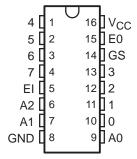

'147, 'LS147

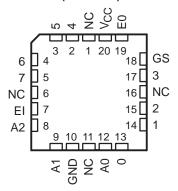
- Encode 10-Line Decimal to 4-Line BCD
- Applications Include:
 - Keyboard Encoding
 - Range Selection

SN54147, SN54LS147 . . . J OR W PACKAGE SN74147, SN74LS147 . . . D OR N PACKAGE (TOP VIEW)

SN54LS147 . . . FK PACKAGE (TOP VIEW)



NC - No internal connection


'148, 'LS148

- Encode 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:
 - n-Bit Encoding
 - Code Converters and Generators

SN54148, SN54LS148...J OR W PACKAGE SN74148, SN74LS148...D, N, OR NS PACKAGE (TOP VIEW)

SN54LS148...FK PACKAGE (TOP VIEW)

TYPE	TYPICAL DATA DELAY	TYPICAL POWER DISSIPATION
'147	10 ns	225 mW
'148	10 ns	190 mW
'LS147	15 ns	60 mW
'LS148	15 ns	60 mW

NOTE: The SN54147, SN54LS147, SN54148, SN74147, SN74LS147, and SN74148 are obsolete and are no longer supplied.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The '147 and 'LS147 devices encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition, as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 devices encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input El and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54/74LS load, respectively.

ORDERING INFORMATION

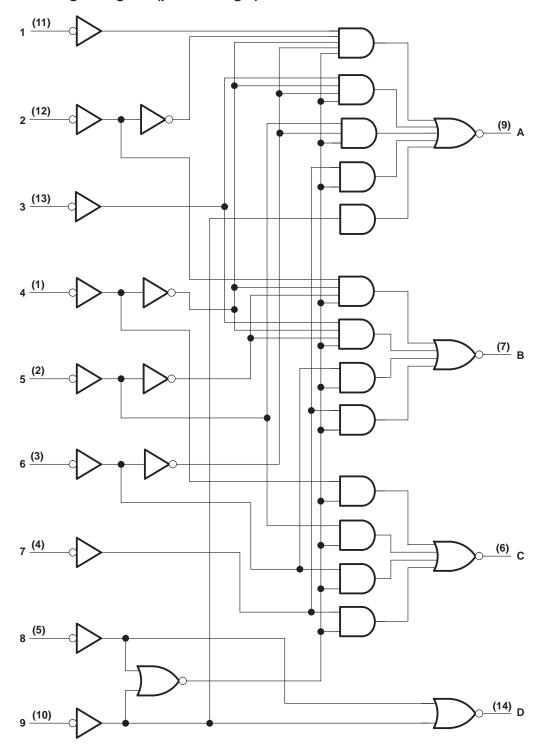
TA	PACKAG	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS148N	SN74LS148N
0°C to 70°C	0010 0	Tube	SN74LS148D	10440
0°C to 70°C	SOIC - D	Tape and reel	SN74LS148DR	LS148
	SOP - NS	Tape and reel	SN74LS148NSR	74LS148
	CDIP – J	Tube	SNJ54LS148J	SNJ54LS148J
–55°C to 125°C	CFP – W	Tube	SNJ54LS148W	SNJ54LS148W
	LCCC - FK	Tube	SNJ54LS148FK	SNJ54LS148FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE - '147, 'LS147

				INPUTS	,					OUTI	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Х	Χ	Χ	X	Χ	Χ	Χ	X	L	L	Н	Н	L
Х	Χ	Χ	X	Χ	Χ	Χ	L	Н	L	Н	Н	Н
Х	Χ	Χ	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
Х	Χ	Χ	Χ	Χ	L	Н	Н	Н	Н	L	L	Н
Х	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	Н	L
Х	Χ	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Х	Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
Х	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

