

General Description

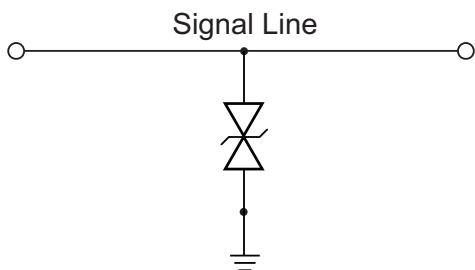
The AOZ8251ADI is an one-line bidirectional transient voltage suppressor diode designed to protect data lines and voltage sensitive electronics from high transient conditions and ESD.

This device incorporates one bidirectional TVS diode in an ultra-small 0201 footprint package. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (± 15 kV air, ± 15 kV contact discharge).

The AOZ8251ADI comes in an RoHS compliant package and is rated over a -40°C to $+85^{\circ}\text{C}$ ambient temperature range.

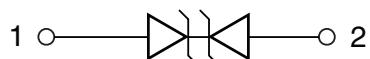
The ultra-small 0.62 mm x 0.32 mm x 0.3 mm 0201 footprint package makes the AOZ8251ADI ideal for applications where PCB space is a premium. The small size and high ESD protection makes it ideal for protecting voltage sensitive electronics from high transient conditions and ESD.

Features


- ESD protection for high-speed data lines:
 - Exceeds: IEC 61000-4-2 (ESD) ± 20 kV (air), ± 20 kV (contact)
 - Human Body Model (HBM) ± 25 kV
- Small package saves board space
- Capacitance: 10 pF
- Low clamping voltage
- Low operating voltage: 3.3 V, 5 V
- Pb-free device

Applications

- Portable handheld devices
- Keypads, data lines, buttons
- Notebook computers
- Digital cameras
- Portable GPS



Typical Application

Bidirection Protection of Single Line

Pin Configuration

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ8251ADI-03	-40°C to +85°C	DFN 0.62 x 0.32	Green Product RoHS Compliant
AOZ8251ADI-05			

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.

Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

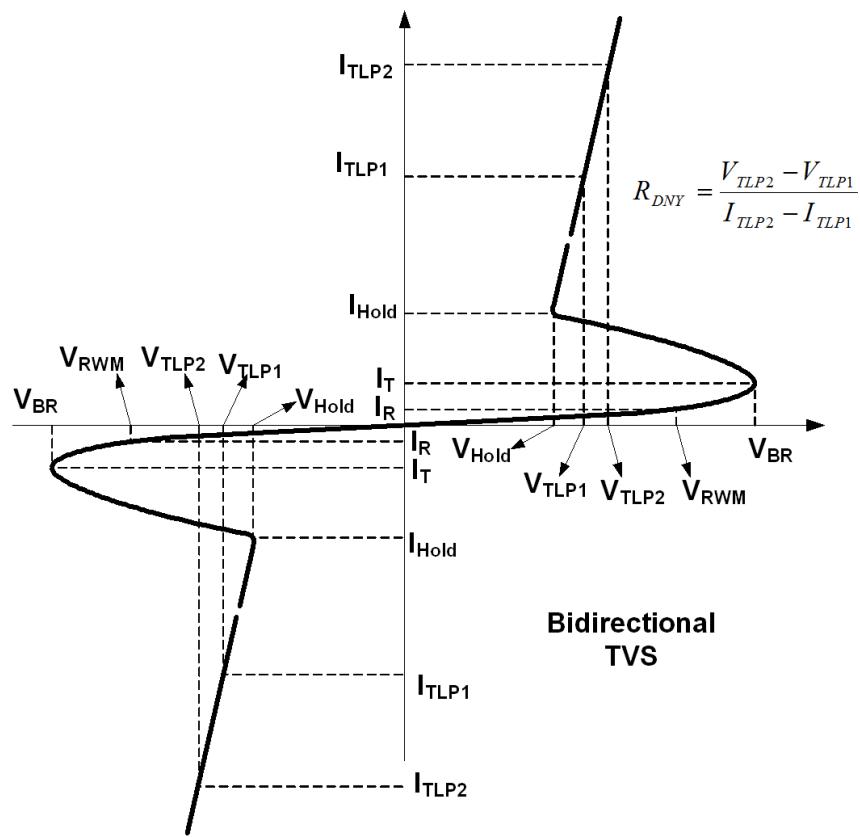
Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Parameter	Rating	
VP – VN	3.3 V	5 V
Peak Pulse Current (I_{PP}), $t_P = 8/20\mu s$	4 A	4 A
Storage Temperature (T_S)	-65 °C to +150 °C	-65 °C to +150 °C
ESD Rating per IEC61000-4-2, Contact ⁽¹⁾	±20 kV	±20 kV
ESD Rating per IEC61000-4-2, Air ⁽¹⁾	±20 kV	±20 kV
ESD Rating per Human Body Model ⁽²⁾	±15 kV	±15 kV

