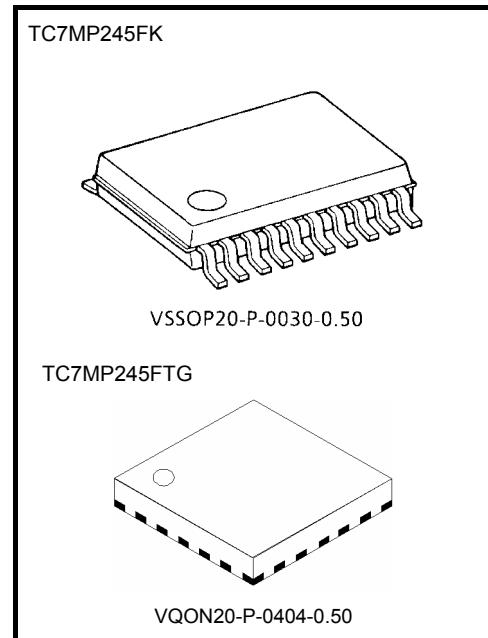


TC7MP245FK, TC7MP245FTG


Low-Voltage/Low-Power Octal Bus Transceiver with Bus-hold

The TC7MP245 is a high-performance CMOS octal bus transceiver. By a low power consumption circuit, power consumption has been reduced when a bus terminal is disable state ($\overline{OE}=H$).

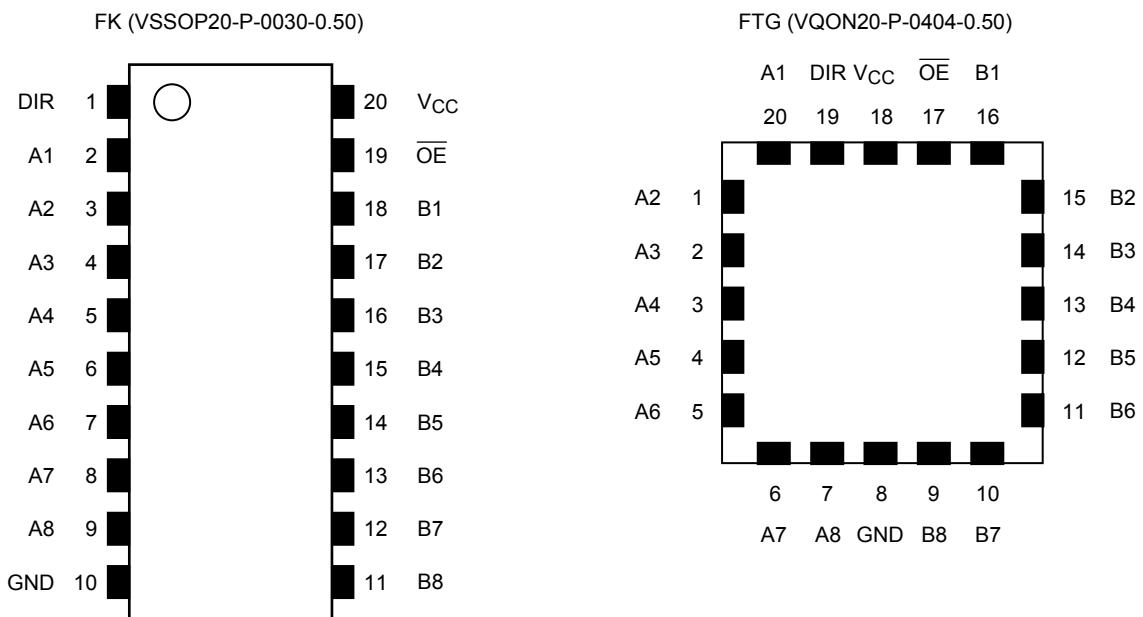
The direction of data transmission is determined by the level of the DIR input. The \overline{OE} input can be used to disable the device so that the busses are effectively isolated.