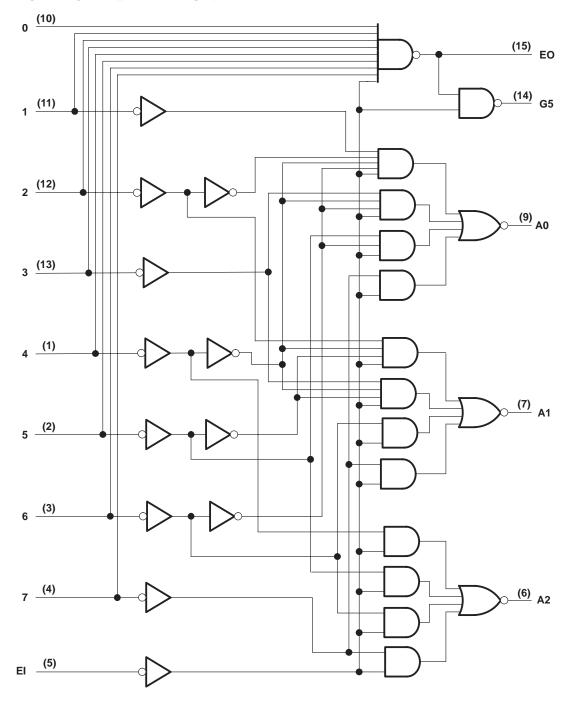
H = high logic level, L = low logic level, X = irrelevant


SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS SDLS053B - OCTOBER 1976 - REVISED MAY 2004

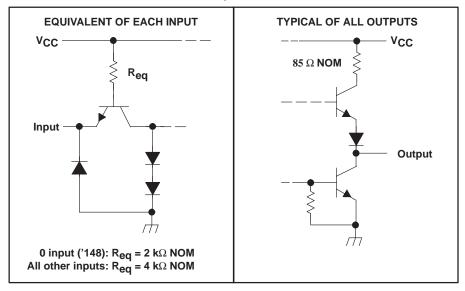
FUNCTION TABLE - '148, 'LS148

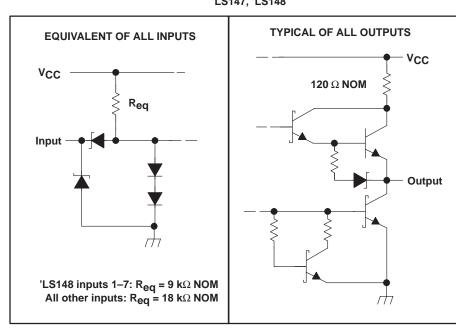
				INPUTS						(OUTPUT	S	
EI	0	1	2	3	4	5	6	7	A2	A 1	A0	GS	EO
Н	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Н	Н	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Х	X	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	Н
L	Х	Χ	Χ	Χ	Χ	Χ	L	Н	L	L	Н	L	Н
L	Х	Χ	Χ	Χ	Χ	L	Н	Н	L	Н	L	L	Н
L	Х	Χ	Χ	Χ	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Χ	Χ	L	Н	Н	Н	Н	Н	L	L	L	Н
L	Х	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = high logic level, L = low logic level, X = irrelevant


'147, 'LS147 logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.


'148, 'LS148 logic diagram (positive logic)


Pin numbers shown are for D, J, N, NS, and W packages.