Notes:

1. IEC 61000-4-2 discharge with $C_{Discharge} = 150 \text{ pF}$, $R_{Discharge} = 330 \Omega$.
2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{Discharge} = 100 \text{ pF}$, $R_{Discharge} = 1.5 \text{ k}\Omega$.


Maximum Operating Conditions

The device is not guaranteed to operate beyond the Maximum Operating Conditions.

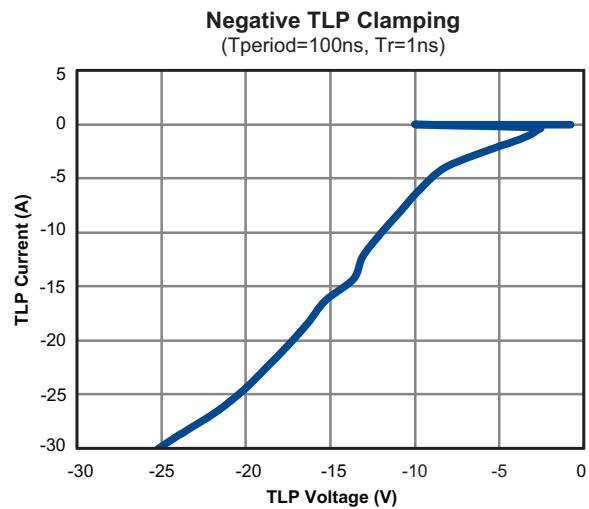
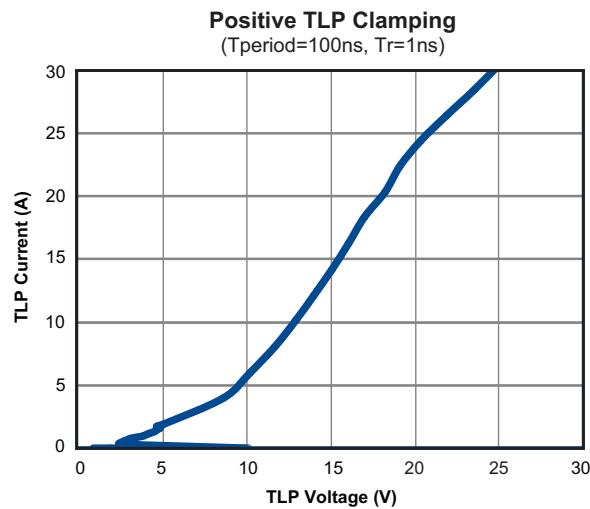
Parameter	Rating
Junction Temperature (T_J)	-40 °C to +125 °C

