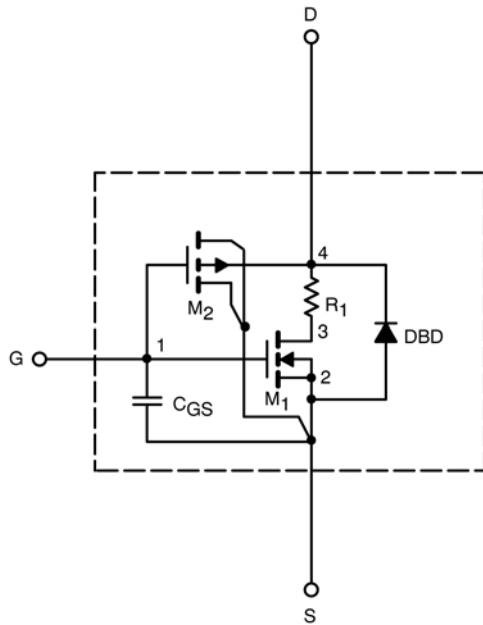


N-Channel 75-V (D-S), 175°C MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

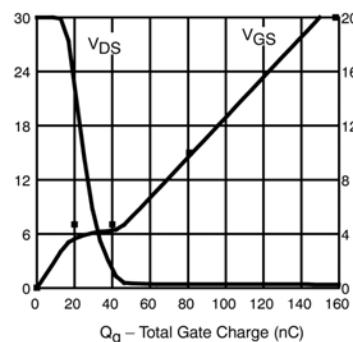
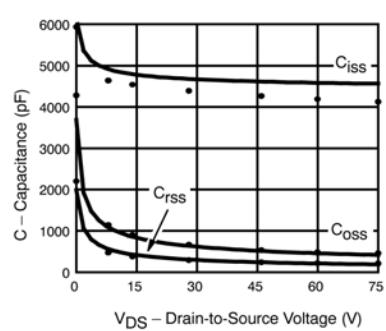
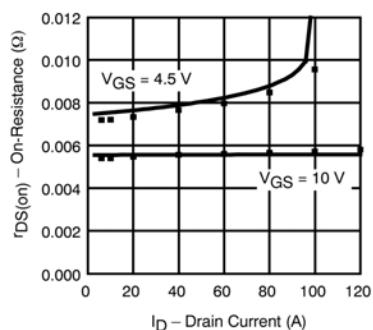
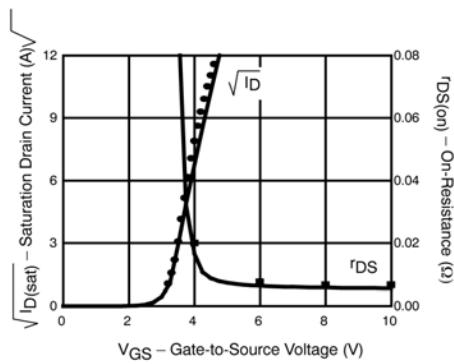
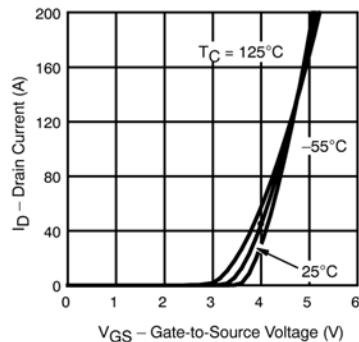
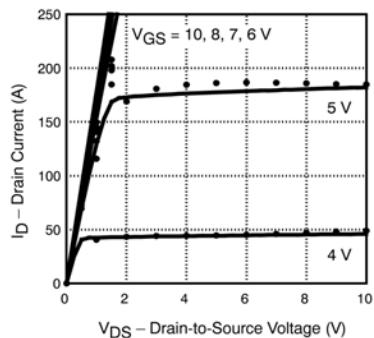
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model SUM110N08-07L

Vishay Siliconix







SPECIFICATIONS ($T_J = 25^\circ\text{C}$ UNLESS OTHERWISE NOTED)

Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(\text{th})}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	2.1		V
On-State Drain Current ^a	$I_{D(\text{on})}$	$V_{DS} \geq 5 \text{ V}$, $V_{GS} = 10 \text{ V}$	865		A
Drain-Source On-State Resistance ^a	$R_{DS(\text{on})}$	$V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$	0.0056	0.0055	Ω
		$V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$, $T_J = 125^\circ\text{C}$	0.0089		
		$V_{GS} = 10 \text{ V}$, $I_D = 30 \text{ A}$, $T_J = 175^\circ\text{C}$	0.011		
		$V_{GS} = 4.5 \text{ V}$, $I_D = 20 \text{ A}$	0.0076	0.0075	
Forward Voltage ^a	V_{SD}	$I_F = 110 \text{ A}$, $V_{GS} = 0 \text{ V}$	0.93	1	V
Dynamic^b					
Input Capacitance	C_{iss}	$V_{GS} = 0 \text{ V}$, $V_{DS} = 25 \text{ V}$, $f = 1 \text{ MHz}$	4700	4420	pF
Output Capacitance	C_{oss}		678	700	
Reverse Transfer Capacitance	C_{rss}		330	310	
Total Gate Charge ^c	Q_g	$V_{DS} = 30 \text{ V}$, $V_{GS} = 10 \text{ V}$, $I_D = 110 \text{ A}$	82	81	nC
Gate-Source Charge ^c	Q_{gs}		20	20	
Gate-Drain Charge ^c	Q_{gd}		20	20	
Turn-On Delay Time ^c	$t_{d(\text{on})}$	$V_{DD} = 30 \text{ V}$, $R_L = 0.47 \Omega$ $I_D \cong 110 \text{ A}$, $V_{GEN} = 10 \text{ V}$, $R_G = 2.5 \Omega$	19	15	ns
Rise Time ^c	t_r		12	20	
Turn-Off Delay Time ^c	$t_{d(\text{off})}$		18	40	
Fall Time ^c	t_f		16	15	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 110 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$	31	55	

Notes

- a. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

COMPARISON OF MODEL WITH MEASURED DATA (T_J=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.