But, bus of a B bus side at floating state is maintained in an appropriate logic level due to a bus hold circuit to a B bus. Moreover, the bus-hold circuit which is added to a B bus is off when \overline{OE} is low.

All inputs are equipped with protection circuits against static discharge.

Weight:

VSSOP20-P-0030-0.50 : 0.03 g (typ.)
VQON20-P-0404-0.50 : 0.0145 g (typ.)


Features

- Low-voltage operation : $V_{CC} = 1.65$ to 3.6 V
- Low power current consumption : By a new input circuit, power consumption in $\overline{OE}=H$ is reduced largely.
It is most suitable for battery drive products such as personal digital assistant or a cellular phone.
- Quiescent supply current : $I_{CC} = 5\mu A(\max)(V_{CC}=3.6V)$
- High-speed operation : $t_{pd}=3.0\text{ns}(\max)(V_{CC}=3.3\pm 0.3V)$
 $t_{pd}=4.6\text{ns}(\max)(V_{CC}=2.5\pm 0.2V)$
 $t_{pd}=10.0\text{ns}(\max)(V_{CC}=1.8\pm 0.15V)$
- Output current : $I_{OHA}/I_{OLA}(A\text{ bus})=\pm 12\text{mA}(\min)(V_{CC}=3.0V)$
 $I_{OHB}/I_{OLB}(B\text{ bus})=\pm 24\text{mA}(\min)(V_{CC}=3.0V)$
- Latch-up performance : $\pm 300\text{mA}$
- ESD performance : Machine model $\geq \pm 200$ V
Human body model $\geq \pm 2000$ V
- Ultra-small package : VSSOP(US20), VQON20
- Bus hold circuit is built in only the B bus side.(Only in $\overline{OE}=H$, a former state is maintained.)
- Floating of A-bus and B-bus are permitted.(When $\overline{OE}=H$)
- Gate IC for control(TC7MP01FK) of DIR and \overline{OE} terminal are prepared.
- 3.6V tolerant function provided on A-bus terminal, DIR and \overline{OE} terminal.

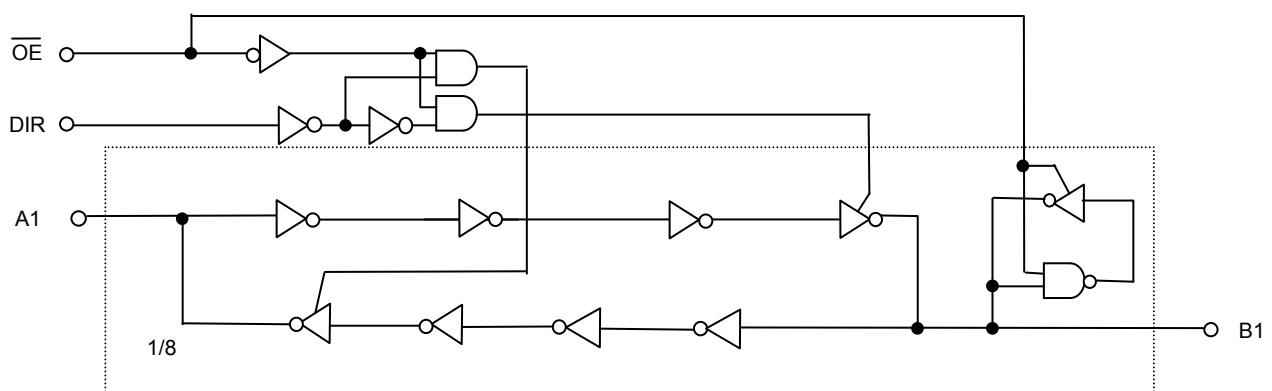
Note 1: At the time bus terminal is enable state, please do not give a signal from the outside.

Note 2: When mounting VQON package, the type of recommended flux is RA or RMA.

