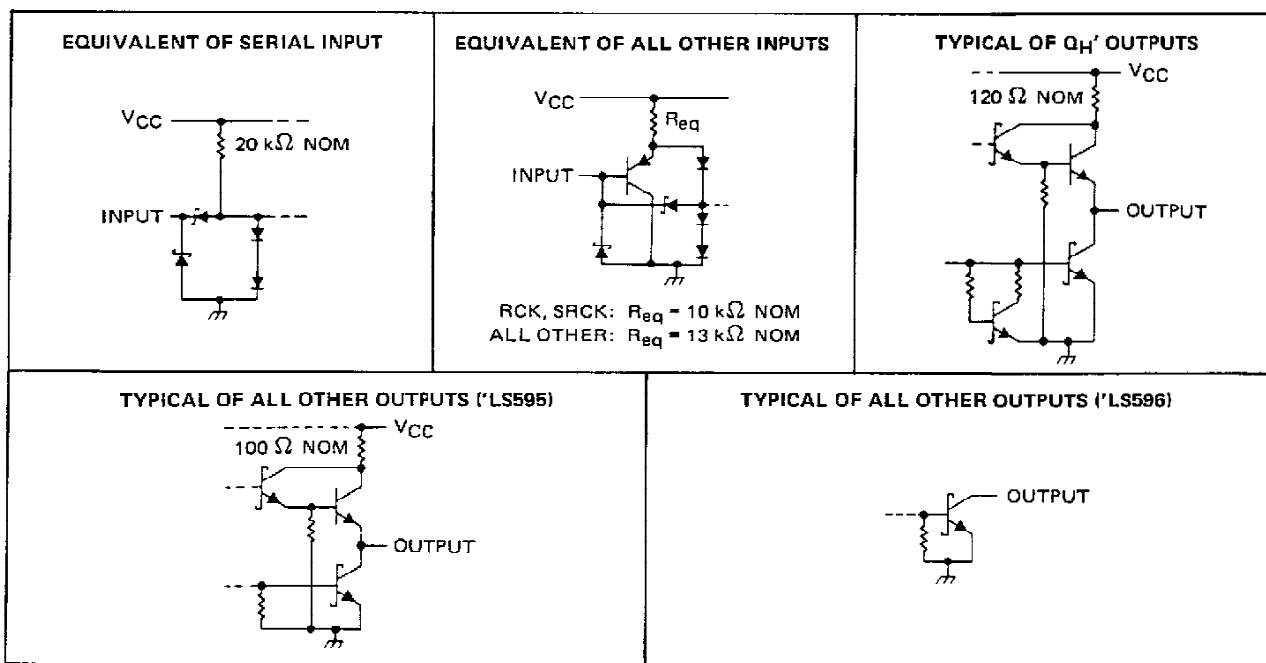

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- Choice of 3-State ('LS595) or Open-Collector ('LS596) Parallel Outputs
- Shift Register Has Direct Clear
- Accurate Shift Frequency: DC to 20 MHz

description


These devices each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state ('LS595) or open-collector ('LS596) outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output pins for cascading.

Both the shift register and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift register state will always be one clock pulse ahead of the storage register.

