

DATA SHEET

SKY65362-11: 900 to 930 MHz High-Power RF Front-End Module

Applications

- Smart meters
- In-home appliances
- Smart thermostats

Features

- Integrated PA with +30.5 dBm output power
- Integrated LNA with programmable bypass
- Low FEM NF of 2.5 dB, typical
- ullet Single-ended 50 Ω transmit/receive RF interface
- Supply voltage: 3.00 V to 5.25 V
- Sleep mode current: <1 μA
- Small MCM (36-pin, 6 x 6 mm) package (MSL3, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04-0074.

Description

The SKY65362-11 is a high-performance, highly integrated RF front-end module (FEM) designed for high-power Industrial, Scientific, Medical (ISM) band applications operating in the 900 to 930 MHz frequency range.

The FEM is designed for ease of use and maximum flexibility with fully matched, 50 Ω power amplifier (PA) input and output, and digital controls compatible with 1.6 to 3.3 V CMOS levels.

The RF blocks operate over a wide supply voltage range from 3.00 to 5.25 V that allows the SKY65362-11 to be used in battery powered applications over a wide spectrum of the battery discharge curve.

The SKY65362-11 is packaged in a 36-pin, 6×6 mm Multi-Chip Module (MCM), which allows for a highly manufacturable low-cost solution.

A functional block diagram of the SKY65362-11 is shown in Figure 1. The 36-pin MCM package and pinout are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

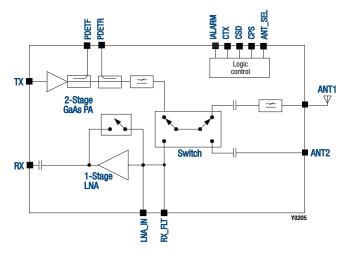


Figure 1. SKY65362-11 FEM Block Diagram

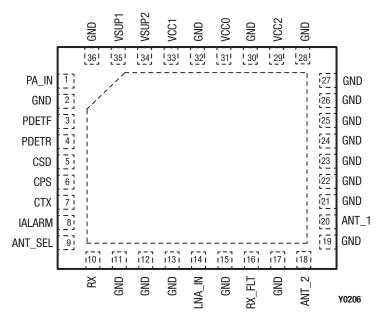


Figure 2. SKY65362-11 Pinout – 36-Pin MCM (Top View)

Table 1. SKY65362-11 Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	PA_IN	PA input	19	GND	Ground
2	GND	Ground	20	ANT1	Antenna 1
3	PDETF	Forward power detector output	21	GND	Ground
4	PDETR	Reverse power detector output	22	GND	Ground
5	CSD	Standby control (see Table 9)	23	GND	Ground
6	CPS	Receive mode gain control (see Table 9)	24	GND	Ground
7	CTX	Transmit/receive control (see Table 9)	25	GND	Ground
8	IALARM	PA current alarm output (see Table 9)	26	GND	Ground
9	ANT_SEL	Antenna select control input (see Table 9)	27	GND	Ground
10	RX	Receive output	28	GND	Ground
11	GND	Ground	29	VCC2	PA voltage supply
12	GND	Ground	30	GND	Ground
13	GND	Ground	31	VCC0	Decoupling capacitor
14	LNA_IN	LNA input	32	GND	Ground
15	GND	Ground	33	VCC1	PA voltage supply
16	RX_FLT	Receive path after internal switches that connect ANT1 and ANT2	34	VSUP2	FEM voltage supply
17	GND	Ground	35	VSUP1	FEM voltage supply
18	ANT2	Antenna 2. No integrated filtering.	36	GND	Ground

Electrical and Mechanical Specifications

The absolute maximum ratings of the SKY65362-11 are provided in Table 2. The recommended operating conditions are specified in Table 3.

Electrical specifications are provided in Tables 4 through 8. The state of the SKY65362-11 is determined by the logic provided in Table 9.