Pin Assignment (top view)

Truth Table

Input		Bus state	Bus hold circuit (B bus)
DIR	OE		
L	L	B→A(B=A)	OFF
H	L	A→B(A=B)	OFF
X	H	Z	ON*


X: Don't care

Z: High impedance

*: Logic state just before becoming disable is maintained.

Note: When a bus input is in "H" state, and an output is switched to "enable" to "disable", Glitch such as "L" state during about 1 to 3ns occurs in an output. It is not generated when a bus input is in "L" state.

System Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage (DIR, \overline{OE})	V _{IN}	-0.5 to 4.6	V
DC input/output voltage(A bus)	VI/OA	-0.5 to 4.6 (Note 2)	V
		-0.5 to V _{CC} +0.5 (Note 3)	
DC input/output voltage(B bus)	VI/OB	-0.5 to V _{CC} +0.5	V
Input diode current(DIR, \overline{OE})	I _{IIK}	-50	mA
Input/Output diode current	I _{IOK}	\pm 50	mA
Output current	I _{OUT}	\pm 50	mA
DC VCC/ground current	I _{CC} /I _{GND}	\pm 100	mA
Power dissipation	P _D	180	mW
Storage temperature	T _{STG}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc.).

Note 2: V_{CC}=0V, or output off state.

Note 3: \overline{OE} ="L", DIR="L"

Operating Ranges (Note 1)

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{CC}	1.65 to 3.6	V
		1.2 to 3.6 (Note 2)	
DC input voltage (DIR, \overline{OE})	V _{IN}	-0.3 to 3.6	V
DC input/output voltage(A bus)	VI/OA	0 to 3.6 (Note 3)	V
		0 to V _{CC} (Note 4)	
DC input/output voltage(B bus)	VI/OB	0 to V _{CC}	V
Output current (A bus)	I _{OHA} /I _{OLA}	\pm 12 (Note 5)	mA
		\pm 9 (Note 6)	
		\pm 2 (Note 7)	
Output current(B bus)	I _{OHB} /I _{OLB}	\pm 24 (Note 5)	mA
		\pm 18 (Note 6)	
		\pm 4 (Note 7)	
Operating temperature	T _{OPR}	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either V_{CC} or GND. Please connect both bus inputs and the bus outputs with V_{CC} or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.

Note 2: Data retention only

Note 3: V_{CC}=0V, or output off state

Note 4: \overline{OE} ="L", DIR="L"

Note 5: V_{CC}=3.0 to 3.6V

Note 6: V_{CC}=2.3 to 2.7V

Note 7: V_{CC}=1.65 to 1.95V

Note 8: V_{IN}=0.8 to 2.0V, V_{CC}=3.0V

Electrical Characteristics

DC Characteristics (Ta=-40 to 85°C, 2.7V<Vcc≤3.6V)