schematics of inputs and outputs

'147, '148

'LS147, 'LS148

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		7 V
Input voltage, V _I : '147, '148		5.5 V
'LS147, 'LS148		7 V
Inter-emitter voltage: '148 only (see Note 2) .		5.5 V
Package thermal impedance θ _{JA} (see Note 3)	: D package	73°C/W
	N package	67°C/W
	NS package	64°C/W
Storage temperature range, T _{stg}		. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values, except inter-emitter voltage, are with respect to the network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For '148 circuits, this rating applies between any two of the eight data lines, 0 through 7.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			SN54'		SN74'		SN54LS'		SN74LS'			UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNII
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
loh	High-level output current			-800			-800			-400			-400	μΑ
loL	Low-level output current			16			16			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	-55		125	0		70	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445		7507.001	IDITIONS [†]		'147		'148			LINIT		
	PARAMET	IER	I EST COM	NDITIONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT		
VIH	High-level input vo	ltage			2			2			V		
V_{IL}	Low-level input voltage						0.8			0.8	V		
VIK	Input clamp voltage		$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$			-1.5			-1.5	V		
Vон	High-level output v	voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 V$, $I_{OH} = -800 \mu\text{A}$	2.4	3.3		2.4	3.3		V		
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V		
lį	Input current at maximum input voltage		V _{CC} = MIN,	V _I = 5.5 V			1			1	mA		
1	High-level input	0 input	V NAAV	V- 2.4.V						40			
ΊΗ	current	Any input except 0	$V_{CC} = MAX$,	V _I = 2.4 V			40			80	μΑ		
l	Low-level input	0 input	V NAAV	V 0.4V						-1.6	A		
¹IL	current	Any input except 0	$V_{CC} = MAX$,	$V_{ } = 0.4 V$			-1.6			-3.2	mA		
los	Short-circuit output current§		$V_{CC} = MAX$		-35		-85	-35		-85	mA		
loo	Supply current		V _{CC} = MAX	Condition 1		50	70		40	60	mA		
Icc	Supply current		Supply current		(See Note 5) Condition 2			42	62		35	55	ША

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5: For '147, I_{CC} (Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For '148, I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

SN54147, SN74147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A	A	la abasa sutaut			9	14	
t _{PHL}	Any	Any	In-phase output	$C_{i} = 15 pF,$		7	11	ns
t _{PLH}	Any	Any	Out of phase output	$R_L = 400 \Omega$		13	19	20
t _{PHL}	Any	Any	Out-of-phase output			12	19	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

SN54148, SN74148 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	4.7	AO A4 AO	In about outside			10	15	
^t PHL	1–7	A0, A1, or A2	In-phase output			9	14	ns
^t PLH	1–7	AO A4 or A0	Out of phase output			13	19	50
^t PHL	1-7	A0, A1, or A2	Out-of-phase output			12	19	ns
^t PLH	0.7	F0	Out of phase subject			6	10	
^t PHL	0–7	EO	Out-of-phase output			14	25	ns
^t PLH	0–7	66	la phase sutout	$C_L = 15 pF$,		18	30	
^t PHL	0-7	GS	In-phase output	$R_L = 400 \Omega$		14	25	ns
^t PLH	EI	00 04 00	la abasa sutant			10	15	
^t PHL	EI	A0, A1, or A2	In-phase output			10	15	ns
^t PLH	El	00	la abasa sutaut			8	12	
^t PHL	EI	GS	In-phase output			10	15	ns
^t PLH	EI	EO	In-phase output			10	15	ns
^t PHL	ĽI	LO	in-priase output			17	30	110

[†] tpLH = propagation delay time, low-to-high-level output. tpHL = propagation delay time, high-to-low-level output.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445		7507.001	DITIONS.	5	N54LS	,	5	N74LS	,	
	PARAME	IER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
٧ _{IH}	High-level input vo	oltage			2			2			V
V _{IL}	Low-level input vo	ltage					0.7			0.8	V
٧ıK	Input clamp voltage		$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = -400 \mu A$	2.5	3.4		2.7	3.4		V
.,			$V_{CC} = MIN,$	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	.,
VOL	OL Low-level output v	roltage	V _{IH} = 2 V, V _{IL} = V _{IL} MAX	$I_{OL} = 8 \text{ mA}$					0.35	0.5	V
	Input current at	'LS148 inputs 1–7					0.2			0.2	
l _l	maximum input voltage	All other inputs	$V_{CC} = MAX,$	$V_I = 7 V$			0.1			0.1	mA
	High-level input	'LS148 inputs 1-7	.,,				40			40	
lн	current	All other inputs	$V_{CC} = MAX,$	$V_{I} = 2.7 V$			20			20	μΑ
	Low-level input	'LS148 inputs 1-7	.,,				-0.8			-0.8	
l⊓	current	All other inputs	$V_{CC} = MAX,$	$V_{I} = 0.4 \ V$			-0.4			-0.4	mA
los	Short-circuit outpu	ıt current§	$V_{CC} = MAX$		-20		-100	-20		-100	mA
laa	C Supply current	V _{CC} = MAX	Condition 1		12	20		12	20	mA	
ICC		(See Note 6)	Condition 2		10	17		10	17	IIIA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 6: For 'LS147, I_{CC} (Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For 'LS148, I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

