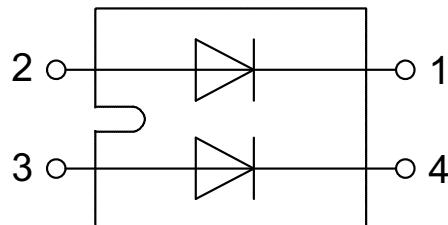

preliminary

SiC Schottky Diode

 $V_{RRM} = 1200 \text{ V}$
 $I_{FAV} = 2 \times 47 \text{ A}$


Ultra fast switching
 Zero reverse recovery

Part number
DCG100X1200NA

Backside: isolated

UL pending

Features / Advantages:

- Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient of forward voltage
- $T_{vjm} = 175^\circ\text{C}$

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

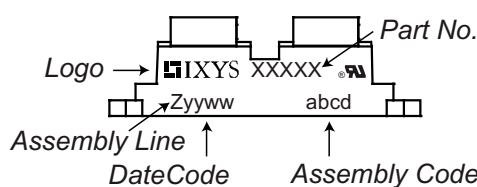
Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
- Advanced power cycling

Terms & Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

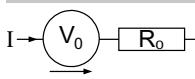

SiC Diode (per leg)			Ratings		
Symbol	Definitions	Conditions	min.	typ.	max.
V_{RSM}	max. non-repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			1200 V
V_{RRM}	max. repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			1200 V
I_R	reverse current	$V_R = V_{RRM}$ $T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 175^\circ\text{C}$	100 300	500 1000	μA
V_F	forward voltage	$I_F = 25 \text{ A}$ $I_F = 50 \text{ A}$	$T_{VJ} = 25^\circ\text{C}$	1.25 1.6	1.8 V
		$I_F = 25 \text{ A}$ $I_F = 50 \text{ A}$	$T_{VJ} = 175^\circ\text{C}$	1.55 2.25	2.7 V
I_{FAV}	average forward current	$T_C = 80^\circ\text{C}$ $T_C = 100^\circ\text{C}$	rectangular, $d = 0.5$ $T_{VJ} = 175^\circ\text{C}$		47 A 41 A
I_{F25}	forward current	based on typ. V_{F0} and r_F			82 A
I_{F80}		$T_C = 25^\circ\text{C}$ $T_C = 80^\circ\text{C}$			63 A
I_{F100}		$T_C = 100^\circ\text{C}$			55 A
I_{FSM}	max forward surge current	$t = 10 \text{ ms, half sine (50 Hz)}$ $t_p = 10 \mu\text{s, pulse}$	$T_{VJ} = 25^\circ\text{C}$ $V_R = 0\text{V}$		A A
V_{F0}	threshold voltage	r_F slope resistance	$T_{VJ} = 125^\circ\text{C}$ 175°C	0.75	V V
r_F	slope resistance		$T_{VJ} = 125^\circ\text{C}$ 175°C	34.0	$\text{m}\Omega$ $\text{m}\Omega$
Q_C	total capacitive charge	$V_R = 800 \text{ V}$, $I_F = 50\text{A}$ $dI/dt = 200 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^\circ\text{C}$	250	nC
C	total capacitance	$V_R = 0 \text{ V}$ $V_R = 400 \text{ V}$ $V_R = 800 \text{ V}$	$T_{VJ} = 25^\circ\text{C}$, $f = 1 \text{ MHz}$	3380 230 173	pF pF pF
R_{thJC}	thermal resistance junction to case	with heatsink compound; IXYS test setup		0.52 0.65	K/W K/W
R_{thJH}	thermal resistance junction to heatsink				