Parameter	Symbol	Test Condition	Vcc(V)	Min	Max	Unit	
DC input voltage	H-level	V _{IH}	-	2.7 to 3.6	2.0	-	
	L-level	V _{IL}	-	2.7 to 3.6	-	0.8	
Output voltage (A bus)	H-level	V _{0HA}	V _{IN} = V _{IH}	I _{0HA} =-100uA	2.7 to 3.6	Vcc-0.2	-
				I _{0H} =-6mA	2.7	2.2	-
				I _{0H} =-9mA	3.0	2.4	-
				I _{0H} =-12mA	3.0	2.2	-
	L-level	V _{0LA}	V _{IN} = V _{IL}	I _{0LA} =100uA	2.7 to 3.6	-	0.2
				I _{0L} =6mA	2.7	-	0.4
				I _{0L} =9mA	3.0	-	0.4
				I _{0L} =12mA	3.0	-	0.55
Output voltage (B bus)	H-level	V _{0HB}	V _{IN} = V _{IH}	I _{0HB} =-100uA	2.7 to 3.6	Vcc-0.2	-
				I _{0HB} =-12mA	2.7	2.2	-
				I _{0HB} =-18mA	3.0	2.4	-
				I _{0HB} =-24mA	3.0	2.2	-
	L-level	V _{0LB}	V _{IN} = V _{IL}	I _{0LB} =100uA	2.7 to 3.6	-	0.2
				I _{0LB} =12mA	2.7	-	0.4
				I _{0LB} =18mA	3.0	-	0.4
				I _{0LB} =24mA	3.0	-	0.55
Input leakage current(DIR,/OE)	I _{IN}	V _{IN} =0 to 3.6V	2.7 to 3.6	-	±5.0	μA	
Power off leakage current	I _{OFF}	A,DIR,/OE=0 to 3.6V	0	-	5.0	μA	
3-state output off-state current	I _{OZA}	V _{INA} =V _{IH} or V _{IL} Vout=0 to 3.6V	2.7 to 3.6	-	±5.0	μA	
	I _{OZB}	V _{INB} =V _{IH} or V _{IL} Vout=0 or V _{cc}	2.7 to 3.6	-	±5.0	μA	
Quiescent supply current	I _{CC}	V _{IN} =V _{CC} or GND	2.7 to 3.6	-	5.0	μA	
Increase in ICC per input	Δ I _{CC}	V _{IN} =V _{CC} -0.6V (per input)	2.7 to 3.6	-	750	μA	
Bushold input minimum drive hold current	I _{IHOLD}	V _{IN} =0.8V	3.0	75	-	μA	
		V _{IN} =2.0V		-75	-		
Bushold input over-drive current to change state (Note)	I _{IOD}	V _{IN} = "L"→"H"	3.6	-	550	μA	
		V _{IN} = "H"→"L"		-	-550		

Note: It is a necessary electric current to change the input in "L" or "H".

DC Characteristics (Ta=-40 to 85°C, 2.3V≤Vcc≤2.7V)

Parameter		Symbol	Test Condition		Vcc(V)	Min	Max	Unit	
DC input voltage	H-level	V_{IH}	-		2.3 to 2.7	1.6	-	V	
	L-level	V_{IL}	-		2.3 to 2.7	-	0.7		
Output voltage (A bus)	H-level	V_{OHA}	$V_{IN} = V_{IH}$	$I_{OHA}=-100\mu A$	2.3 to 2.7	$V_{CC}-0.2$	-	V	
				$I_{OHA}=-3mA$	2.3	2.0	-		
				$I_{OHA}=-6mA$	2.3	1.8	-		
				$I_{OHA}=-9mA$	2.3	1.7	-		
	L-level	V_{OLA}	$V_{IN} = V_{IL}$	$I_{OLA}=100\mu A$	2.3 to 2.7	-	0.2		
				$I_{OLA}=6mA$	2.3	-	0.4		
				$I_{OLA}=9mA$	2.3	-	0.6		
				$I_{OHB}=-100\mu A$	2.3 to 2.7	$V_{CC}-0.2$	-		
Output voltage (B bus)	H-level	V_{OHB}	$V_{IN} = V_{IH}$	$I_{OHB}=-6mA$	2.3	2.0	-	V	
				$I_{OHB}=-12mA$	2.3	1.8	-		
				$I_{OHB}=-18mA$	2.3	1.7	-		
				$I_{OLB}=100\mu A$	2.3 to 2.7	-	0.2		
	L-level	V_{OLB}	$V_{IN} = V_{IL}$	$I_{OLB}=12mA$	2.3	-	0.4		
				$I_{OLB}=18mA$	2.3	-	0.6		
Input leakage current(DIR,/OE)		I_{IN}	$V_{IN}=0$ to 3.6V		2.3 to 2.7	-	± 5.0	μA	
Power off leakage current		I_{OFF}	A,DIR,/OE=0 to 3.6V		0	-	5.0	μA	
3-state output off-state current		I_{OZA}	$V_{INA}=V_{IH}$ or V_{IL} $V_{OUT}=0$ to 3.6V		2.3 to 2.7	-	± 5.0	μA	
		I_{OZB}	$V_{INB}=V_{IH}$ or V_{IL} $V_{OUT}=0$ or V_{CC}		2.3 to 2.7	-	± 5.0	μA	
Quiescent supply current		I_{CC}	$V_{IN}=V_{CC}$ or GND		2.3 to 2.7	-	5.0	μA	
Bushold input minimum drive hold current		I_{IHOLD}	$V_{IN}=0.7V$		2.3	45	-	μA	
			$V_{IN}=1.6V$			-45	-		
Bushold input over-drive current to change state (Note)		I_{IOD}	$V_{IN}= "L" \rightarrow "H"$		2.7	-	400	μA	
			$V_{IN}= "H" \rightarrow "L"$			-	-400		