Table 2. SKY65362-11 Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage (no RF)	Vcc	-0.3	+6.0	V
Control pin (CSD, CPS, CTX, IALARM, and ANT_SEL) voltage		-0.3	Vcc (Vcc < 5 V)	V
Operating temperature	TA	-40	+85	°C
Storage temperature	Тѕтс	-40	+125	°C
Transmit input power	PIN_TX_MAX		+10	dBm
Receive RF input power @ ANT1 or ANT2 ports	PIN_RX_MAX		+10	dBm
Voltage Standing Wave Ratio @ ANT1 or ANT2 ports	VSWR		10:1	-
Electrostatic discharge:	ESD			
Human Body Model (HBM), Class 1C			1000	V

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 3. SKY65362-11 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply voltage	Vcc	4.75	5.00	5.25	V
Operating temperature	TA	-40	+25	+85	°C

Table 4. SKY65362-11 DC Electrical Specifications (Note 1)

(Vcc = +5.0 V, TA = +25 °C, as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Total supply current, transmit mode	t, transmit mode ICC_TX30 $POUT = +30.5$ (Note 2)			515		mA
	ICC_TX27	POUT = +27 dBm		300		mA
	ICC_TX24	POUT = +24 dBm		230		mA
Quiescent current, transmit mode	ICQ_TX	No RF		85		mA
Total supply current, receive mode	ICC_RX			6		mA
Total supply current, receive bypass mode	ICC_RXBYP			820		μΑ
Sleep supply current	ICC_OFF	No RF		0.05	1.00	μΑ

Note 1: Performance is guaranteed only under the conditions listed in this table.

Note 2: Typical current listed into VSWR = 1:1. lcc = 700 mA into VSWR = 2.5:1 guaranteed by characterization.

Table 5. SKY65362-11 Receive Mode Electrical Specifications (Note 1)

(Vcc = +5.0 V, TA = +25 °C, as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], All Unused Ports Terminated with 50 Ω , Input Port = ANT1, Output Port = RX, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Frequency range	f		900		930	MHz
Gain	S21_RX	900 to 930 MHz		16		dB
Noise figure	NF	900 to 930 MHz		2.5		dB
Third order input intercept point	IIP3	900 to 930 MHz, -20 dBm/tone, 200 kHz tone separation	- 5	-2		dBm
1 dB Input compression point	IP1dB	900 to 930 MHz	-15	-12		dBm
Antenna port return loss	S11_RX	900 to 930 MHz, into 50 Ω, ANT1 or ANT2 port		-12	-6	dB
Receive port return loss in receive or receive bypass mode	S22_RX	ANT1 terminated in 50 Ω		-12	-6	dB
Turn-on/off time	ton_rx, toff_rx	Receive or receive bypass to "off," "off" to receive or receive bypass, from 50% of CTX edge to 10% of final RF output power (Note 2)			11	μs
Gain in receive bypass mode	S21_RXBYP		-4	-3		dB
1 dB Input compression point in receive bypass mode	IP1dB_rxbyp		+10			dBm

Note 1: Performance is guaranteed only under the conditions listed in this table.

 $\textbf{Note 2:} \ \ \textbf{Not production tested.} \ \ \textbf{Guaranteed by characterization.}$

