

Phase Control Thyristors (Stud Version), 180 A

TO-209AB (TO-93)

FEATURES

- Hermetic glass-metal seal
- International standard case TO-209AB (TO-93)
- RoHS compliant
- Designed and qualified for industrial level

PRODUCT SUMMARY

$I_{T(AV)}$	180 A
-------------	-------

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS

PARAMETER	TEST CONDITIONS	VALUES	UNITS
$I_{T(AV)}$		180	A
	T_C	80	°C
$I_{T(RMS)}$		285	A
I_{TSM}	50 Hz	3800	A
	60 Hz	4000	
I^2t	50 Hz	72	kA^2s
	60 Hz	66	
V_{DRM}/V_{RRM}		400 to 1000	V
t_q	Typical	100	μs
T_J		- 40 to 125	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	V_{DRM}/V_{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V_{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I_{DRM}/I_{RRM} MAXIMUM AT $T_J = T_J$ MAXIMUM mA
180/181RKI	40	400	500	30
	80	800	900	
	100	1000	1100	

180/181RKI Series

Vishay High Power Products Phase Control Thyristors
(Stud Version), 180 A

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS	
Maximum average on-state current at case temperature	$I_{T(AV)}$	180° conduction, half sine wave			180	A	
				80	°C		
Maximum RMS on-state current	$I_{T(RMS)}$	DC at 79 °C case temperature			285	A	
Maximum peak, one-cycle non-repetitive surge current	I_{TSM}	$t = 10 \text{ ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	3800	A	
		$t = 8.3 \text{ ms}$			4000		
		$t = 10 \text{ ms}$	100 % V_{RRM} reapplied		3500		
		$t = 8.3 \text{ ms}$			3660		
Maximum I^2t for fusing	I^2t	$t = 10 \text{ ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	72	kA^2s	
		$t = 8.3 \text{ ms}$			66		
		$t = 10 \text{ ms}$	100 % V_{RRM} reapplied		61		
		$t = 8.3 \text{ ms}$			56		
Maximum $I^2\sqrt{t}$ for fusing	$I^2\sqrt{t}$	$t = 0.1 \text{ to } 10 \text{ ms}$, no voltage reapplied			720	$\text{kA}^2\sqrt{\text{s}}$	
Low level value of threshold voltage	$V_{T(TO)1}$	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)})$, $T_J = T_J$ maximum			0.83	V	
High level value of threshold voltage	$V_{T(TO)2}$	$(I > \pi \times I_{T(AV)})$, $T_J = T_J$ maximum			0.89		
Low level value of on-state slope resistance	r_{t1}	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)})$, $T_J = T_J$ maximum			0.92	$\text{m}\Omega$	
High level value of on-state slope resistance	r_{t2}	$(I > \pi \times I_{T(AV)})$, $T_J = T_J$ maximum			0.81		
Maximum on-state voltage	V_{TM}	$I_{pk} = 570 \text{ A}$, $T_J = T_J$ maximum, $t_p = 10 \text{ ms}$ sine pulse			1.35	V	
Maximum holding current	I_H	$T_J = 25 \text{ }^\circ\text{C}$, anode supply 12 V resistive load			600	mA	
Typical latching current	I_L				1000		

SWITCHING

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	$Gate \text{ drive } 20 \text{ V}$, 20Ω , $t_r \leq 1 \mu\text{s}$ $T_J = T_J$ maximum, anode voltage $\leq 80\% V_{DRM}$		300	$\text{A}/\mu\text{s}$
Typical delay time	t_d	$Gate \text{ current } 1 \text{ A}$, $dl_g/dt = 1 \text{ A}/\mu\text{s}$ $V_d = 0.67\% V_{DRM}$, $T_J = 25 \text{ }^\circ\text{C}$		1.0	μs
Typical turn-off time	t_q	$I_{TM} = 50 \text{ A}$, $T_J = T_J$ maximum, $dl/dt = 10 \text{ A}/\mu\text{s}$, $V_R = 100 \text{ V}$, $dV/dt = 20 \text{ V}/\mu\text{s}$		100	

BLOCKING

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}		500	$\text{V}/\mu\text{s}$
Maximum peak reverse and off-state leakage current	I_{RRM} , I_{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied		30	mA