Note: It is a necessary electric current to change the input in "L" or "H".

DC Characteristics (Ta=-40 to 85°C, 1.65V≤Vcc<2.3V)

Parameter		Symbol	Test Condition		Vcc(V)	Min	Max	Unit
DC input voltage	H-level	V_{IH}	-		1.65 to 2.3	$V_{CC} \times 0.7$	-	V
	L-level	V_{IL}	-		1.65 to 2.3	-	$V_{CC} \times 0.2$	
Output voltage (A bus)	H-level	V_{0HA}	$V_{IN} = V_{IH}$	$I_{OHA} = -100\mu A$	1.65	$V_{CC} - 0.2$	-	V
				$I_{OHA} = -2mA$	1.65	1.3	-	
	L-level	V_{0LA}	$V_{IN} = V_{IL}$	$I_{OLA} = 2mA$	1.65	-	0.2	
Output voltage (B bus)	H-level	V_{0HB}	$V_{IN} = V_{IH}$	$I_{OHB} = -100\mu A$	1.65	$V_{CC} - 0.2$	-	V
				$I_{OHB} = -4mA$	1.65	1.3	-	
	L-level	V_{0LB}	$V_{IN} = V_{IL}$	$I_{OLB} = 4mA$	1.65	-	0.2	
Input leakage current(DIR./OE)		I_{IN}	$V_{IN} = 0$ to 3.6V		1.65 to 2.3	-	± 5.0	μA
Power off leakage current		I_{OFF}	$A, DIR./OE = 0$ to 3.6V		0	-	5.0	μA
3-state output off-state current	I_{OZA}		$V_{IN A} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6V		1.65 to 2.3	-	± 5.0	μA
			$V_{IN B} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ or V_{CC}		1.65 to 2.3	-	± 5.0	μA
Quiescent supply current		I_{CC}	$V_{IN} = V_{CC}$ or GND		1.65 to 2.3	-	5.0	μA
Bushold input minimum drive hold current	$I_{I(HOLD)}$		$V_{IN} = 0.33V$		1.65	20	-	μA
			$V_{IN} = 1.16V$			-20	-	
Bushold input over-drive current to change state (Note)	$I_{I(OD)}$		$V_{IN} = "L" \rightarrow "H"$		1.95	-	300	μA
			$V_{IN} = "H" \rightarrow "L"$			-	-300	

Note: It is a necessary electric current to change the input in "L" or "H".