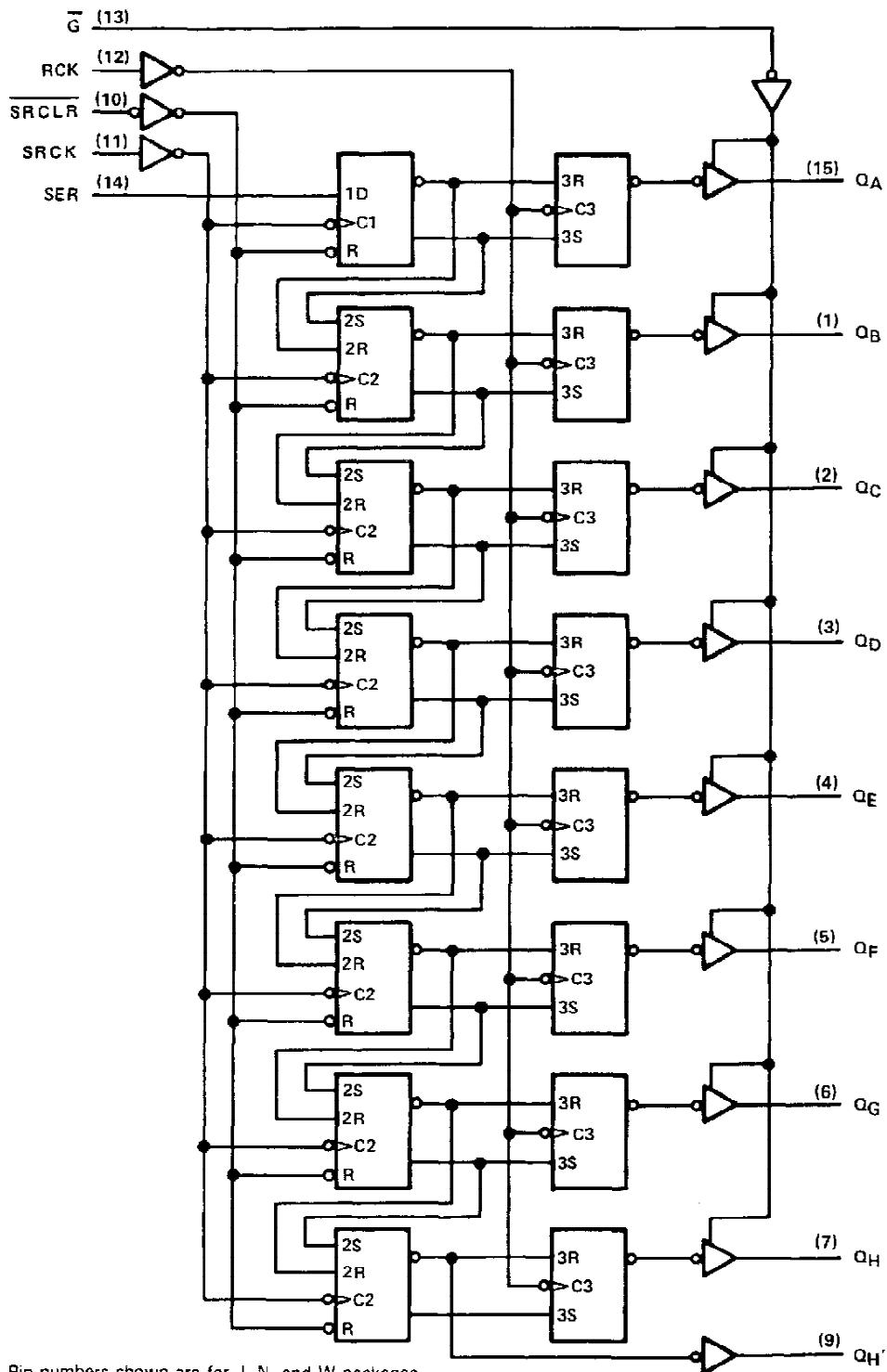
SN54LS595, SN54LS596 . . . J OR W PACKAGE
SN74LS595, SN74LS596 . . . N PACKAGE
(TOP VIEW)



SN54LS595, SN54LS596 . . . FK PACKAGE
(TOP VIEW)

NC - No internal connection

schematics of inputs and outputs

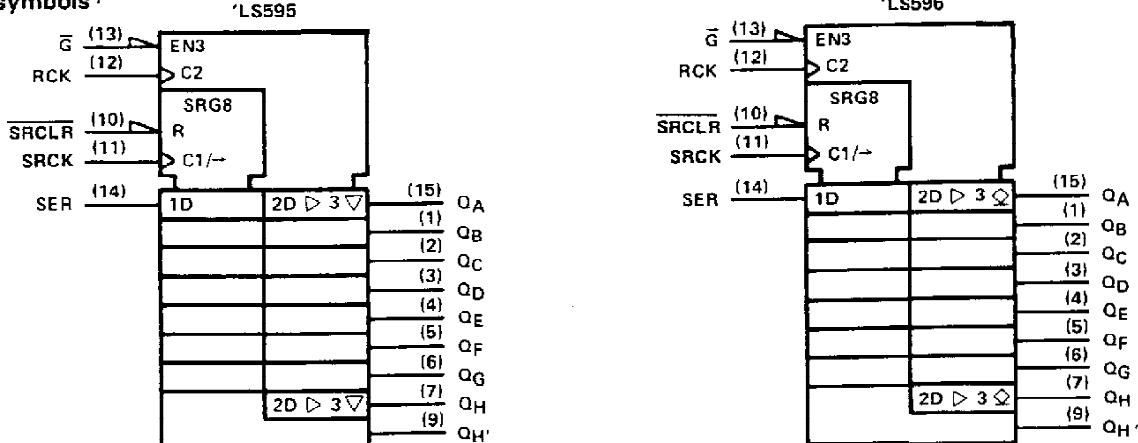

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TEXAS
INSTRUMENTS

POST OFFICE BOX 656012 • DALLAS, TEXAS 75265

SN54LS595, SN54LS596, SN74LS595, SN74LS596
8-BIT SHIFT REGISTERS WITH OUTPUT LATCHES

logic diagram (positive logic)



TEXAS
INSTRUMENTS

POST OFFICE BOX 556012 • DALLAS, TEXAS 75265

SN54LS595, SN54LS596, SN74LS595, SN74LS596 8-BIT SHIFT REGISTERS WITH OUTPUT LATCHES

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
Pin numbers shown are for J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)	7 V
Input voltage	7 V
Off-state output voltage	5.5 V
Operating free-air temperature range: SN54LS595, SN54LS596	-55°C to 125°C
SN74LS595, SN74LS596	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to the network ground terminal.