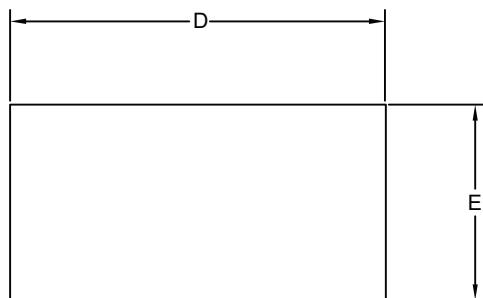
Electrical Characteristics

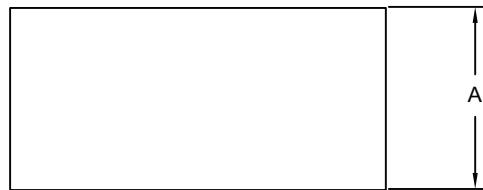
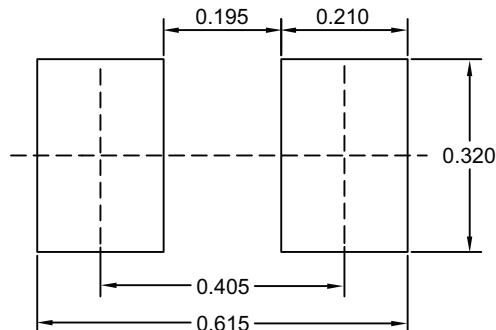
$T_A = 25^\circ\text{C}$ unless otherwise specified.

AOZ8251ADI-03

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{RWM}	Reverse Working Voltage	I/O Pin to ground			3.3	V
V_{BR}	Reverse Breakdown Voltage	$I_T=1\text{mA}$, I/O Pin to ground	4.6			V
I_R	Reverse Leakage Current	$V_{RWM}=3.3\text{V}$, I/O Pin to ground			100	nA
V_{CL}	Clamping Voltage ⁽³⁾ (100ns Transmission Line Pulse, I/O Pin to ground)	$I_{TLP}=16\text{A}$ $I_{TLP}=-16\text{A}$		16 -16	20 -20	V
		$I_{TLP}=30\text{A}$ $I_{TLP}=-30\text{A}$		23 -23	28 -28	V
	Clamping Voltage ⁽³⁾ (IEC61000-4-5, 8/20μs, I/O Pin to ground)	$I_{PP}=4\text{A}$ $I_{PP}=-4\text{A}$		11 -11	13 -13	V
R_{DNY}	Dynamic Resistance ⁽³⁾	$I_{TLP}= 10\text{A to } 30\text{A}$ $I_{TLP}= -10\text{A to } -30\text{A}$		0.5 0.5		Ω
C_J	Junction Capacitance	$V_{I/O}=0\text{V}$, $f=1\text{MHz}$, I/O Pin to ground		10	12	pF



AOZ8251ADI-05


Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{RWM}	Reverse Working Voltage	I/O Pin to ground			5	V
V_{BR}	Reverse Breakdown Voltage	$I_T=1\text{mA}$, I/O Pin to ground	6.5			V
I_R	Reverse Leakage Current	$V_{RWM}=5\text{V}$, I/O Pin to ground			100	nA
V_{CL}	Clamping Voltage ⁽³⁾ (100ns Transmission Line Pulse, I/O Pin to ground)	$I_{TLP}=16\text{A}$ $I_{TLP}=-16\text{A}$		17 -17	20 -20	V
		$I_{TLP}=30\text{A}$ $I_{TLP}=-30\text{A}$		25 -25	28 -28	V
	Clamping Voltage ⁽³⁾ (IEC61000-4-5, 8/20μs, I/O Pin to ground)	$I_{PP}=4\text{A}$ $I_{PP}=-4\text{A}$		11.5 -11.5	13 -13	V
R_{DNY}	Dynamic Resistance ⁽³⁾	$I_{TLP}= 10\text{A to } 30\text{A}$ $I_{TLP}= -10\text{A to } -30\text{A}$		0.5 0.5		Ω
C_J	Junction Capacitance	$V_{I/O}=0\text{V}$, $f=1\text{MHz}$, I/O Pin to ground		10	12	pF