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	
		TYP.	MAX.	UNITS	
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum, $t_p \leq 5$ ms	10		W
Maximum average gate power	$P_{G(AV)}$	$T_J = T_J$ maximum, $f = 50$ Hz, $d\% = 50$	2.0		
Maximum peak positive gate current	I_{GM}	$T_J = T_J$ maximum, $t_p \leq 5$ ms	3.0		A
Maximum peak positive gate voltage	$+V_{GM}$	$T_J = T_J$ maximum, $t_p \leq 5$ ms	20		V
Maximum peak negative gate voltage	$-V_{GM}$		5.0		
DC gate current required to trigger	I_{GT}	$T_J = -40$ °C	Maximum required gate trigger/current/voltage are the lowest value which will trigger all units 12 V anode to cathode applied	130	mA
		$T_J = 25$ °C		65	
		$T_J = 125$ °C		35	
DC gate voltage required to trigger	V_{GT}	$T_J = -40$ °C	Maximum required gate trigger/current/voltage are the lowest value which will trigger all units 12 V anode to cathode applied	2.0	V
		$T_J = 25$ °C		1.2	
		$T_J = 125$ °C		0.9	
DC gate current not to trigger	I_{GD}	$T_J = T_J$ maximum	Maximum gate current/voltage not to trigger is the maximum value which will not trigger any unit with rated V_{DRM} anode to cathode applied	10	mA
DC gate voltage not to trigger	V_{GD}			0.25	V

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum operating junction temperature range	T_J			- 40 to 125	°C
Maximum storage temperature range	T_{Stg}			- 40 to 150	
Maximum thermal resistance, junction to case	R_{thJC}	DC operation		0.15	K/W
Maximum thermal resistance, case to heatsink	R_{thCS}	Mounting surface, smooth, flat and greased		0.04	
Mounting torque, ± 10 %		Non-lubricated threads		31 (275)	N · m (lbf · in)
		Lubricated threads		24.5 (210)	
Approximate weight				280	g
Case style		See dimensions - link at the end of datasheet		TO-209AB (TO-93)	

ΔR_{thJC} CONDUCTION					
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS		UNITS
180°	0.050	0.032	$T_J = T_J$ maximum	K/W	
120°	0.063	0.059			
90°	0.080	0.082			
60°	0.118	0.124			
30°	0.225	0.228			