recommended operating conditions

		SN54LS'			SN74LS'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.7			0.8	V
V_{OH}	High-level output voltage	Q_A thru Q_H , 'LS596 only		5.5			5.5	V
I_{OH}	High-level output current	Q_H'		-1			-1	
		Q_A thru Q_H , 'LS595 only		-1			-2.6	mA
I_{OL}	Low-level output current	Q_H'		8			16	
		Q		12			24	mA
f_{SRCK}	Shift clock frequency	0	20	0	0	20	0	MHz
$t_{w(SRCK)}$	Duration of shift clock pulse	25			25			ns
$t_{w(RCK)}$	Duration of register clock pulse	20			20			ns
$t_{w(SRCLR)}$	Duration of shift clear pulse, low level	20			20			ns
t_{SU}	Setup time	$SRCLR$ inactive before $SRCK$ \uparrow		20			20	
		SER before $SRCK$ \uparrow		20			20	
		$SRCK$ \uparrow before RCK \uparrow (see Note 2)		40			40	
		$SRCLR$ low before RCK \uparrow		40			40	
t_h	Hold time	SER after $SRCK$ \uparrow		0			0	ns
T_A	Operating free-air temperature	-55		125	0		70	°C

NOTE 2: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together, in which case the storage register state will be one clock pulse behind the shift register.

TEXAS
INSTRUMENTS

POST OFFICE BOX 55012 • DALLAS, TEXAS 75265

SN54LS595, SN54LS596, SN74LS595, SN74LS596
8-BIT SHIFT REGISTERS WITH OUTPUT LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	SN54LS [*]			SN74LS [*]			UNIT
		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
V _{IK}	V _{CC} = MIN, I _I = -18 mA			-1.5			-1.5	V
V _{OH}	'LS595 Q	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX	I _{OH} = -1 mA	2.4	3.2			V
			I _{OH} = -2.6 mA			2.4	3.1	
	Q _H '		I _{OH} = -1 mA	2.4	3.2	2.4	3.2	
I _{OH}	'LS596 Q	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX, V _{OH} = 5.5 V			0.1		0.1	mA
V _{OL}	Q	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = MAX	I _{OL} = 12 mA	0.25	0.4	0.25	0.4	V
			I _{OL} = 24 mA			0.35	0.5	
	Q _H '		I _{OL} = 8 mA	0.25	0.4	0.25	0.4	
		I _{OL} = 16 mA			0.35	0.5		
I _{OZH}	'LS595 Q	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = MAX, V _{OH} = 2.7 V			20		20	μA
I _{OZL}	'LS595 Q	V _{CC} = MAX, V _{IH} = 2 V, V _{IL} = MAX, V _{OH} = 0.4 V			-20		-20	μA
I _I		V _{CC} = MAX, V _I = 7 V			0.1		0.1	mA
I _{IH}		V _{CC} = MAX, V _I = 2.7 V			20		20	μA
I _{IL}	SER	V _{CC} = MAX, V _I = 0.4 V			-0.4		-0.4	mA
	All others				-0.2		-0.2	
I _{OS} [§]	'LS595 Q	V _{CC} = MAX, V _O = 0 V			-30	-130	-30	mA
	Q _H '				-20	-100	-20	
I _{CCH}	'LS595	V _{CC} = MAX, All possible inputs grounded, All outputs open			33	50	33	mA
	'LS596				30	45	30	
I _{CCL}	'LS595				42	65	42	mA
	'LS596				36	55	36	
I _{CCZ}	'LS595				44	65	44	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

**SN54LS595, SN54LS596, SN74LS595, SN74LS596
8-BIT SHIFT REGISTERS WITH OUTPUT LATCHES**

switching characteristics, $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS595			'LS596			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
t_{PLH}	SRCK \uparrow	Q_H'	$R_L = 1\text{k}\Omega$, $C_L = 30\text{ pF}$	12	18		14	21		ns
t_{PHL}				17	25		20	30		ns
t_{PLH}	RCK \uparrow	Q_A thru Q_H	$R_L = 667\text{ }\Omega$, $C_L = 45\text{ pF}$	12	18		28	42		ns
t_{PHL}				24	35		24	35		ns
t_{PZH}	$\bar{G} \downarrow$	Q_A thru Q_H	$R_L = 667\text{ }\Omega$, $C_L = 45\text{ pF}$	20	30					ns
t_{PZL}				25	38					ns
t_{PHZ}	$\bar{G} \uparrow$	Q_A thru Q_H	$R_L = 667\text{ }\Omega$, $C_L = 5\text{ pF}$	20	30					ns
t_{PLZ}				25	38					ns
t_{PLH}	$\bar{G} \uparrow$	Q_A thru Q_H	$R_L = 667\text{ }\Omega$, $C_L = 45\text{ pF}$				40	60		ns
t_{PHL}	$\bar{G} \downarrow$	Q_A thru Q_H					25	38		ns
t_{PHL}	$\bar{SRCLR} \downarrow$	Q_H'	$R_L = 1\text{k}\Omega$, $C_L = 30\text{ pF}$	24	35		24	35		ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-86717012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962-86717012A SNJ54LS595FK	Samples
5962-8671701EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701EA SNJ54LS595J	Samples
5962-8671701EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701EA SNJ54LS595J	Samples
5962-8671701FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701FA SNJ54LS595W	Samples
5962-8671701FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701FA SNJ54LS595W	Samples
SN54LS595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS595J	Samples
SN54LS595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS595J	Samples
SN74LS595D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LS595DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS595	Samples
SN74LS595N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS595N	Samples
SN74LS595N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS595N	Samples
SN74LS595N3	OBsolete	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS595N3	OBsolete	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS595NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS595N	Samples
SN74LS595NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS595N	Samples
SN74LS596D	OBsolete	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74LS596D	OBsolete	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74LS596N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS596N	Samples
SN74LS596N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS596N	Samples
SN74LS596NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS596N	Samples
SN74LS596NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS596N	Samples
SNJ54LS595FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962-86717012A SNJ54LS595FK	Samples
SNJ54LS595FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962-86717012A SNJ54LS595FK	Samples
SNJ54LS595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701EA SNJ54LS595J	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS595J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701EA SNJ54LS595J	Samples
SNJ54LS595W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701FA SNJ54LS595W	Samples
SNJ54LS595W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8671701FA SNJ54LS595W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