Table 6. SKY65362-11 Transmit Mode Electrical Specifications (1 of 2) (Note 1) (Vcc = +5.0 V, TA = +25 °C, as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], All Unused Ports Terminated with 50 Ω , Input Port = PA_IN, Outport Port = ANT1, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Frequency range	f		900		930	MHz
Output power @ ANT1 port	Роит	900 to 930 MHz with specified matching network on EVB, CW, PIN = 0 dBm:				
		Vcc = 5.0 V Vcc = 4.0 V Vcc = 3.6 V		+30.5 +28 +26		dBm dBm dBm
PA power added efficiency	PAE	POUT = +30.5 dBm @ ANT1 port, 915 MHz		43		%
Input return loss	S11_TX	902 to 928 MHz		-10		dB
Small signal gain	S21_900	902 to 928 MHz		33		dB
Output return loss	S22_TX	900 to 930 MHz, into 50 Ω , ANT1 and ANT2 ports		-10		dB
$2^{\text{nd}},6^{\text{th}},7^{\text{th}},\text{and}10^{\text{th}}$ harmonics (HD 2, 6, 7, and 10)	2fo, 6fo, 7fo, 10fo	900 to 930 MHz with specified matching network on EVB, CW, POUT = +30.5 dBm @ ANT1 port (Note 2)		-35	-30	dBc
$3^{\text{rd}},4^{\text{th}},5^{\text{th}},8^{\text{th}},\text{and}9^{\text{th}}$ harmonic (HD 3, 4, 5, 8, and 9)	3fo, 4fo, 5fo, 8fo, 9fo	900 to 930 MHz with specified matching network on EVB, CW, POUT = +30.5 dBm @ ANT1 port (Note 2)		-50	–4 5	dBc
Non-harmonic spurious	Spurious	POUT = +30.5 dBm @ ANT1 port, resolution bandwidth = 100 kHz, CW (Note 3)		-55	-50	dBm
Change in output power under VSWR	Pout_VSWR	VSWR = 2.5:1, CW, reference Pout = $+30.5$ dBm into $50~\Omega$ (Note 3)	-3		+1.5	dB
Turn-on/off time	ton_tx, toff_tx	"Off" to transmit or transmit to "off," from 50% of CTX edge to 90% of final RF output power (Note 3)			11	μs
Mode change time	tmode_change	Transmit to receive or receive bypass, receive or receive bypass to transmit, from 50% of CTX edge to 10% of final RF output power (Note 3)			11	μs

Table 6. SKY65362-11 Transmit Mode Electrical Specifications (2 of 2) (Note 1)

(Vcc = +5.0 V, TA = +25 °C, as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], All Unused Ports Terminated with 50 Ω , Input Port = PA_IN, Outport Port = ANT1, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Forward power detect	PFWD	Up to VSWR = 2.5:1 0.35		1.2	V	
Reverse power detect	PREV	Up to VSWR = 2.5:1 0.35		1.2	V	
Power detector accuracy	PDET_ACC	VSWR = 2.5:1 (Note 3)		±1		dB
Current alarm trigger output	IALARM	Low if Icc < 800 mA, High if Icc > 800 mA (Note 4)		800		mA
Stability	STAB	CW, Pout = $+30.5$ dBm into 50 Ω , 0.1 to 20 GHz, load VSWR = 6:1 (Note 3)	All non-harmonically related outputs < -43 dBm			l
Ruggedness	RUG	CW, Pout = $+30.5$ dBm into 50 Ω load, VSWR = 10:1 (Note 3)	No permanent damage			

Note 1: Performance is guaranteed only under the conditions listed in this table.

Table 7. SKY65362-11 Diversity Antenna Electrical Specifications (Note 1)

(Vcc = +5.0 V, TA = +25 °C, f = 900 MHz to 930 MHz, as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], All Unused Ports Terminated with 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Isolation between ANT1 and ANT2 ports	ISOL_ANT1/2			-20		dB
ANT1 to ANT2 switching time, transmit mode	tant1-ant2_tx	(Note 2)		1		μs
ANT1 to ANT2 switching time, receive mode	tant1-ant2_rx	(Note 2)		1		μs

Note 1: Performance is guaranteed only under the conditions listed in this table.

Note 2: Not production tested. Guaranteed by characterization.

Table 8. SKY65362-11 Electrical Specifications: Control Logic Characteristics (Note 1) $(T_A = +25 \, ^{\circ}\text{C}, \text{ as Measured on the SKY65362-11 Evaluation Board [De-Embedded to Device], Unless Otherwise Noted)}$

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Control voltage: High Low	VIH VIL	(Note 2)	1.6 0		3.6 0.3	V V
Input current: High Low	lin lil	(Note 2)			1 1	μ Α μ Α
Current alarm output voltage	Vон	Vcc = 5 V		3.3		V

Note 1: Performance is guaranteed only under the conditions listed in this table.