AC Characteristics (Ta=-40 to 85°C, Input: tr=tf=2.0ns, CL=30pF, RL=500Ω)

Parameter	Symbol	Test Condition	Vcc(V)	Min	Max	Unit
Propagation delay time	tpLH tpHL	Figure 1, Figure 2	1.8±0.15	1.0	10.0	ns
			2.5±0.2	0.8	4.6	
			3.3±0.3	0.6	3.0	
3-state output enable time	tpZL tpZH	Figure 1, Figure 3	1.8±0.15	1.0	15.0	ns
			2.5±0.2	0.8	7.8	
			3.3±0.3	0.6	5.6	
3-state output disable time	tpLZ tpHZ	Figure 1, Figure 3	1.8±0.15	1.0	6.5	ns
			2.5±0.2	0.8	4.3	
			3.3±0.3	0.6	3.9	
Output to output skew	tosLH tosHL	(Note)	1.8±0.15	-	0.5	ns
			2.5±0.2	-	0.5	
			3.3±0.3	-	0.5	

For CL=50pF, add approximately 300ps to the AC maximum specification.

Note: Parameter guaranteed by design.

$$(tosLH=|t_{pLHm}-t_{pLHn}|, tosHL=|t_{pHLm}-t_{pHLn}|)$$

Capacitive Characteristics(Ta=25°C)

Characteristics	Symbol	Test Condition	Vcc(V)	Typ.	Unit
Input capacitance	C _{IN}		1.8,2.5,3.3	6	pF
Bus I/O capacitance	Cl/O		1.8,2.5,3.3	7	pF
Power dissipation capacitance (A bus input)	CPDA	OE= "L" ,finA=100MHz Table 1 (Note)	1.8,2.5,3.3	20	pF
		OE= "H" ,finA=100MHz Table 1 (Note)		0	pF
Power dissipation capacitance (B bus input)	CPDB	OE= "L" ,finB=100MHz Table 1 (Note)	1.8,2.5,3.3	16	pF
		OE= "H" ,finB=100MHz Table 1 (Note)		1	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.

$$I_{CC(opr)} = CPD \cdot V_{CC} \cdot V_{IN} + I_{CC}/8(\text{per bit})$$

Table1 CPD Test Condition

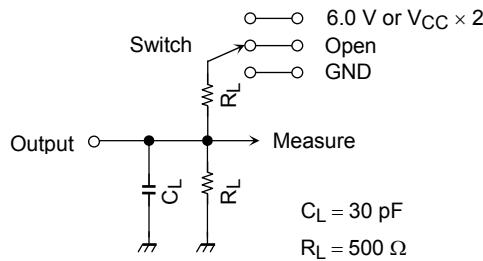
Function	Pin																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A bus /OE= "L"	H	P	X	X	X	X	X	X	X	G	O	O	O	O	O	O	O	C	L	V
A bus /OE= "H"	H	P	O	O	O	O	O	O	O	G	O	O	O	O	O	O	O	O	H	V
B bus /OE= "L"	L	C	O	O	O	O	O	O	O	G	X	X	X	X	X	X	P	L	V	
B bus /OE= "H"	L	O	O	O	O	O	O	O	O	G	O	O	O	O	O	O	O	P	H	V

-Symbol explanation-

V=V_{CC}(+3.3V)X=Don't care(Fixed to V_{CC} or GND)

G=GND(0V)

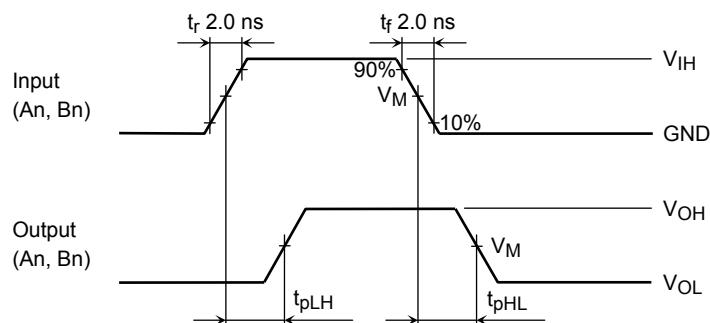
O=Open


H=Logic1(VCC)

C=Connect a condenser(30pF) between output terminal and GND.

L=Logic0(GND)

P=Input pulse with 50% duty cycle.