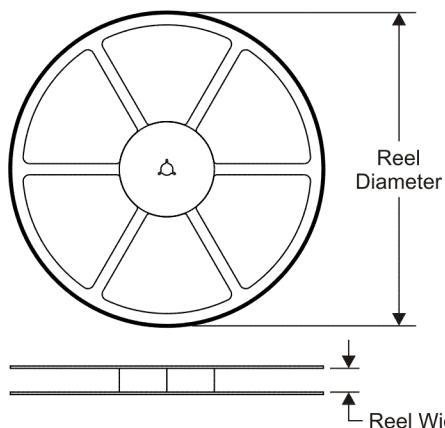
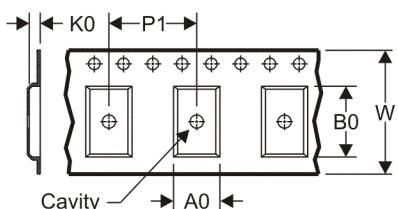
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

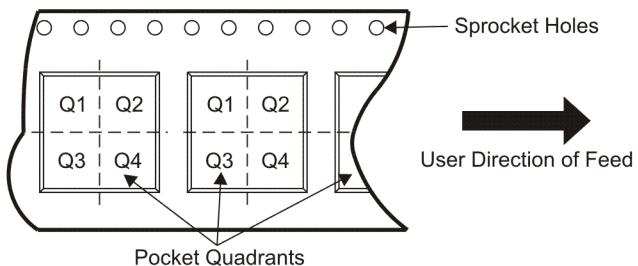
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

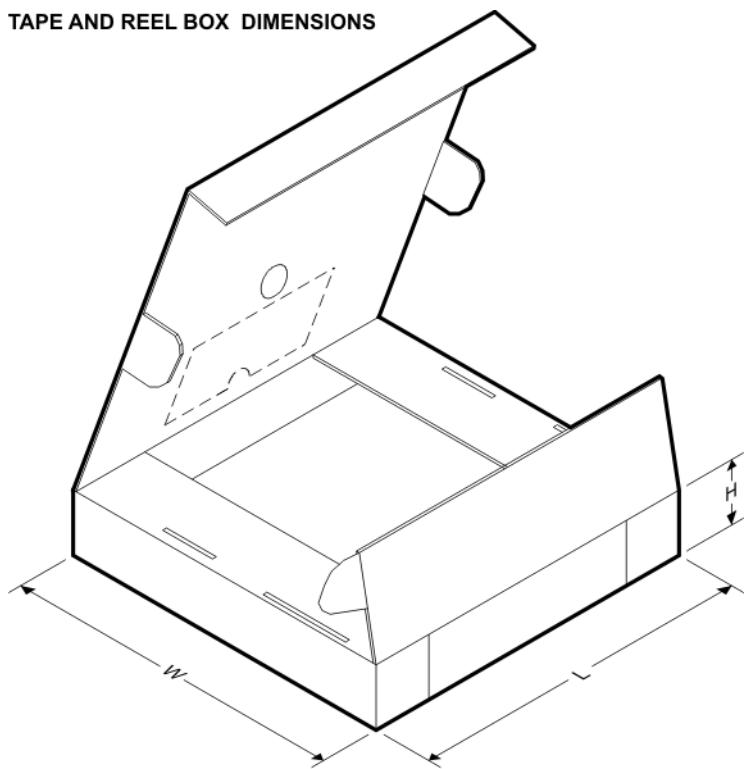



OTHER QUALIFIED VERSIONS OF SN54LS595, SN74LS595 :


- Catalog: [SN74LS595](#)
- Military: [SN54LS595](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

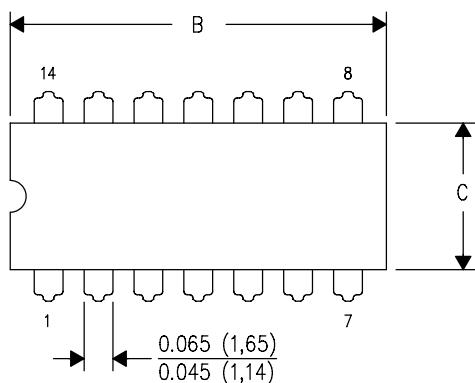
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