preliminary

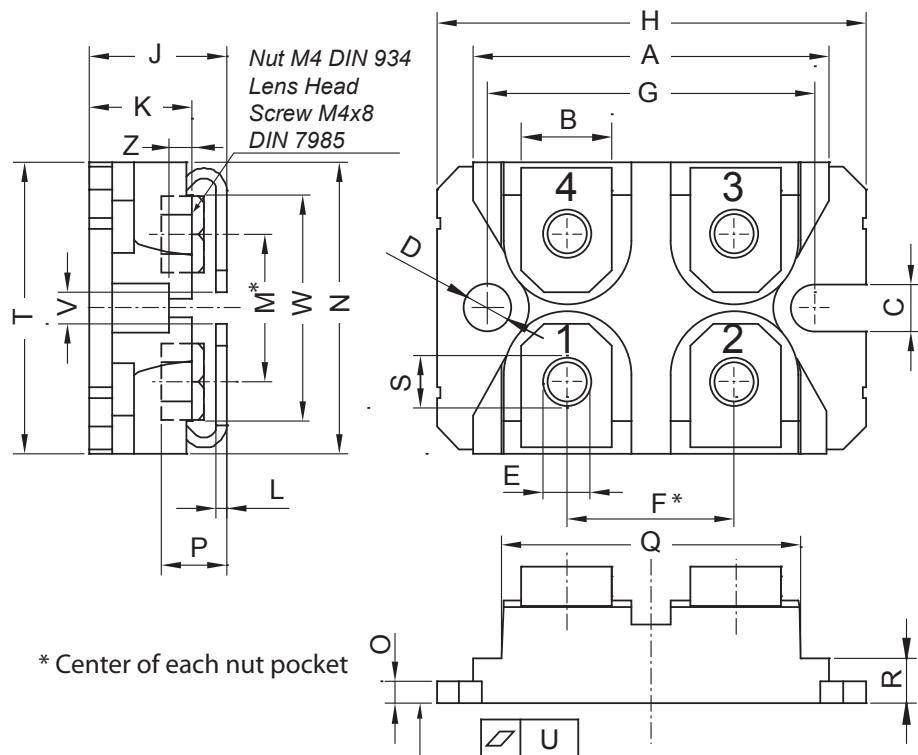
Package	Outlines SOT-227B (minibloc)		Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
I_{RMS}	<i>RMS current</i>	per terminal		100	100	A
T_{stg}	<i>storage temperature</i>		-40	150	150	°C
T_{op}	<i>operation temperature</i>		-40	150	150	°C
T_{VJ}	<i>virtual junction temperature</i>		-40	175	175	°C
Weight			30			g
M_D	<i>mounting torque</i> ¹⁾	screws to heatsink terminal connection screws		1.5 1.3	1.5 1.3	Nm Nm
d_{Spp} d_{Spb}	<i>creepage distance on surface</i>	<i>terminal to terminal</i> <i>terminal to backside</i>	10.5 8.5			mm mm
d_{App} d_{App}	<i>striking distance through air</i>	<i>terminal to terminal</i> <i>terminal to backside</i>	3.2 6.8			mm mm
V_{ISOL}	<i>isolation voltage</i>	$t = 1$ second $t = 1$ minute	50 / 60 Hz, RMS; $I_{ISOL} \leq 1$ mA	3000 2500		V V
C_P	<i>coupling capacity per switch</i>	between shorted terminals of diodes and back side metalization				pF

¹⁾further information see application note IXAN0073 on
www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)

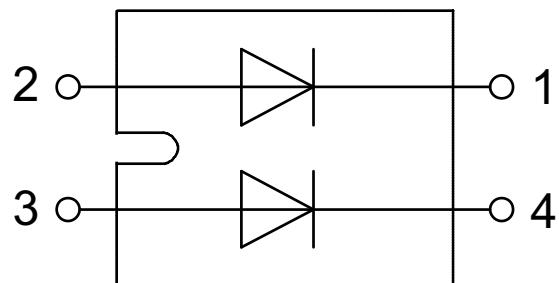
Product Marking



Part description


D = Diode
 C = SiC
 G = extreme fast
 100 = Current Rating [A]
 X = Parallel legs
 1200 = Reverse Voltage [V]
 NA = SOT-227 (minibloc)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	DCG100X1200NA	DCG100X1200NA	Tube	10	521465