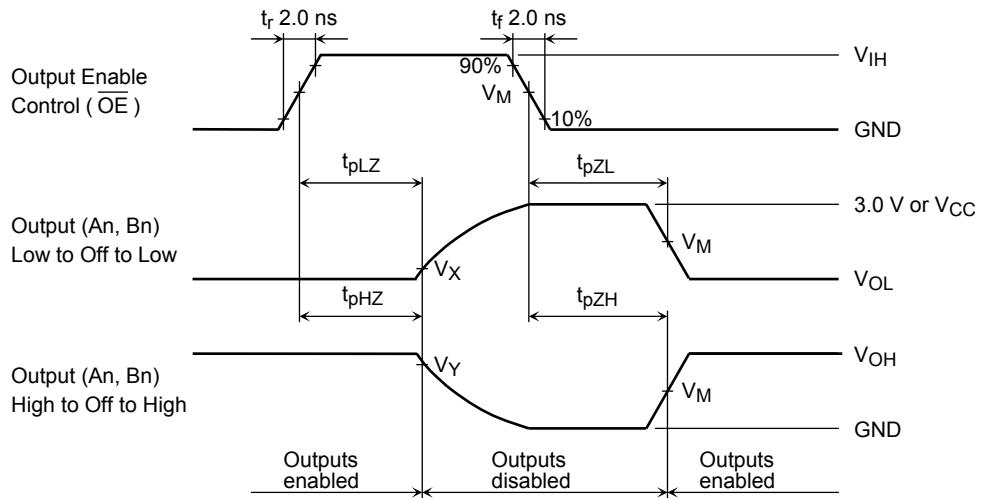

AC Test Circuit

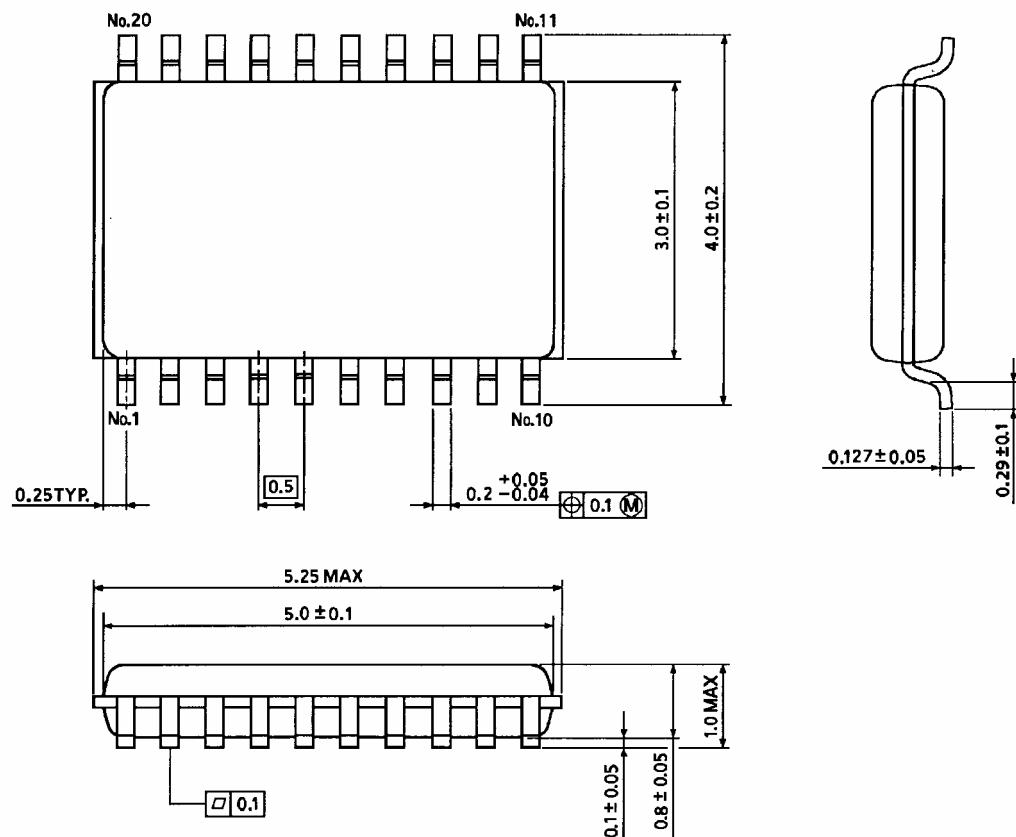
Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	6.0 V @V _{CC} = 3.3 ± 0.3 V V _{CC} × 2 @V _{CC} = 2.5 ± 0.2 V @V _{CC} = 1.8 ± 0.15 V
t _{pHZ} , t _{pZH}	GND