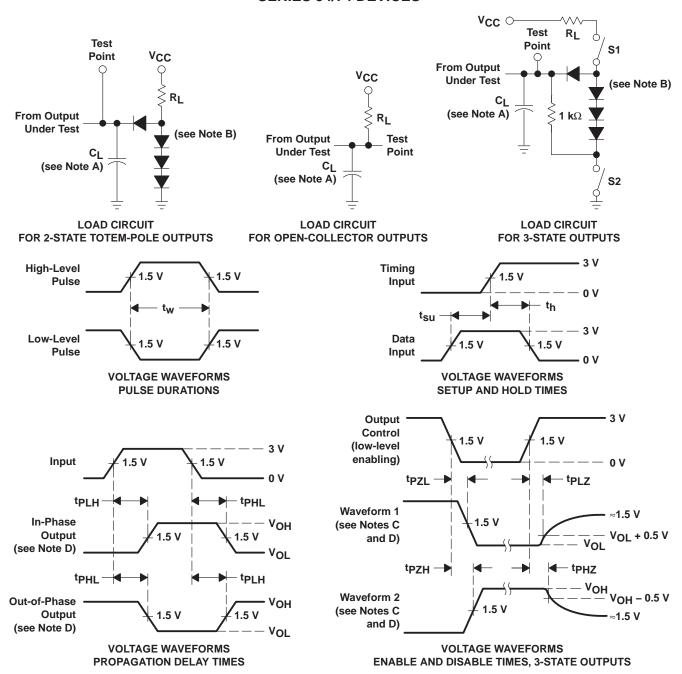
[§] Not more than one output should be shorted at a time.

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

SN54LS147, SN74LS147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 2)

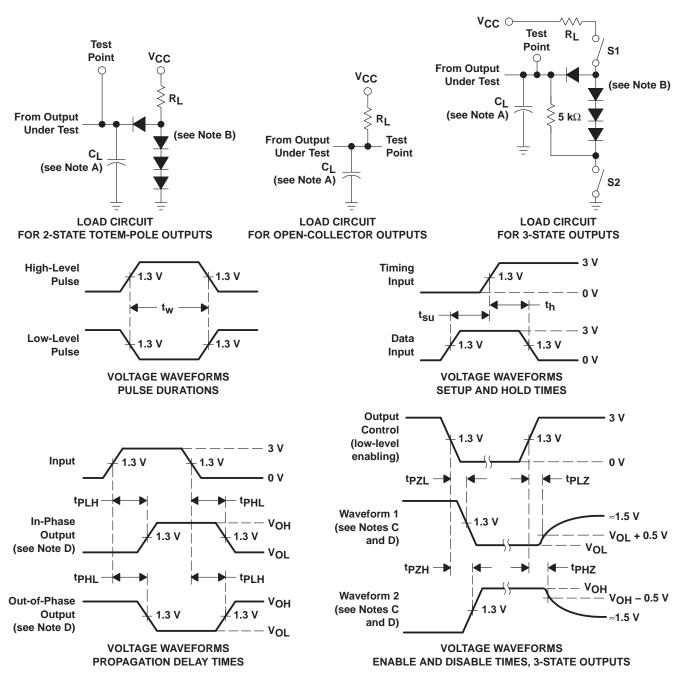
PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A	A	la abasa sutaut			12	18	
^t PHL	Any	Any	In-phase output	C _L = 15 pF,		12	18	ns
^t PLH		Δ m) ε	Out-of-phase output	$R_L = 2 k\Omega$		21	33	20
tPHL		Any				15	23	ns