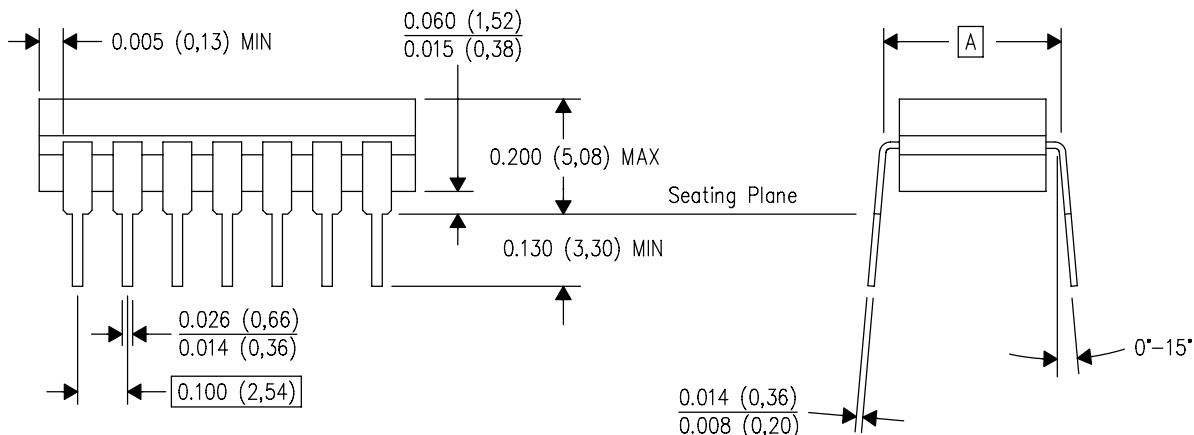
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS595DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

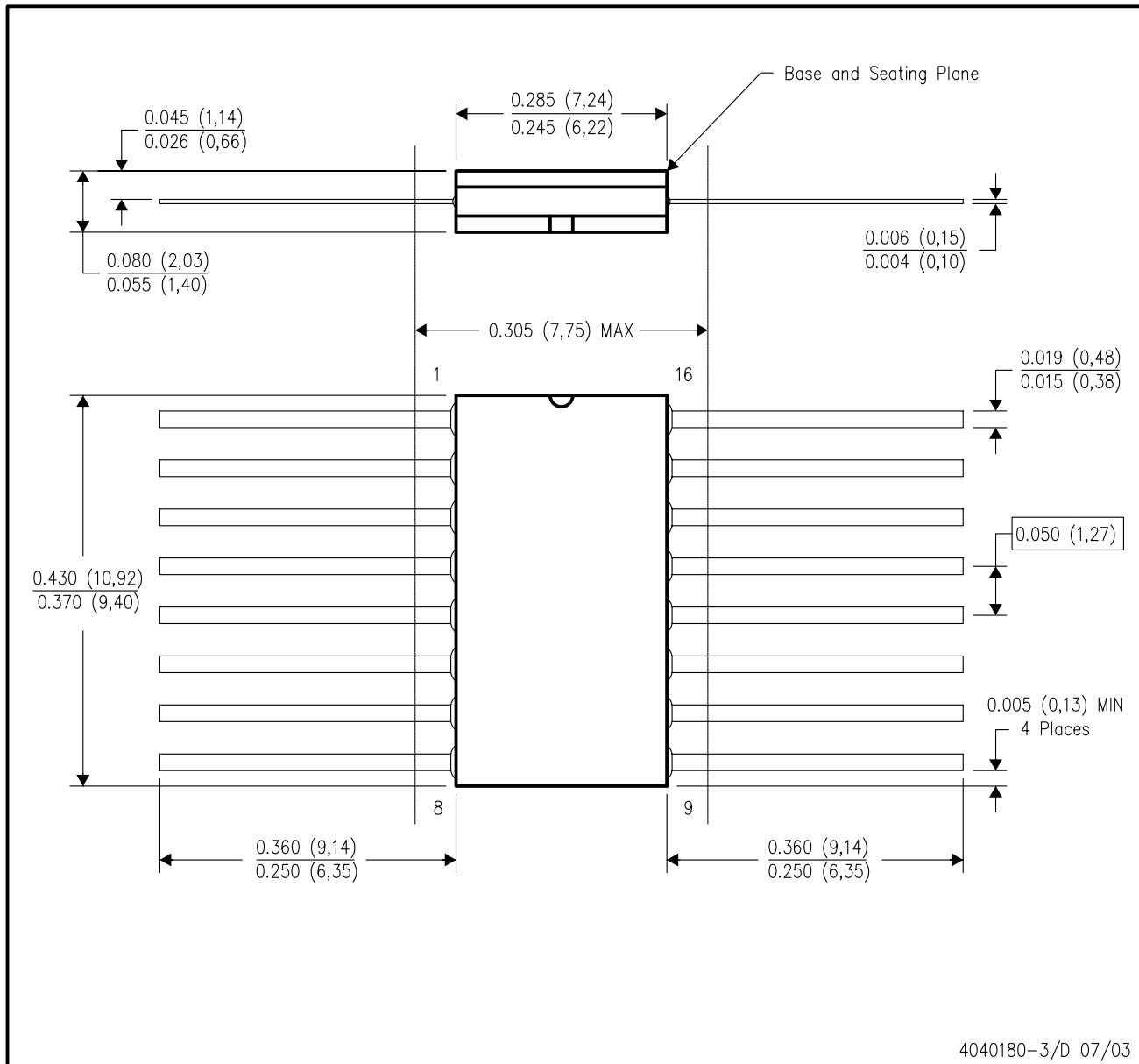
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS595DR	SOIC	D	16	2500	333.2	345.9	28.6