Note

- The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

180/181RKI Series

Vishay High Power Products Phase Control Thyristors
(Stud Version), 180 A

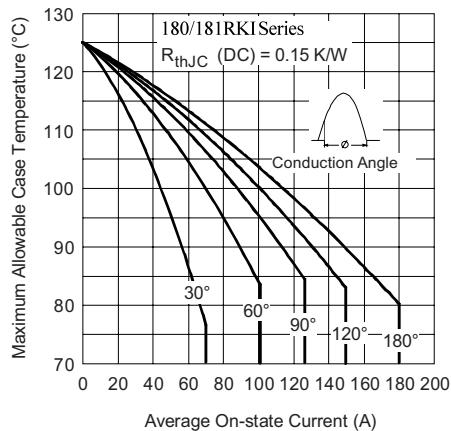


Fig. 1 - Current Ratings Characteristics

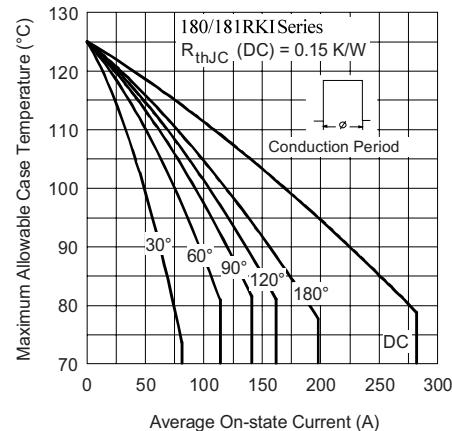


Fig. 2 - Current Ratings Characteristics

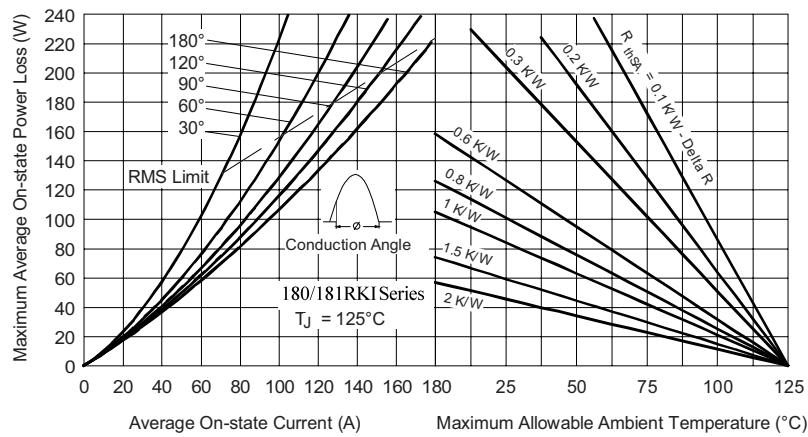


Fig. 3 - On-State Power Loss Characteristics

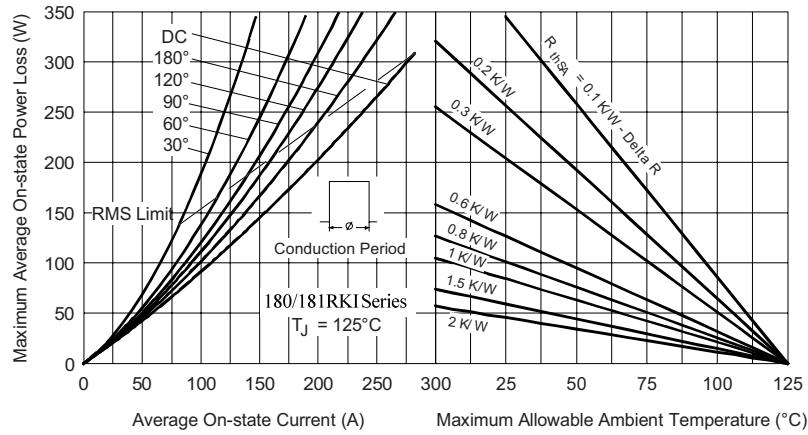


Fig. 4 - On-State Power Loss Characteristics

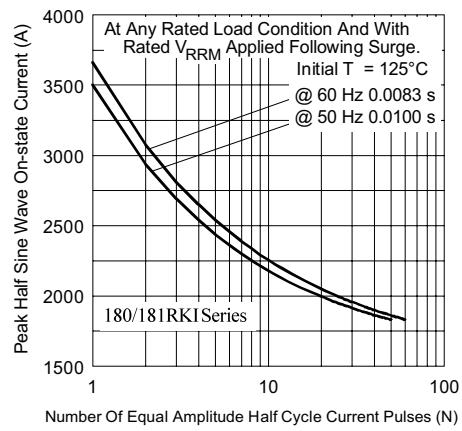

**Phase Control Thyristors
(Stud Version), 180 A**
Vishay High Power Products

Fig. 5 - Maximum Non-Repetitive Surge Current

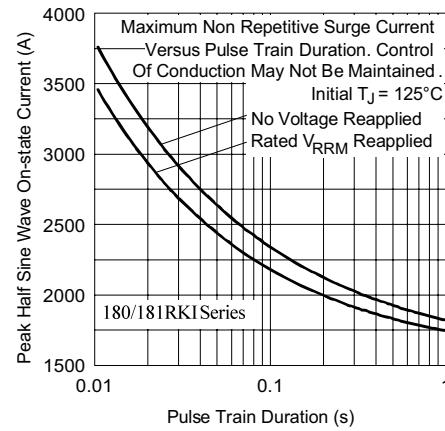


Fig. 6 - Maximum Non-Repetitive Surge Current