SN54LS148, SN74LS148 switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	1–7	AO A4 an AO	la abasa sutaut			14	18	
^t PHL	1-7	A0, A1, or A2	In-phase output			15	25	ns
^t PLH	4.7	AO A4 a AO	Out of phase subject			20	36	
t _{PHL}	1–7	A0, A1, or A2	Out-of-phase output			16	29	ns
^t PLH	0.7	F0	Out of phase subsut			7	18	
^t PHL	0–7	EO	Out-of-phase output	$C_L = 15 pF,$ $R_L = 2 k\Omega$		25	40	ns
^t PLH	0.7	GS	In-phase output			35	55	
^t PHL	0–7	GS				9	21	ns
^t PLH	E.	AO A4 an AO	la abasa sutaut			16	25	
t _{PHL}	EI	A0, A1, or A2	In-phase output			12	25	ns
^t PLH	E.	00	la abasa sutaut		12	12	17	
^t PHL	EI	GS	In-phase output			14	36	ns
tPLH	EI	EO I	In-phase output			12	21	ns
^t PHL	CI	LO	in-priase output			23	35	115

[†] tpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 DEVICES



- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tp1 H, tpH1, tpH7, and tp1 7; S1 is open, and S2 is closed for tp7H; S1 is closed, and S2 is open for tp7I.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$; t_f and $t_f \leq$ 7 ns for Series 54/74 devices and t_f and $t_f \leq$ 2.5 ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tp1 H, tpH1, tpH7, and tp1 7; S1 is open, and S2 is closed for tp7H; S1 is closed, and S2 is open for tp71.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_f \leq 1.5 \ ns$, $t_f \leq 2.6 \ ns$.
 - G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

APPLICATION INFORMATION

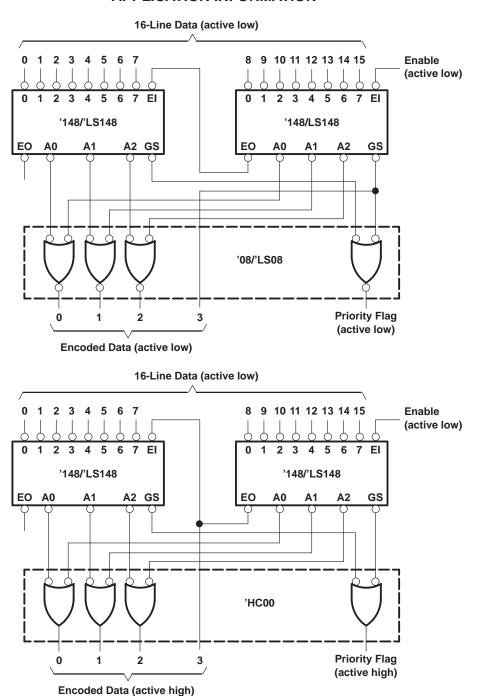


Figure 3. Priority Encoder for 16 Bits

Because the '147/'LS147 and '148/'LS148 devices are combinational logic circuits, wrong addresses can appear during input transients. Moreover, for the '148/'LS148 devices, a change from high to low at EI can cause a transient low on GS when all inputs are high. This must be considered when strobing the outputs.

31-May-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
78027012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	78027012A SNJ54LS 148FK	Samples
7802701EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7802701EA SNJ54LS148J	Samples
7802701FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7802701FA SNJ54LS148W	Samples
JM38510/36001B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 36001B2A	Samples
JM38510/36001BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36001BEA	Samples
JM38510/36001BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36001BFA	Samples
M38510/36001B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 36001B2A	Samples
M38510/36001BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36001BEA	Samples
M38510/36001BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 36001BFA	Samples
SN54148J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SN54LS148J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS148J	Samples
SN74147N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74148J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
SN74148N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74148N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS147DR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		
SN74LS147N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS148D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS148	Samples
SN74LS148DE4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		Samples
SN74LS148DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS148	Samples

31-May-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
SN74LS148DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS148	Sample
SN74LS148DRE4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		Sample
SN74LS148DRG4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		Sample
SN74LS148J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
SN74LS148N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS148N	Sample
SN74LS148N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS148NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS148N	Sampl
SN74LS148NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS148	Sampl
SN74LS148NSRE4	ACTIVE	SO	NS	16		TBD	Call TI	Call TI	0 to 70		Sampl
SN74LS148NSRG4	ACTIVE	SO	NS	16		TBD	Call TI	Call TI	0 to 70		Sampl
SNJ54148J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54148W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	-55 to 125		
SNJ54LS148FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type -55 to 125		78027012A SNJ54LS 148FK	Samp
SNJ54LS148J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7802701EA SNJ54LS148J	Samp
SNJ54LS148W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7802701FA SNJ54LS148W	Samp