J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

PINS ** DIM	14	16	18	20
A	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC
B MAX	0.785 (19,94)	.840 (21,34)	0.960 (24,38)	1.060 (26,92)
B MIN	—	—	—	—
C MAX	0.300 (7,62)	0.300 (7,62)	0.310 (7,87)	0.300 (7,62)
C MIN	0.245 (6,22)	0.245 (6,22)	0.220 (5,59)	0.245 (6,22)

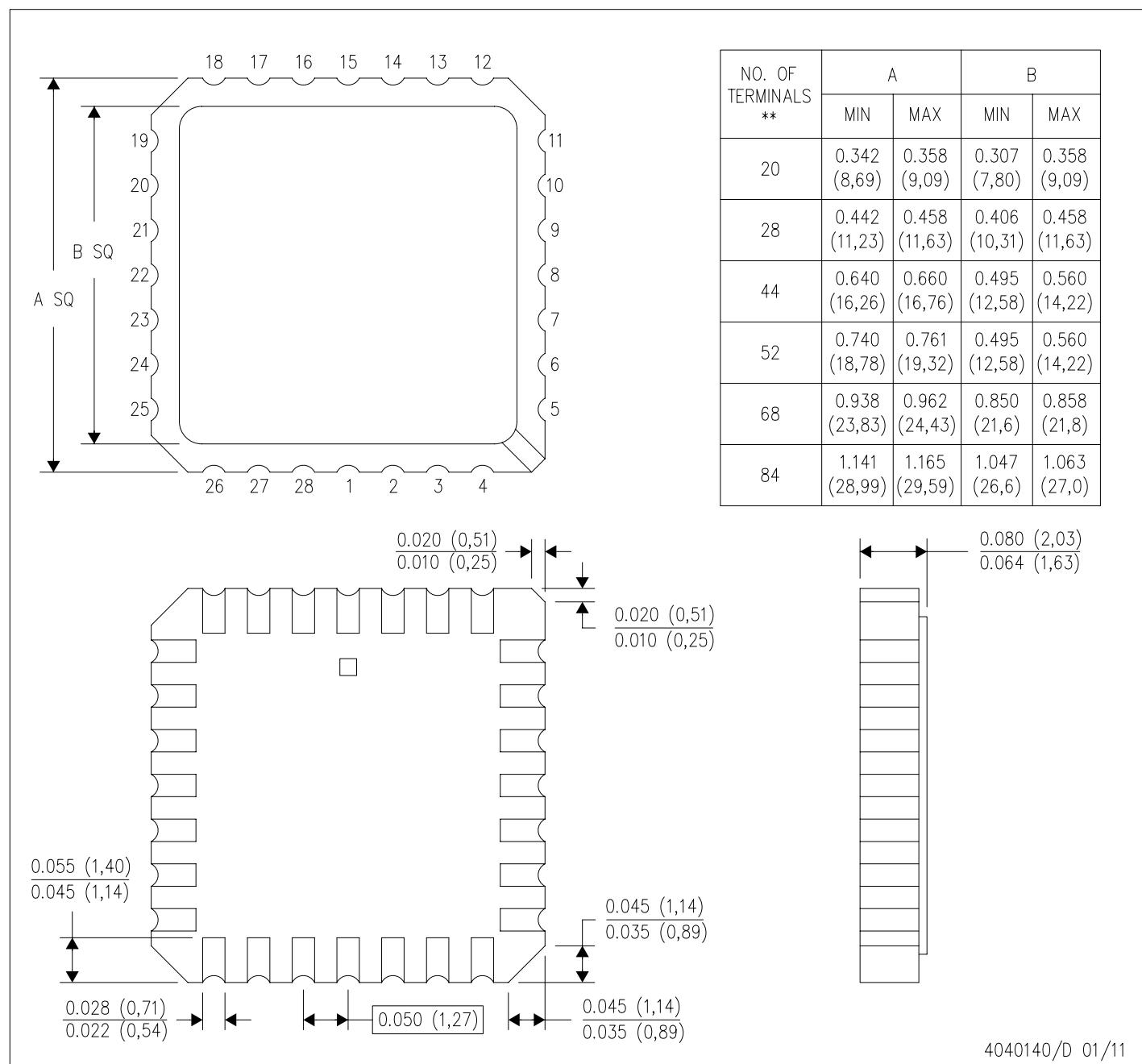


