

Signal Conditioning Kits for Custom Couplings, Filters, & Terminations up to 5 GHz

- DC Blocks
- Feed-through 50 Ω Termination
- Custom Attenuators
- Multi-Pole Filters
- Series Resistor, Inductor or R-L Network
- Feed-through Decoupling Capacitor
- Schottky Diode Line Terminator
- · Diode Detector
- Transistor Switching Test Fixture*
- In-Line Amplifier*
- Diode Recovery Test Fixture*
- *(w/optional Bias Tee)

Features

- π-Network, T-Network, or Multi-Pole Filter Footprint on Both Sides of PCB
- Ground Plane and 50 Ω Transmission Line For Up To 5 GHz (SMA) or 3 GHz (BNC) bandwidth, depending on PCB
- Accepts #1206 and #0805 size SMT Components
- Populate With 1 to 28 Series or Shunt Components
- Accepts Mini-CircuitsTM HFCN-2700 Series Filters (BNC π and T models only)
- SMA or BNC, Male/Female or Female/Female connectors
- Metal Enclosure Included for Shielding
- 16 mm OD x 68 mm or 78 mm Length (BNC)
- 11 mm x 9 mm cross section x 35 52 mm L (SMA)

Product Description:

PRL's new Signal Conditioning Kits enable quick and easy fabrication of custom signal-conditioning circuits, such as attenuators, filters, DC blocks, feed-thru $50~\Omega$ terminations, etc. They can be used to build commonly-used circuits, such as a $50~\Omega$ shunt termination, or to build one-of a-kind fixtures not commercially available. Three PCB designs (π , T and multi-pole) enable easy construction of nearly any series and/or parallel network. The double-sided footprints (identical on both sides of the PCB) enable non-standard resistor, inductor, and capacitor values to be fabricated easily and economically from standard-value components. With the addition of a Bias Tee, active device test fixtures can be built as well.

In one example, we easily fabricated a 24 dB attenuator with non-standard impedance for the interface between a vacuum tube output and a TTL input circuit, using a two-stage design with discrete SMT resistors. In another example, we level-shifted a -6 V to +10 V pulse to 0 V to +16 V for driving a high impedance circuit. In this case, we constructed a simple DC Restorer using a coupling capacitor and a shunt Schottky diode to ground.

Other examples include a feed-through decoupling capacitor, using one shunt capacitor, to make an ideal low pass filter for noise reduction at I/O ports. The kits can be populated with as few as one series component, or as many as 28 series and shunt components, enabling a wide range of applications.

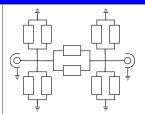
Four available connector styles (BNC M/F, BNC F/F, SMA M/F, and SMA F/F) and a low-profile design enable inline insertion into your transmission line, with or without cables. A gender changer may be used to create M/M styles. Combine any PCB configuration with any connector style to suit your application. A metal enclosure provides protection and shielding.

Sample Applications:

		Kit Type		
Application	Schematic	Pi	Tee	Multi
DC Block/ Coupling Cap	Į Į	Y	Y	Y
AC Block/ RF Choke	į į	Y	Y	Y
Series Termination		Y	Y	Y
Shunt Termination		Y	Y	Y
Precision Shunt Termination		Y	Y	Y
Feed-through Decoupling Cap		Y	Y	Y

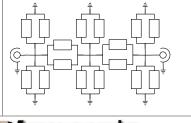
		Kit Type		
Application	Schematic	Pi	Tee	Multi
Diode Detector		Y	Y	Y
Attenuator		Y	Y	Y
Low-pass Filter		N	N	Y
High-Pass Filter		N	N	Y

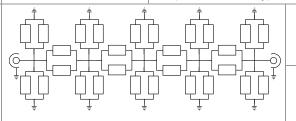
Multiple units can be used in series to provide additional stages for Bandpass filters, etc. Front and back sides of PCBs provide parallel paths for Notch/Bandstop filters, etc.


PCB Configurations:

π Network PCB:

- Up to 2 series components
- Up to 8 shunt components
- Highest bandwidth
- Accepts Mini-CircuitsTM HFCN-2700 Series Filters (BNC model only)


Multi-Pole Network PCB:


- Up to 8 series components
- Up to 20 shunt components
- · Greatest flexibility for multi-pole networks

T Network PCB:

- Up to 4 series components
- Up to 12 shunt components
- For most applications
- Accepts Mini-CircuitsTM HFCN-2700 Series Filters (BNC model only)

(Diagrams show all possible component positions on both sides of PCB. Unpopulated series positions may require 0Ω jumpers.)

Ordering Information: (All models include matching enclosure.)

PCB Configuration (vias are plated through to identical pattern on reverse side) **Connector Style** T Network **Multi-Pole Network** Male/Female PRL-PINET-BMF or -SMF PRL-TNET-BMF or -SMF PRL-MNET-BMF or -SMF Female/Female PRL-PINET-BFF or -SFF PRL-TNET-BFF or -SFF PRL-MNET-BFF or -SFF

More information available at www.pulseresearchlab.com/SCK, including application notes, component value worksheets, links to filter calculators, attenuator calculators, etc.