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

31-May-2014

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

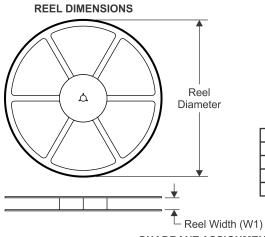
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

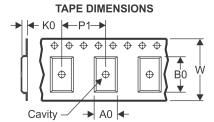
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54147, SN54148, SN54LS147, SN54LS148, SN74147, SN74148, SN74LS147, SN74LS148:

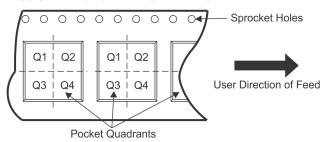
- Catalog: SN74147, SN74148, SN74LS147, SN74LS148
- Military: SN54147, SN54148, SN54LS147, SN54LS148


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

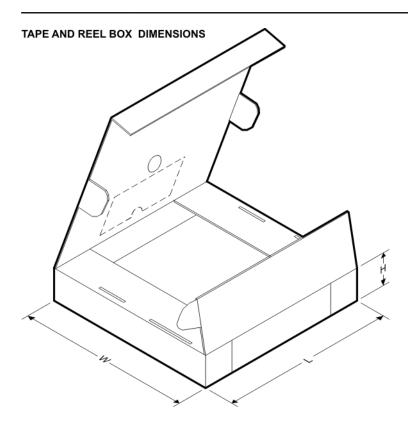
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013


TAPE AND REEL INFORMATION

		Dimension designed to accommodate the component width
E	30	Dimension designed to accommodate the component length
K	(0	Dimension designed to accommodate the component thickness
	Ν	Overall width of the carrier tape
F	21	Pitch between successive cavity centers

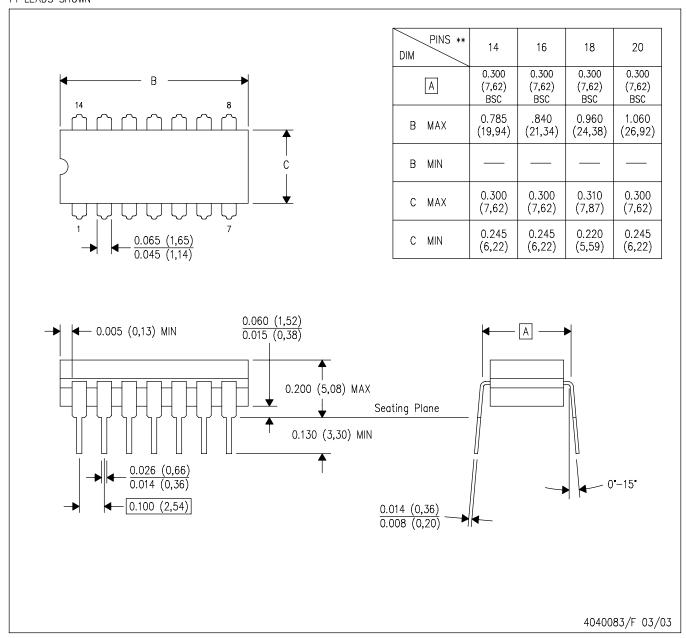
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