4040083/F 03/03

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

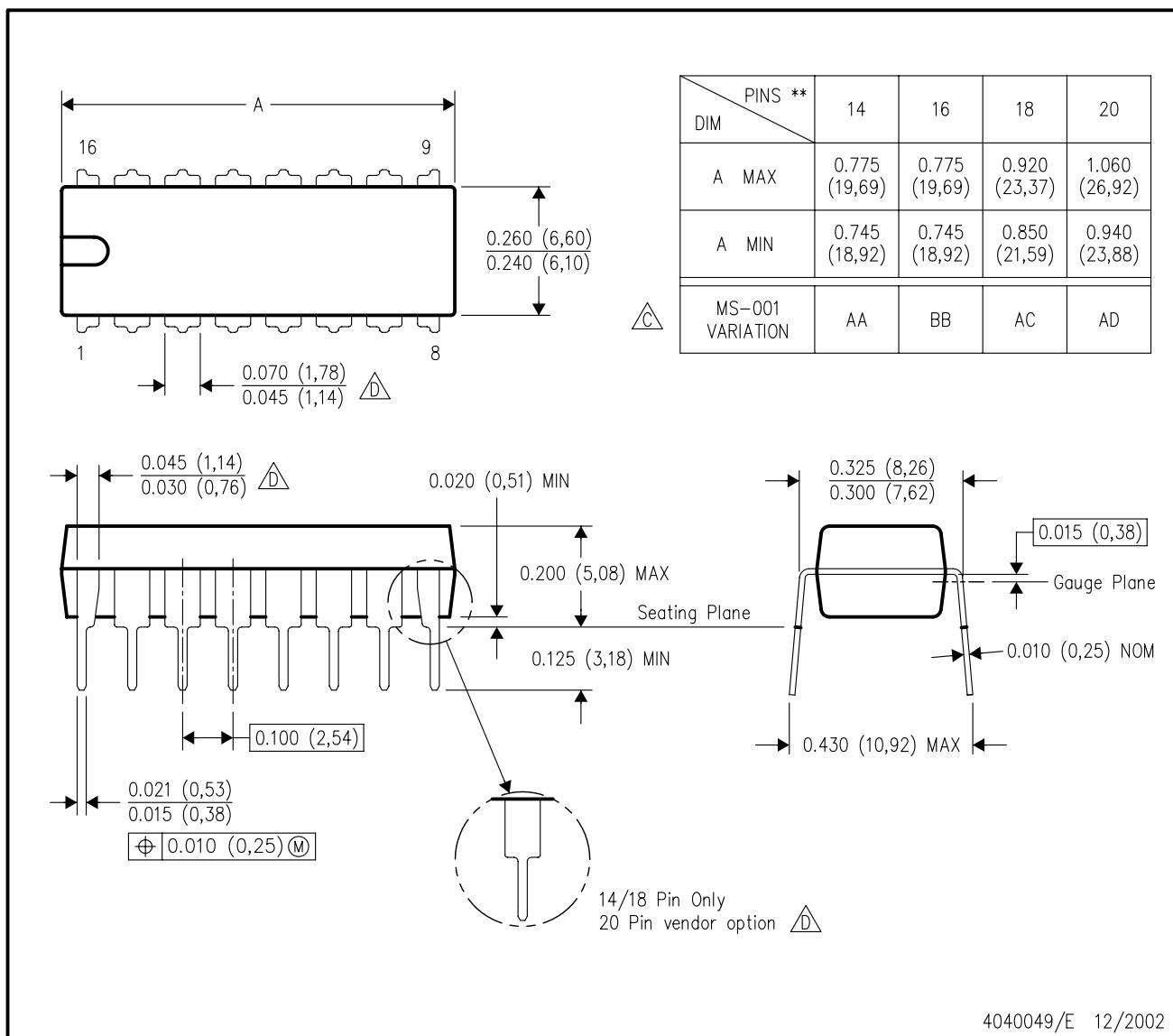

NOTES:

- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- This package can be hermetically sealed with a ceramic lid using glass frit.
- Index point is provided on cap for terminal identification only.
- Falls within MIL-STD 1835 GDFP1-F16 and JEDEC MO-092AC