Equivalent Circuits for Simulation *on die level, typical

	$T_{VJ} = 125^\circ\text{C}$	$T_{VJ} = 175^\circ\text{C}$
$V_{0\max}$	<i>threshold voltage</i>	0.75
$R_{0\max}$	<i>slope resistance</i> *	34.0
		mΩ

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches	
	min	max	min	max
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

SiC Diode (per leg)

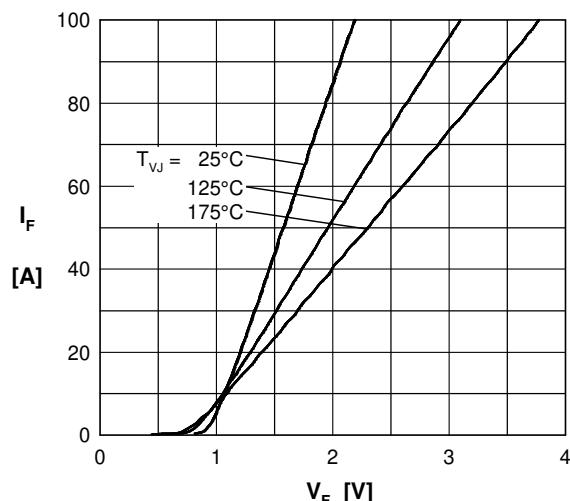


Fig. 1 Typ. forward characteristics

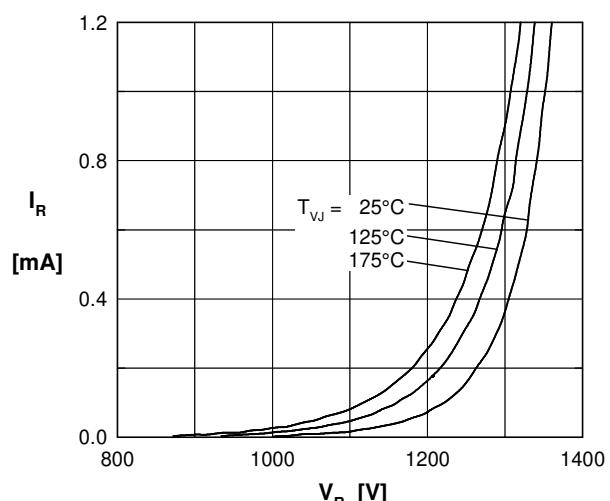