Figure 1

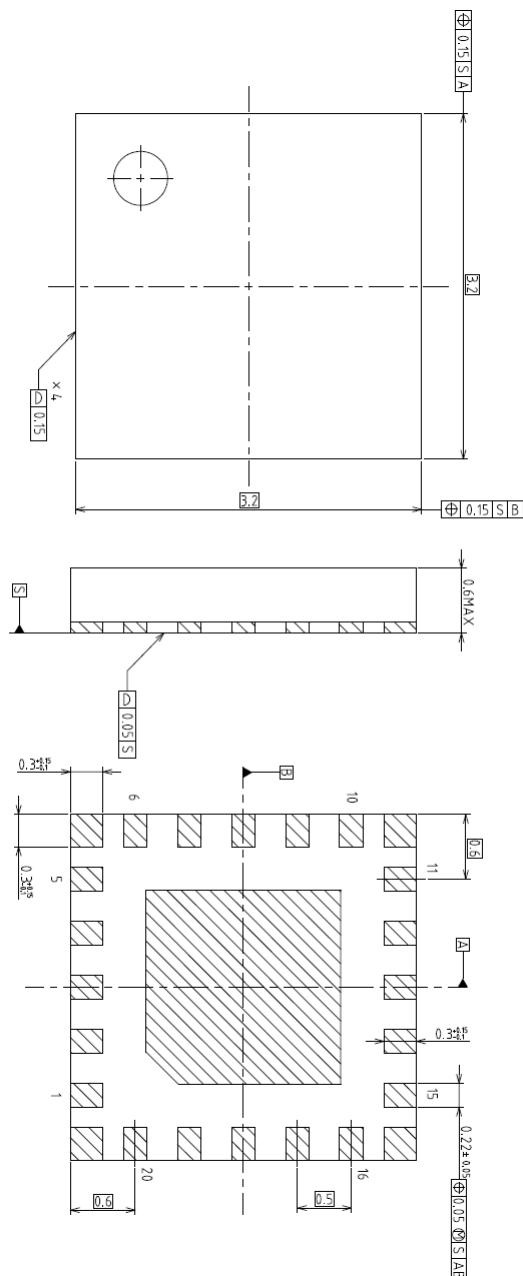
AC Waveform

Figure 2 t_{pLH}, t_{pHL}




Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Symbol	V_{CC}		
	$3.3 \pm 0.3\text{ V}$	$2.5 \pm 0.2\text{ V}$	$1.8 \pm 0.15\text{ V}$
V_{IH}	2.7 V	V_{CC}	V_{CC}
V_M	1.5 V	$V_{CC}/2$	$V_{CC}/2$
V_X	$V_{OL} + 0.3\text{ V}$	$V_{OL} + 0.15\text{ V}$	$V_{OL} + 0.15\text{ V}$
V_Y	$V_{OH} - 0.3\text{ V}$	$V_{OH} - 0.15\text{ V}$	$V_{OH} - 0.15\text{ V}$


Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)

Package Dimensions**VQON20-P-0404-0.5****Unit : mm**

Weight: 0.0145 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.