Note:

 3. These specifications are guaranteed by design and characterization.

Typical Performance Characteristics

Package Dimensions, DFN 0.62x0.32, 2L EP2 S

TOP VIEW

BOTTOM VIEW

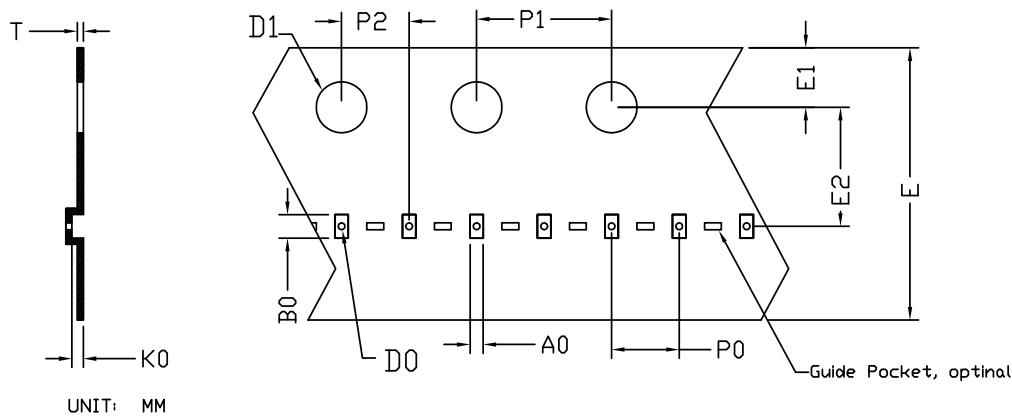
SIDE VIEW
RECOMMENDED LAND PATTERN

Unit: mm

Dimensions in millimeters

Symbols	Min.	Nom.	Max.
A	0.27	0.30	0.33
D	0.57	0.62	0.67
D1	0.11	0.16	0.21
D2	0.145	0.195	0.245
D3	0.305	0.355	0.405
E	0.27	0.32	0.37
E1	0.17	0.22	0.27

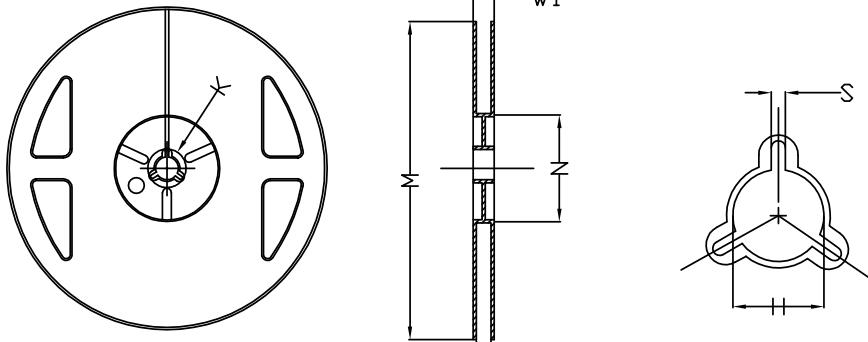
Dimensions in inches


Symbols	Min.	Nom.	Max.
A	0.0106	0.0118	0.0130
D	0.0224	0.0244	0.0264
D1	0.0043	0.0063	0.0083
D2	0.0057	0.0077	0.0097
D3	0.0120	0.0140	0.0167
E	0.0106	0.0126	0.0146
E1	0.0067	0.0087	0.0107

Notes:

1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 6mil each.
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Paddle exposed on bottom.