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

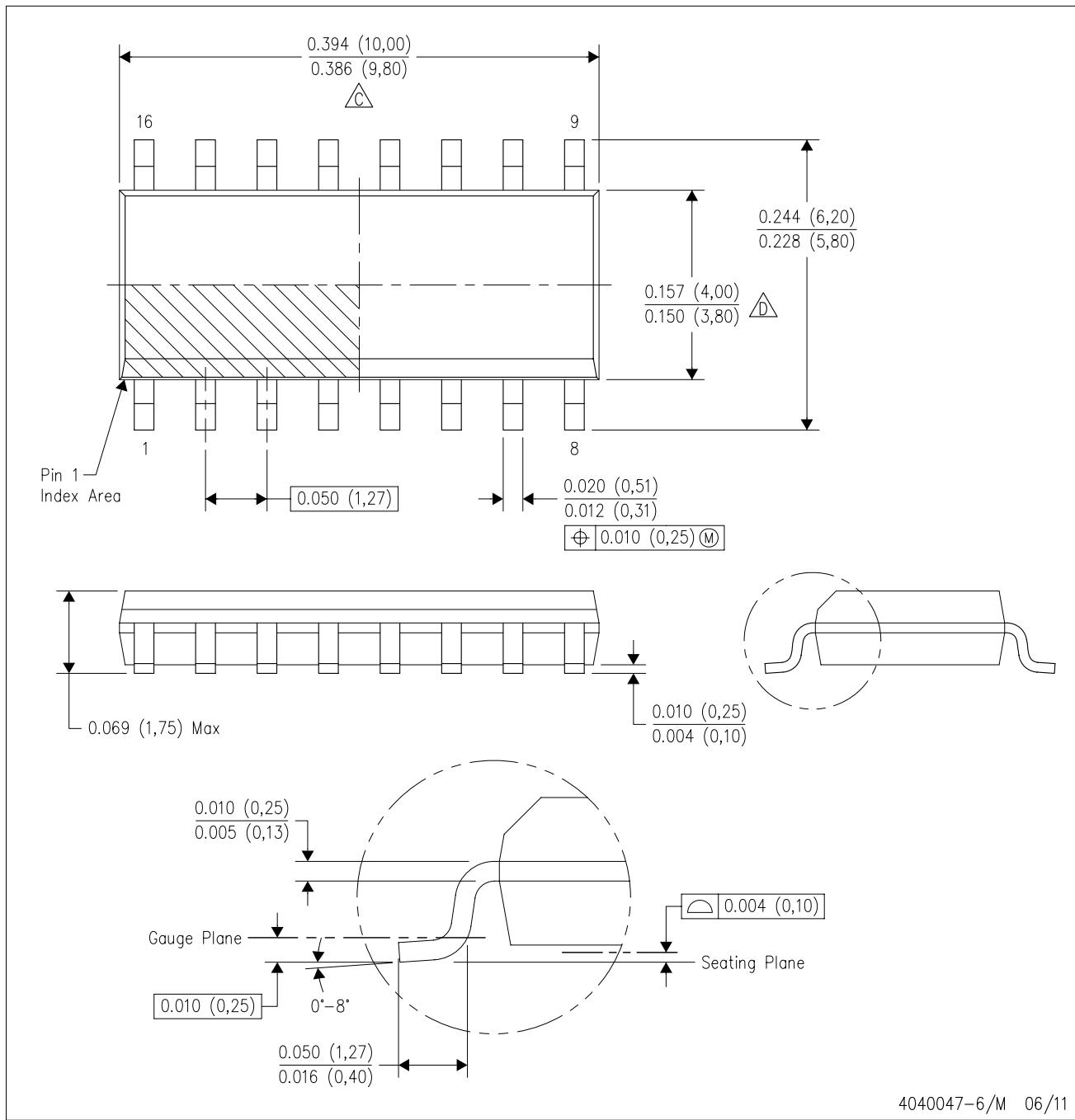

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a metal lid.
 D. Falls within JEDEC MS-004

4040140/D 01/11

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.

△ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

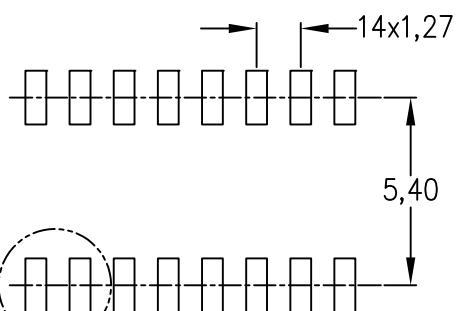
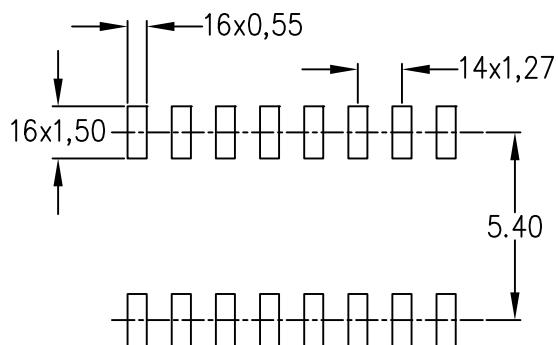
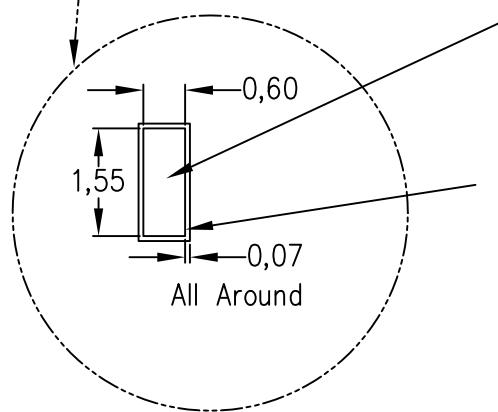
△ The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.




C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

Example Board Layout
(Note C)Stencil Openings
(Note D)Example
Non Soldermask Defined PadExample
Pad Geometry
(See Note C)Example
Solder Mask Opening
(See Note E)

4211283-4/E 08/12

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Publication IPC-7351 is recommended for alternate designs.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com