Fig. 2 Typ. reverse characteristics

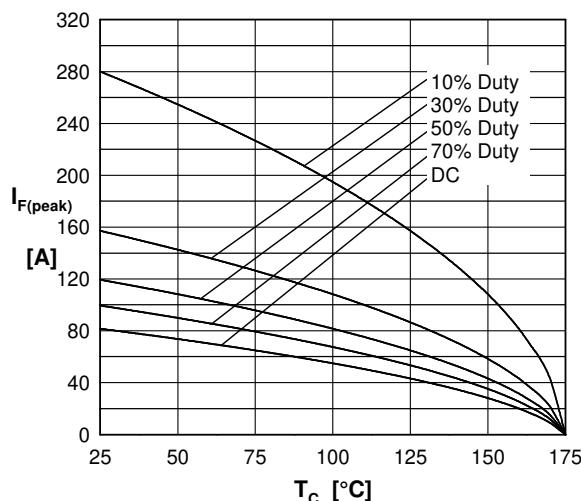


Fig. 3 Typ. current derating

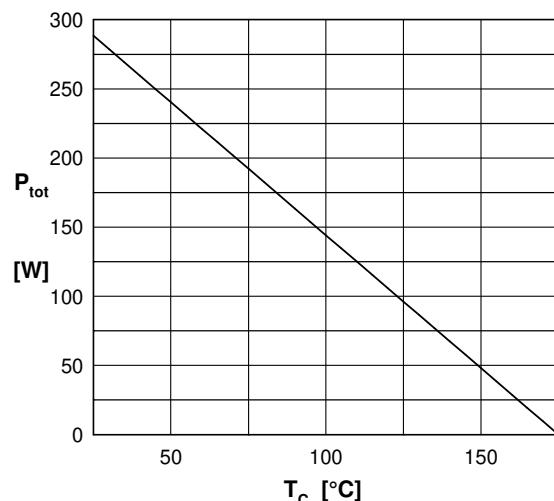


Fig. 4 Power derating

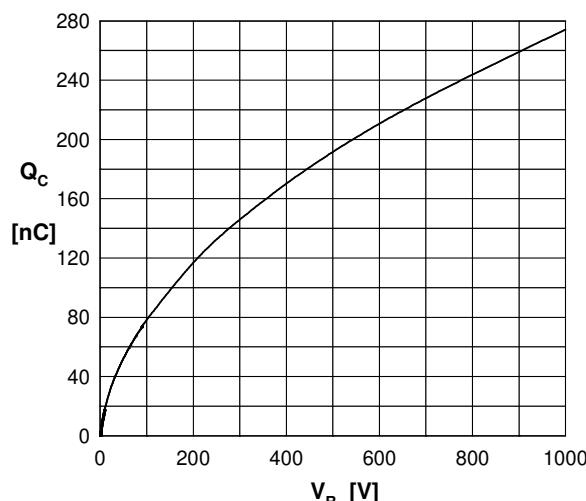


Fig. 5 Typ. recovery charge vs. reverse voltage

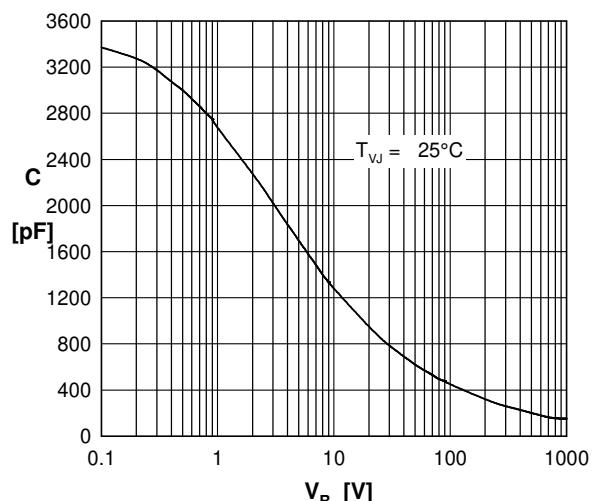


Fig. 6 Typ. junction capacitance vs. reverse Voltage

SiC Diode (per leg)

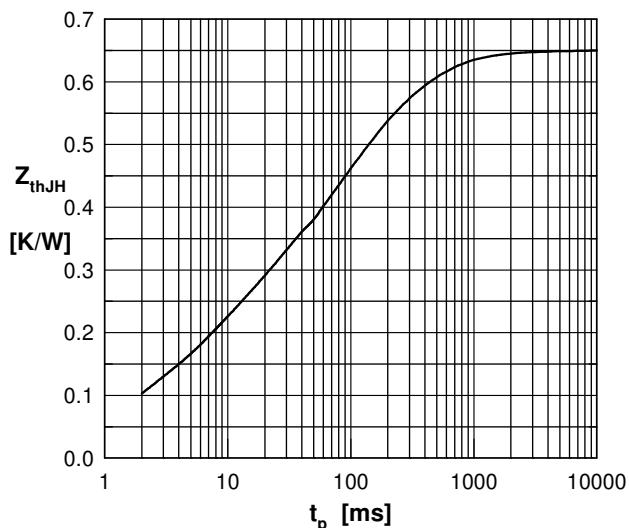


Fig. 7 Typ. transient thermal impedance