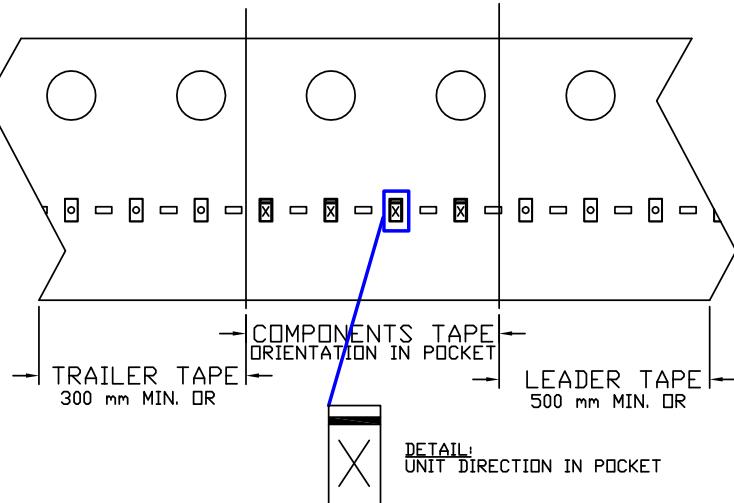
Tape and Reel Dimensions, DFN 0.62x0.32


Carrier Tape

UNIT: MM

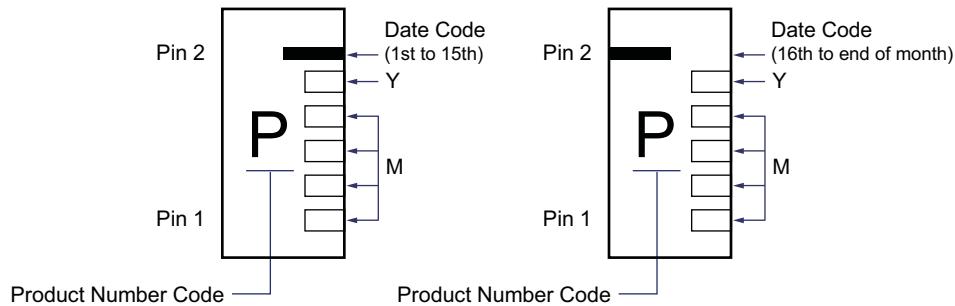
PACKAGE	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
DFN0.62x0.32 (8 mm)	0.39 ±0.03	0.69 ±0.03	0.34 ±0.01	0.20 ±0.05	1.50 ±0.0	8.00 ±0.10	1.75 ±0.10	3.50 ±0.03	2.00 ±0.05	4.00 ±0.05	2.00 ±0.05	0.20 ±0.05

Reel

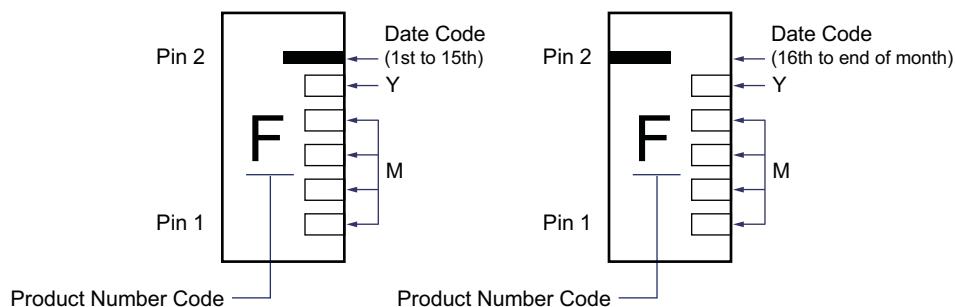


UNIT: MM

TAPE SIZE	REEL SIZE	M	N	W	W1	H	K	S
8 mm	Ø180	Ø60 +0 -3	Ø60 +1 -0	9.0 ±0.3	11.4 ±1.0	Ø13.0 ±0.2	Ø21.0 ±0.5	2.0 ±0.5


Leader / Trailer & Orientation

Unit Per Reel: 10000pcs



Part Marking

AOZ8251ADI-03
 (DFN0.62x0.32)

AOZ8251ADI-05
 (DFN0.62x0.32)

LEGAL DISCLAIMER

Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party's intellectual property rights.

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.