Note 2: Not production tested. Guaranteed by characterization.

Note 2: Harmonics above 5th are not production tested. Guaranteed by characterization.

Note 3: Not production tested. Guaranteed by characterization.

Note 4: Current Alarm trigger point is adjustable by external components R2, R3, R4, R5 in Figure 3. Contact Sales support for further information.

Table 9. SKY65362-11 Mode Control Logic (Note 1)

Mode	CPS (Pin 6)	CSD (Pin 5)	CTX (Pin 7)	ANT_SEL (Pin 9)
Sleep (all off)	0	0	0	X
Receive bypass	0	1	0	Х
Receive LNA mode	1	1	0	X
Transmit	Х	1	1	Х
ANT1 port enabled	X	Х	Х	0
ANT2 port enabled	Х	Х	Х	1

Note 1: "1" = 1.6 to 3.6 V, "0" = 0 to 0.3 V, "X" = don't care.

Evaluation Board Description

The SKY65362-11 Evaluation Board is used to test the performance of the SKY65362-11 FEM. An Evaluation Board schematic diagram is provided in Figure 3. An assembly drawing for the Evaluation Board is shown in Figure 4.

Package Dimensions

The PCB layout footprint for the SKY65362-11 is provided in Figure 5. Figure 6 shows the package dimensions for the 36-pin MCM, and Figure 7 provides the tape and reel dimensions.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY65362-11 is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

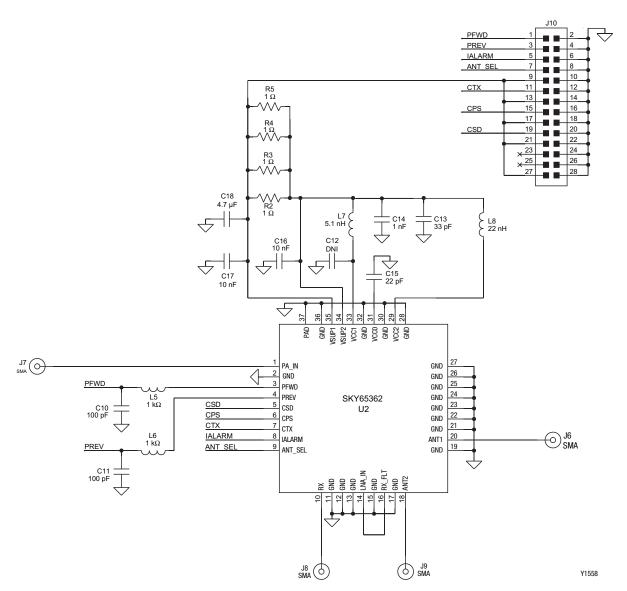


Figure 3. SKY65362-11 Evaluation Board Schematic

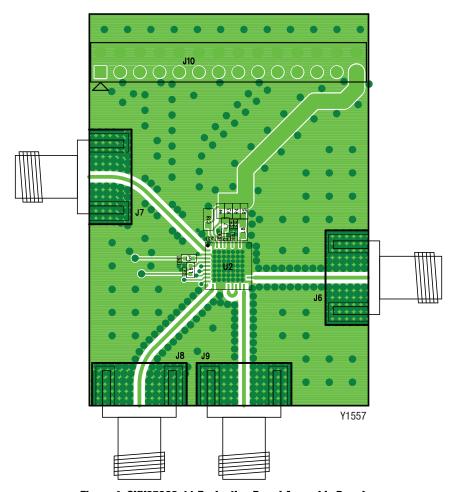
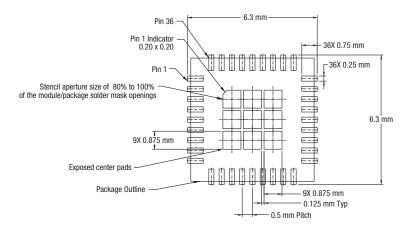
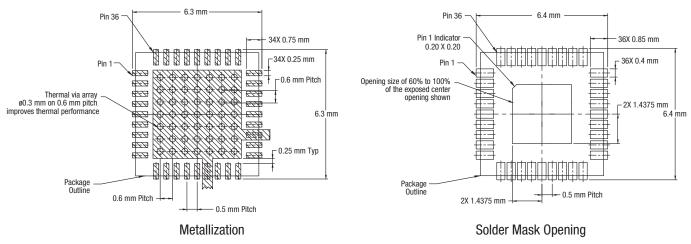
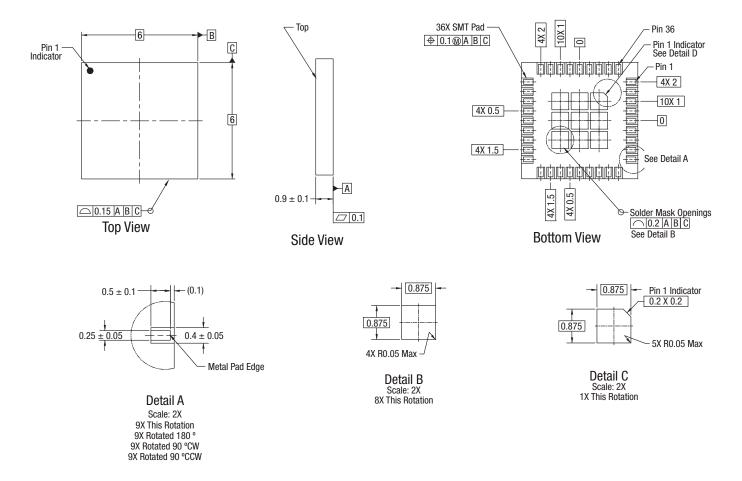




Figure 4. SKY65362-11 Evaluation Board Assembly Drawing

Stencil Aperture



Notes:

- All dimensions are in millimeters, unless otherwise specified.
 Thermal vias should be resin filled and capped in accordance with IPC-4761Type VII vias. Recommended Cu thickness is 30 to 35 μm.

Y1554

Figure 5. SKY65362-11 PCB Layout Footprint

Notes:

- 1. Dimensions and tolerances per ASME Y14.5-1994.
- 2. All dimensions are in millimeters unless otherwise specified.
- 3. Pad definitions per details on drawing.

Figure 6. SKY65362-11 36-Pin MCM Package Dimensions

Y1555

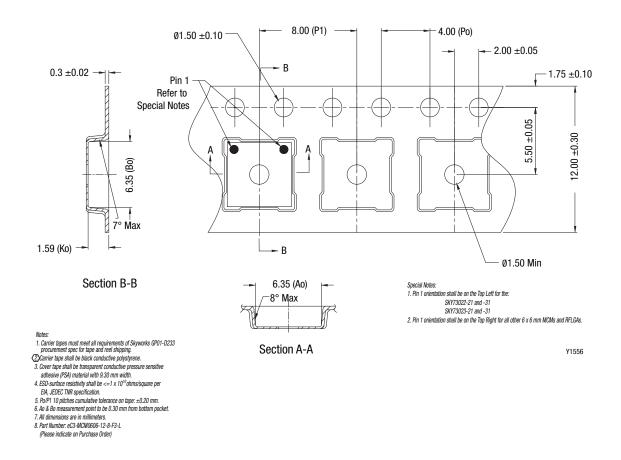


Figure 7. SKY65362-11 Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SKY65362-11: High-Power RF FEM	SKY65362-11	SKY65362-11-EK1

Copyright © 2013-2015 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.