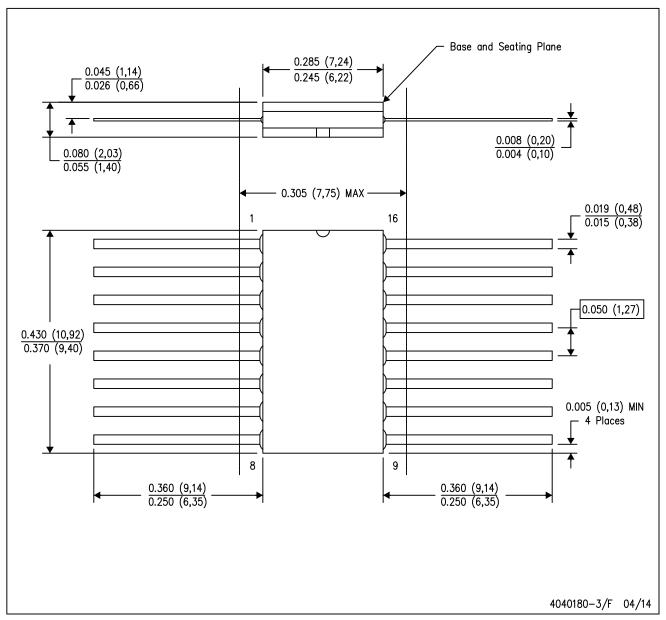
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS148DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 8-Apr-2013

*All dimensions are nominal

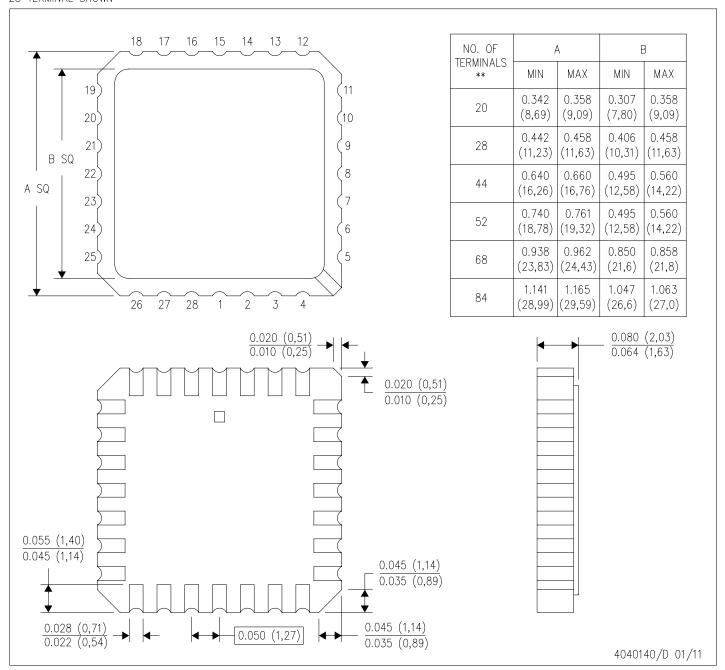
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LS148DR	SOIC	D	16	2500	333.2	345.9	28.6	


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

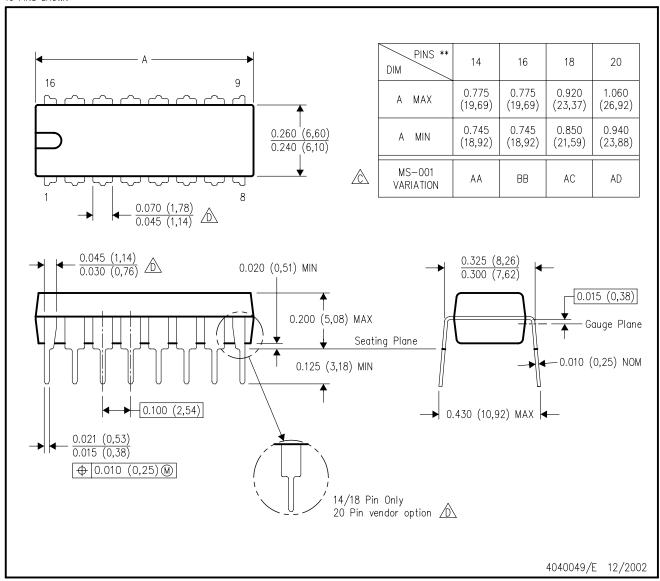
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

