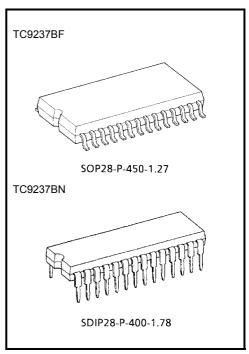
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC9237BF,TC9237BN


Σ-Δ Modulation System DA Converter with Built-In Digital Filter

TC9237BF, TC9237BN are a 2'nd order Σ - Δ modulation system 1 bit DA converter with a built-in 8 times over-sampling FIR type digital filter developed for digital audio equipment.

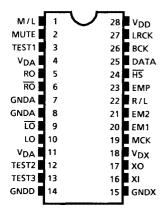
As the de-emphasis function has been incorporation, it is possible to configure the system for digital filtering through analogue output at a low price.

Features

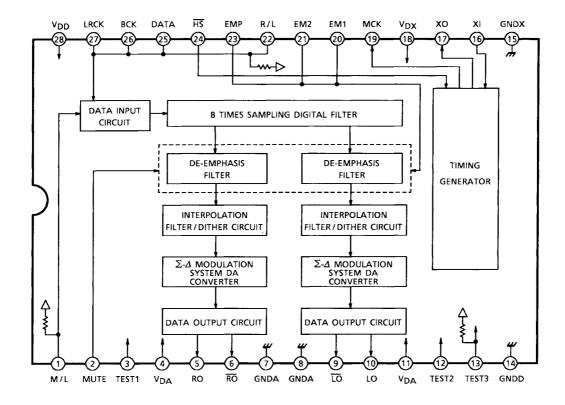
- Built-in 8 times over-sampling FIR type digital filter.
- Over-sampling ratio (OSR) is 192 fs.
- Built-in digital de-emphasis filter.
- Simultaneous outputs to L-ch and R-ch.
- Compatible with fs = 32 k, 44.1 k, 48 kHz.
- Compatible with double speed operation.
- Characteristics of the digital filter and DA converter are as follows:

Weight SOP28-P-450-1.27: 0.8 g (typ.) SDIP28-P-400-1.78: 2.2 g (typ.)

Digital Filter (fs = 44.1 kHz)


	DIGITAL FILTER	PASS-BAND RIPPLE	TRANSIENT BAND WIDTH	STOP-BAND SUPPRESSION
Standard operation	8fs	±0.041dB	20k~23.5kHz	– 55dB
Double speed operation	4fs	±0.026dB	20k~24.1kHz	– 49dB

DA Converter


	OSR	NOISE DISTORTION	S/N RATIO
Standard operation	192fs	- 87dB (Typ.)	98dB (Typ.)
Double speed operation	96fs	-87dB (Typ.)	98dB (Typ.)

- 2 kinds of package, 28-pin flat package and 28-pin DIP shrunk package.
- \bullet It is possible to construct a system in simple structure using the filter IC (TA2009P, TA2009F) dedicated to +5 V single power supply operation.

Pin Assignment (top view)

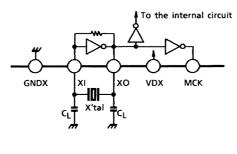
Block Diagram

2

2003-06-27

Description of Pin Function

Pin No.	Symbol	I/O			F	unction&C	peratio	n			Remarks
1	M/L		Input data	Input data MSB First/LSB First selection pin.							With a pull-up
'	IVI/ L	'	MSB First at "H" and LSB First at "L"							resistor	
2	MUTE	Ι	Soft mute	control pin. I	Mute O	N at "H".					
3	TEST1	Ι	TEST pin.	Normally, us	se at "H	Ⅎ".					
4	V_{DA}	_	Analog por	wer supply p	in.						
5	RO	0	R channel	data forward	d outpu	ıt pin.					
6	RO	0	R channel	data reverse	e outpu	ıt pin.					
7	GNDA	_	Analog gro	ound pin.							
8	GNDA	_	Analog gro	ound pin.							
9	LO	0	L channel	data reverse	outpu	t pin.					
10	LO	0	L channel	data forward	d outpu	t pin.					
11	V_{DA}	_	Analog po	wer supply p	in.						
12	TEST2	- 1	TEST pin.	Normally, us	se at "L						
13	TEST3	I	TEST pin.	Normally, us	se at "ŀ	H" or open.					With a pull-up resistor
14	GNDD	_	Digital gro	und pin.							
15	GNDX	_	Crystal os	cillator grour	nd pin.						
16	ΧI	- 1	Crystal os	cillator conn	ecting (oin.					
17	XO	0	Connecting (384 fs)	g a crystal o	scillato	r, generate	es clock	needed for t	ne system.	•	
18	V_{DX}	_	Crystal os	Crystal oscillator power supply pin.							
19	MCK	0	Master clo	ck output pir	า. (384	fs)					
20	EN44	١.	De-empha	sis filter mod	de sele	ct pin.				•	
20	EM1	'	EM1			L	L	Н	Н		
			EM2	!		L	Н	Н	L		
21	EM2	1	MOI	DE (fs select	ion)	44.1	kHz	32 kHz	48 kHz		
			LRCK pola	arity switchin	g pin.						
				R/L Input			LR	CK			
22	R/L			put		L		Н			With a pull-up
	102	•		L	R	channel da	ata	L channe	el data		resistor
				Н	L	channel da	ata	R channe	el data		
23	EMP	1	De-empha	sis filter con	trol pin						
	-1411		ON at "H"	and OFF at	"L".						
24	HS	1	Standard/d	double spee	d opera	ation mode	control	pin.			
				•	"H" and	d double sp	peed op	eration at "L"	=		
25	DATA	I	Data input								
26	BCK	I	Bit clock in								
27	LRCK	I	LR clock in								
28	V_{DD}	_	Logic pow	er supply pir	۱.						


3 2003-06-27

Description of Block Operation

1. Crystal Oscillation Circuit and Timing Generator

Clock required for internal operation can be generated when crystal and capacitors are connected as shown in Figure 1.

Further, this converter is also operable when system clock is input from the outside through XI pin (pin 16). However, a through consideration is required in this case because noise distortion and S/N ratio of the DA converter are largely affected by qualities of wave form such as jitter, rising and falling characteristics, etc. of system clock.

 $C_L = 10~33 pF$

Use a crystal with a low CI value and quick response.

Figure 1 Configuration of Crystal Oscillation Circuit

The timing generator generates clock required for the digital filter, de-emphasis filter, interpolation filter and process timing signal.

2. Data Input Circuit

DATA and LRCK are taken in the shift register in the LSI at the rising edge of BCK. As shown in the falling timing example, it is therefore necessary to input DATA and LRCK in synchronism with the following edge of BCK. Further, because DATA has been so designed that 16 bits before the change point of LRCK are made effective data, it is necessary to data when BCK is 48 fs or 64 fs.

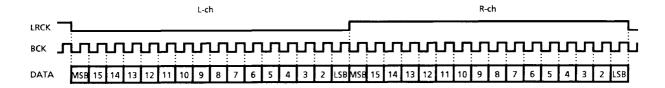


Figure 2 Example of Input Timing Chart (when R/L = M/L = "H")

Polarity of LRCK and input data modes are set using the R/L and M/L pin.

Table 1 Channel Data Correspondence

R/L Input	LR	СК
	L	Н
L	R channel data	L channel data
Н	L channel data	R channel data


Table 2 Input Data Setting

M/L Input	Input Data (data)
L	LSB data first-in
Н	MSB data first-in

3. Digital Filter

Foldover noise component outside the band is removed by the 8 times over-sampling FIR type digital filter. The construction and basic characteristic of the digital filter are changed by the standard and double speed operations. The contents of this change as shown below. (in the case of $fs = 44.1 \, kHz/88.2 \, kHz$ (at the double speed operation).)

• Standard operation

· Double speed operation

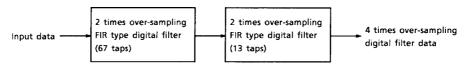
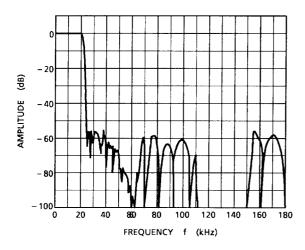
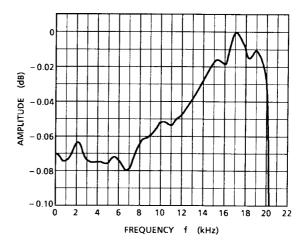


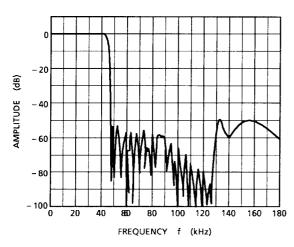
Figure 3 Construction of Digital Filter

Table 3 Basic Characteristics of Digital Filter


Setting Mode	Pass-Band Ripple	Transient Bandwidth	Stop-Band Suppression
Standard operation	±0.041dB	20.0 k~23.5 kHz	-55dB
Double speed operation	±0.026dB	20.0 k~24.1 kHz	-49dB


5

2003-06-27


Frequency characteristics of the digital filter are as follows:

· Standard operation

• Double speed operation

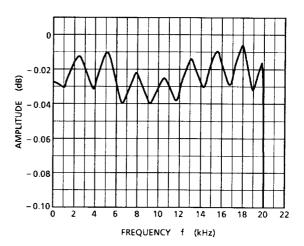
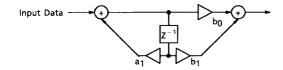
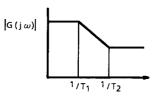


Figure 4 Digital Filter Frequency Characteristics (fs = 44.1 kHz)

4. De-Emphasis Filter


The TC9237BF, TC9237BN has a built-in IIR type digital de-emphasis circuit and is capable of copying with 3 kinds of frequency (32 kHz, 44.1 kHz, 48 kHz) by setting respective modes. These frequencies are set by 2 pins of EM1 and EM2 and the de-emphasis ON/OFF is switched by the EMP pin.


Table 4 fs Setting of De-Emphasis Filter

EM1	L	L	Н	Н
EM2	L	Н	Н	L
Mode (fs selection)	44.1 kHz		32 kHz	48 kHz

Digitization of the de-emphasis filter has eliminated the necessity for external parts such as resistor, capacitor, analogue switch, etc. Further, to reduce the characteristic error of the de-emphasis filter, coefficients have been adjusted.

The construction and characteristics of the de-emphasis filter are shown below.

Transfer function: H (Z) = $\frac{(b_0 + b_1 Z^{-1})}{(1-a_1 Z^{-1})}$

 $T_1 = 50 \ \mu s, \ T_2 = 15 \ \mu s$

Figure 5 Construction of IIR Type Digital De-Emphasis Filter

Figure 6 Filter Characteristic

Table 5 Typ. Example of De-Emphasis Frequency Characteristic

Standard Operation

(unit: dB)

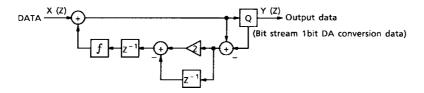
Sampling	f	= 3 kHz		f :	= 10 kHz		Maximum Error Value
Frequency fs	Theoretical Value	Design Value	Error	Theoretical Value	Design Value	Error	(absolute value)
44.1 kHz	-2.426	-2.453	-0.027	-7.601	-7.626	-0.025	0.04
32 kHz	-2.426	-2.291	+0.135	-7.601	-7.456	+0.145	0.19
48 kHz	-2.426	-2.420	+0.006	-7.601	-7.572	+0.029	0.05

Double Speed Operation:

(unit: dB)

Sampling Frequency fs	f = 3 kHz			f =	= 10 kHz	Maximum Error Value	
	Theoretical Value	Design Value	Error	Theoretical Value	Design Value	Error	(absolute value)
44.1 kHz	-2.426	-2.348	+0.078	-7.601	-7.486	+0.115	0.12
32 kHz	-2.426	-2.521	-0.095	-7.601	-7.641	-0.040	0.12
48 kHz	-2.426	-2.475	-0.049	-7.601	-7.664	-0.063	0.07

5. Interpolation Filter and Dither Circuit


The interpolation filter linearly interpolates 8 fs (at the double speed operation: 4 fs) after the de-emphasis filter to times and over samples to 16 fs (at the double speed operation: 8 fs)

Further, in the dither circuit, DC offset and dither have been added to data in order to prevent noise by the idling pattern peculiar to the Σ - Δ modulation DA converter.

After adding the dither, 192 fs (at the double speed operation: 96 fs) is over sampled in the sample hold circuit.

6. DA Conversion Circuit

The 2'nd order Σ - Δ modulation DA converter for 2 channels (simultaneous output type) has been incorporated in the TC9237BF, TC9237BN.

2'nd order Σ - Δ modulator: Y (Z) = X (Z) + (1 - Z⁻¹)⁻²Q (Z)

Figure 7 Construction of Σ - Δ Modulation DA Converter

It was been so designed that clock for the Σ - Δ modulator is a half of master clock (MCK: crystal oscillation clock) and the converter operates at 192 fs at the standard operation while at 96 fs at the double speed operation (as a clock, the same as that at the standard operation).

The noise shaping characteristic is shown below.

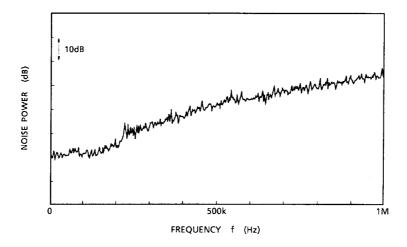


Figure 8 Noise Shaping Characteristic

8

7. Data Output Circuit

In this circuit, output data waveform is shaped and forward and reverse signals of bit stream data are output to the outside through a buffer.

By differentiating these forward signal and the reverse signal in the external analogue circuit, DA conversion output of low distortion factor and high S/N ratio can be obtained.

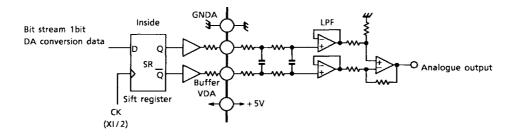


Figure 9 Construction of Data Output Circuit

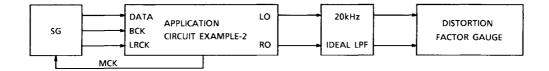
9 2003-06-27

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit
Supply voltage		V_{DD}		
		V_{DX}	-0.3~6.0	V
		V_{DA}		
Input voltage		Vin	-0.3~V _{DD} + 0.3	V
Power dissipation	TC9237BF	P _D	600	mW
Fower dissipation	TC9237BN	۲۵	800	IIIVV
Operating temperature		T _{opr}	-35~85	°C
Storage temperatu	Storage temperature		-55~150	°C

Electrical Characteristics (unless otherwise specified, Ta = 25°C, $V_{DD} = V_{DX} = V_{DA} = 5 \text{ V}$)

DC Characteristics


Char	Characteristics		Test Circuit	Test Condition	Min	Тур.	Max	Unit
					4.5	5.0	5.5	
Operating supply	y voltage	V_{DX}	_	Ta = −35~85°C	4.5	5.0	5.5	V
					4.5	5.0	5.5	
Power dissipatio	Power dissipation		_	XI = 16.9 MHz	_	25	45	mA
Input voltage	"H" level	V _{IH}			V _{DD} × 0.7		V _{DD}	>
input voitage	"L" level	V _{IL}		_	0	_	V _{DD} × 0.3	V
Input current	"H" level	l _{IH}			-10		10	μА
input current	"L" level	I _{IL}		_	-10		10	μΛ
Pull-up resistor		RUP	_	TEST3, M/L, R/L pins	_	130	_	kΩ

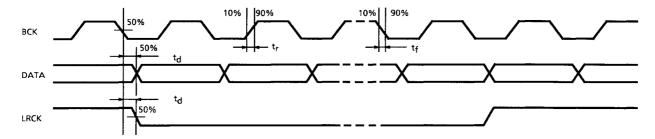
AC Characteristics

Standard Operation (over-sampling ratio = 192 fs)

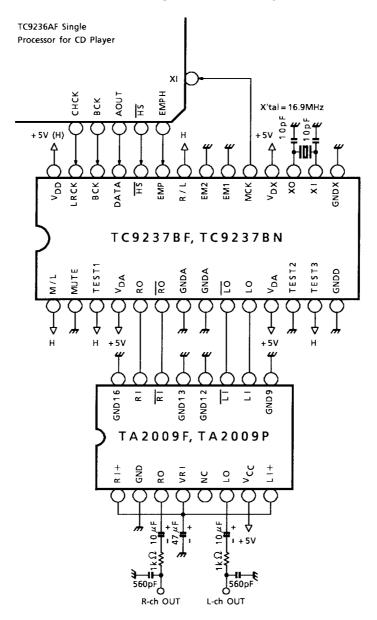
Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Noise distortion	THD	1	1 kHz sine wave, full-scale input	_	-87	-78	dB
S/N ratio	S/N	1	_	88	98	_	dB
Dynamic range	DR	1	1 kHz sine wave, -60dB input conversion	88	95	_	dB
Cross-talk	СТ	1	1 kHz sine wave, full-scale input	_	-95	-88	dB
Operating frequency	f _{opr}	_	_	10	16.9344	19.2	MHz
Input frequency	f_{LR}		LRCK duty cycle = 50%	30	44.1	100	kHz
input nequency	f _{BCK}		BCK duty cycle = 50%	0.96	1.4112	6.2	MHz
Rise time	t _r		LRCK, BCK (10~90%)	_	_	15	ns
Fall time	t _f		[LICON, BOIN (10**90 ///)			15	ns
Delay time	t _d	_	BCK vedge → LRCK, DATA			40	ns

Test Circuit-1: Application Circuit Example-2 is Used.

SG: ANRITSU MG-22A or equivalent

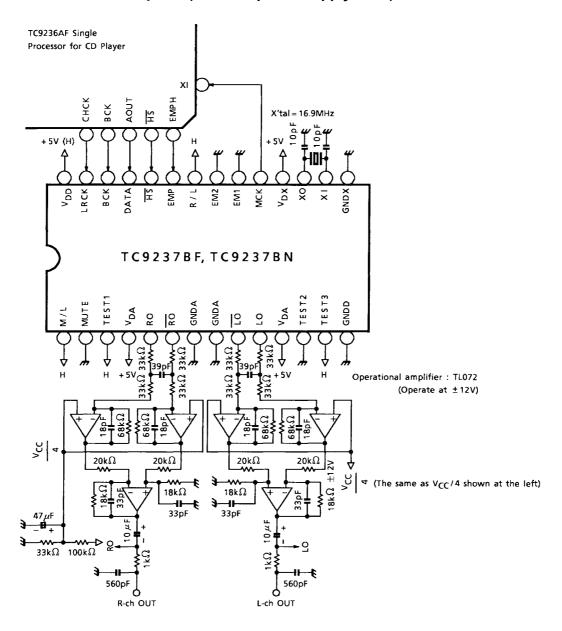

LPF: MURATA SEISAKUSHO AFL89FB20000A2 or equivalent

Distortion factor gauge: SIBASOKU 725B or equivalent


Measuring Item	Distortion Factor Gauge Filter Setting a Weight
THD + N, CT	OFF
S/N, DR	ON

A weight: IEC-A or equivalent

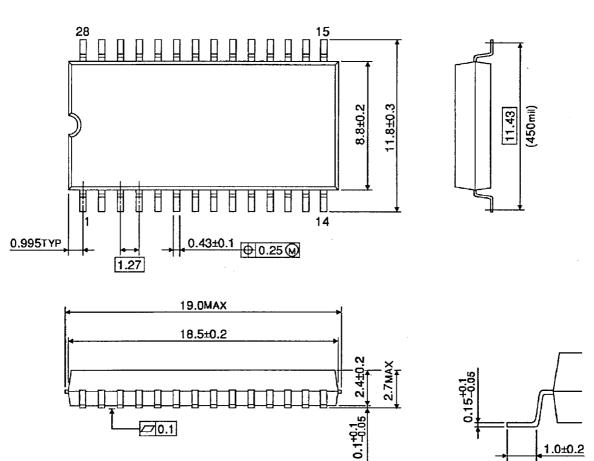
AC Characteristic Point (input signal: LRCK, BCK, DATA)


Application Circuit Example-1 (+5 V single power supply used)

Cautions

- Quality of crystal oscillation waveform largely affects S/N ratio.
 Further, this is also true when system clock is input externally through the XI pin of pin 16.
- Suppress of input signals (LRCK, BCK, DATA) as could as possible.
- The wiring between the TC9237BF, TC9237BN output and the analogue filter amplifier input must be made the shortest.
- ullet The capacitor between V_{DA} and GNDA shall be connected as close to the pin as possible.

Application Circuit Example-2 (+5 V two power supply used)

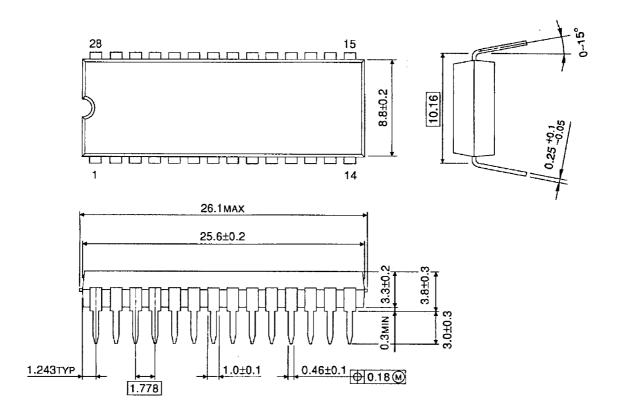

13 2003-06-27

1.0±0.2

Unit: mm

Package Dimensions

SOP28-P-450-1.27



Weight: 0.8 g (typ.)

Ø0.1

Package Dimensions

SDIP28-P-400-1.78 Unit: mm

15

Weight: 2.2 g (typ.)

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.