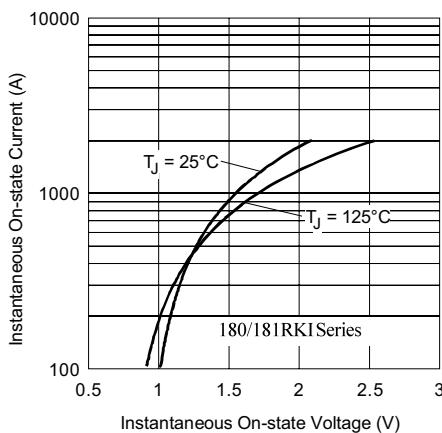


Fig. 7 - On-State Voltage Drop Characteristics

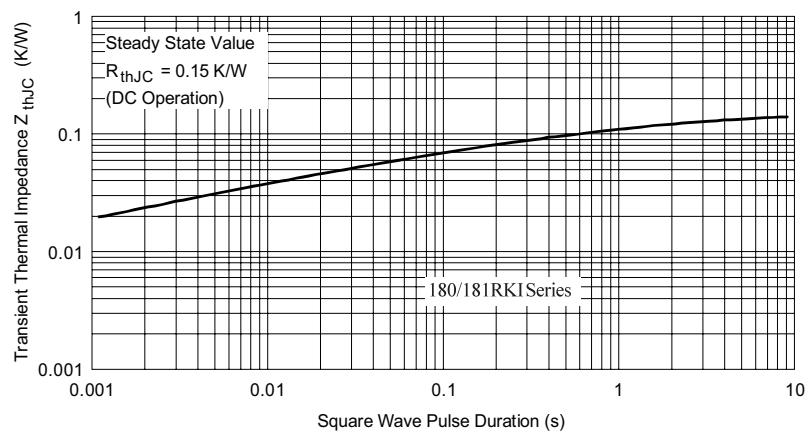
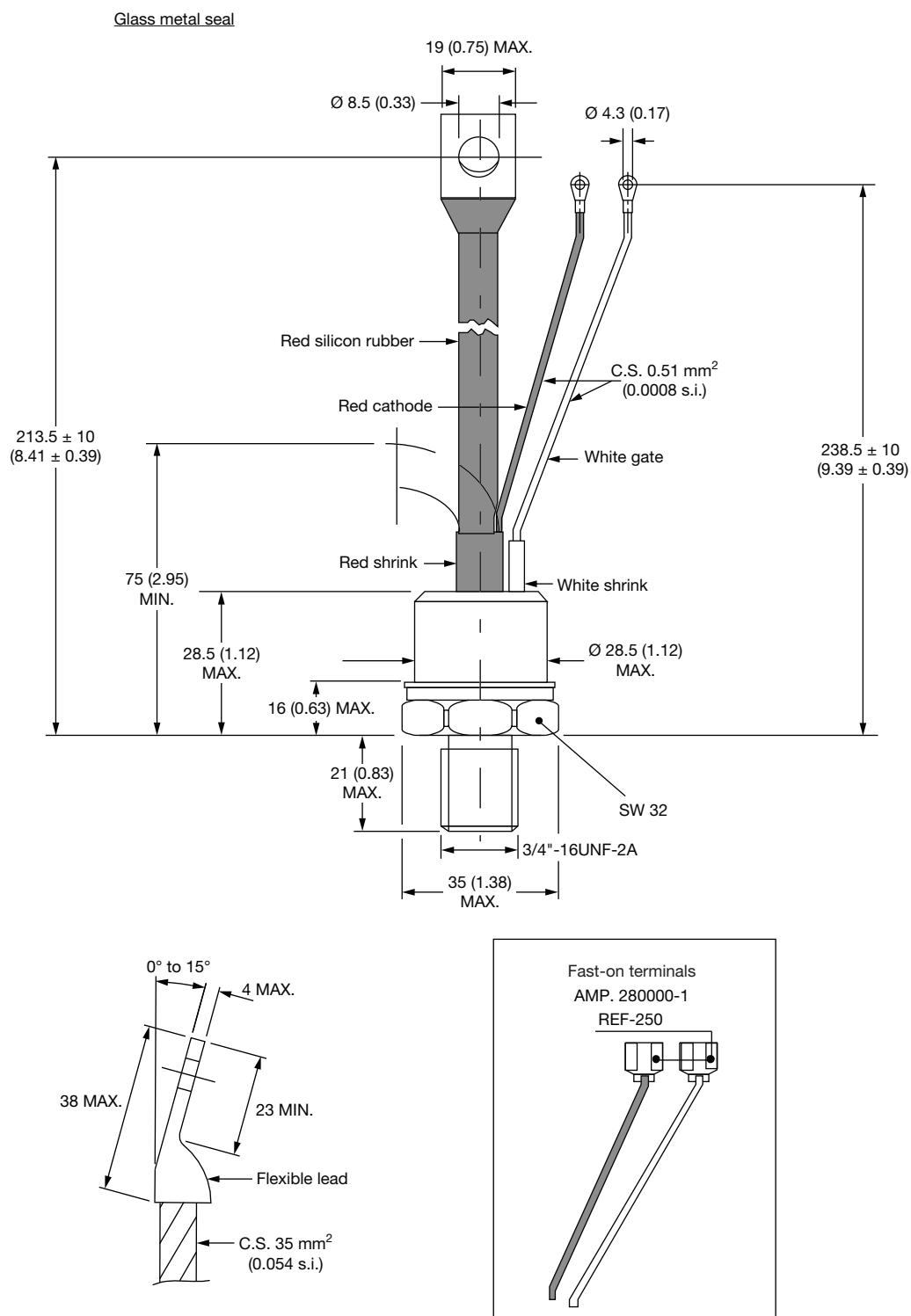


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics



Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE


Device code	18	1	RKI	100
	1	2	3	4

- 1** - $I_{T(AV)}$ rated average output current (rounded/10)
- 2** - 0 = Eyelet terminals (gate and auxiliary cathode leads)
1 = Fast-on terminals (gate and auxiliary cathode leads)
- 3** - Thyristor
- 4** - Voltage code x 10 = V_{RRM} (see Voltage Ratings table)

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95077

TO-209AB (TO-93)

DIMENSIONS in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.