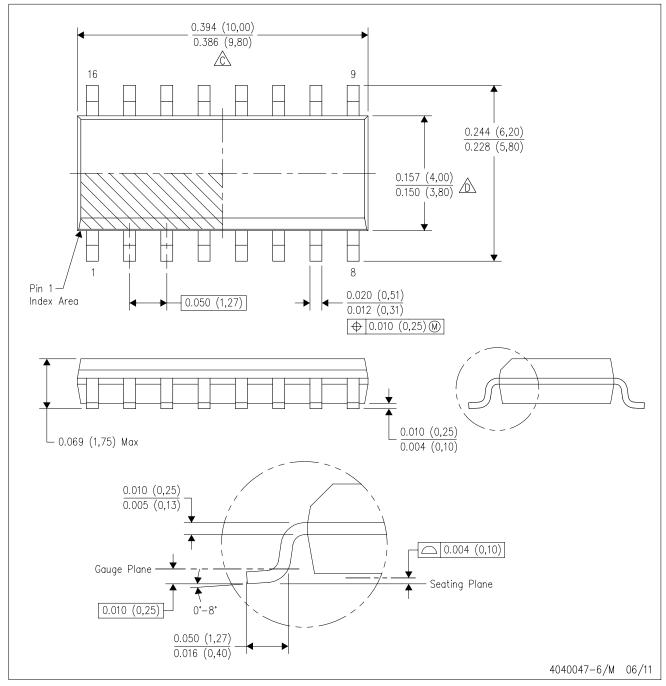
28 TERMINAL SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

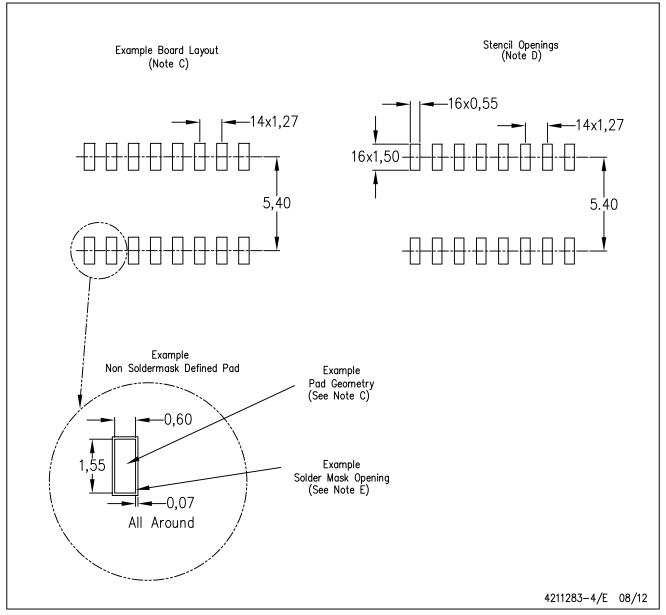
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

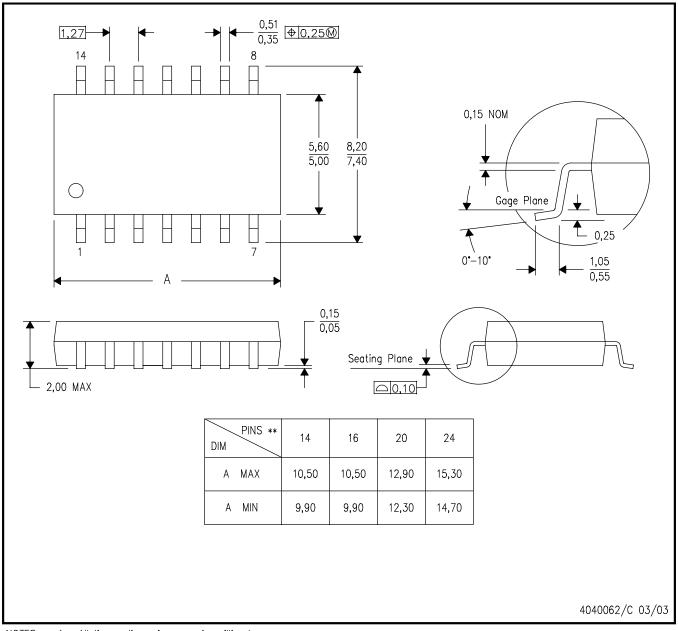


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity