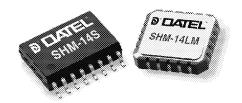


Ultra-Fast, 14-Bit Linear Monolithic Sample-Hold Amplifiers

FEATURES


- Fast acquisition time:
 10ns to ±0.1%
 20ns to ±0.024%
 25ns to ±0.012%
- ±0.0012% Nonlinearity
- 65µV rms output noise
- 250MHz small signal bandwidth
- 70MHz full power bandwidth
- -80dB feedthrough
- 1ps Aperture jitter
- 250mW power dissipation
- Low cost

The SHM-14 is an extremely high-speed and accurate monolithic sample-and-hold amplifier designed for fast data acquisition applications. The SHM-14 is accurate (±0.5 LSB to 14-bits over the full military temperature range) and is very fast (10ns and 20ns acquisition times to accuracies of 10 and 12 bits respectively). With this high performance and a full power bandwidth of 70MHz, the SHM-14 is an ideal device for driving flash and high-resolution subranging A/D converters.

A careful design optimizes the device for accuracy and speed over the full military temperature range. The droop rate is a low $\pm 2\text{mV}/\mu\text{s}$ and can be further reduced by adding an optional external hold capacitor. The 30mA output current and guaranteed specifications for a 100Ω load provide high drive capability. Operating from \pm 5V supplies, the SHM-14 consumes only 250mW of power.

The SHM-14 is built using a fast complementary bipolar process. The device is available in both military and industrial temperature ranges. The SHM-14 is packaged in a 16-pin plastic SOIC or in a 20-pin ceramic LCC.

INPUT/OUTPUT CONNECTIONS — SOIC

PIN	FUNCTION	PIN	FUNCTION
1	-5V SUPPLY	16	SAMPLE/HOLD
2	DO NOT CONNECT	15	SAMPLE/HOLD
3	ANALOG INPUT	14	+5V SUPPLY
4	DO NOT CONNECT	13	EXT. CAPACITOR
5	-5V SUPPLY	12	GROUND
6	DO NOT CONNECT	11	+5V SUPPLY
7	DO NOT CONNECT	10	+5V SUPPLY
8	-5V SUPPLY	9	ANALOG OUTPUT

INPUT/OUTPUT CONNECTIONS — CLCC

PIN	FUNCTION	PIN	FUNCTION
1	NOT CONNECTED	20	NOT CONNECTED
2	-5V SUPPLY	19	SAMPLE/HOLD
3	NOT CONNECTED	18	SAMPLE/HOLD
4	ANALOG INPUT	17	+5V SUPPLY
5	NOT CONNECTED	16	NOT CONNECTED
6	DO NOT CONNECT	15	EXT. CAPACITOR
7	-5V SUPPLY	14	GROUND
8	DO NOT CONNECT	13	+5V SUPPLY
9	DO NOT CONNECT	12	+5V SUPPLY
10	-5V SUPPLY	11	ANALOG OUTPUT

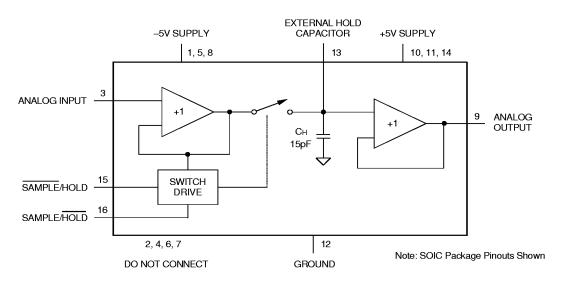


Figure 1. SHM-14 Functional Block Diagram

DATEL, Inc., 11 Cabot Boulevard, Mansfield, MA 02048-1151 (U.S.A.) • Tel: (508) 339-3000 Fax: (508) 339-6356 • For immediate assistance (800) 233-2765

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+5V Supply	0 to +6	Volts
–5V Supply	0 to −6	Volts
Analog Input	+5V Supply -1	Volts
	-5V Supply +1	Volts
Continuous Output Current	±50	mA
Digital Inputs	<supply td="" voltages<=""><td>Volts</td></supply>	Volts
Junction Temperature	+175	°C
Lead Temperature (10 seconds)	+300	°C
Output shorted to any supply	will cause permanent dama	ge.

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range using a 100Ω resistive load, 10pF capacitive load, ECL digital input levels, and $\pm 5V$ nominal supplies, unless specified.)

INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	-2.5	_	+2.5	Volts
Input Impedance	0.3	1	_	$M\Omega$
Digitals Inputs (Balanced ECL)				
Logic Levels				
Logic 1	-1.5	-	+1.8	Volts
Logic 0	-2.5	-	+0.8	Volts
Logic Loading		ا مد ا		
Logic 1	-	+10 -30	+50 -150	μA
Logic 0		-30	-150	μA
OUTPUTS				
Output Voltage Range	-2.5	-	+2.5	Volts
Output Current ①	± 30		_	mA
Output Impedance (dc) Stable Capacitive Load	-	0.3	1 50	Ω pF
•			50	ρг
PERFORMANCE				
Nonlinearity (±1V)		.0.004.0		0,
+25°C	-	±0.0012		%
_40 to +85°C _55 to +125°C	-	_	±0.002 ±0.003	% %
Sample Mode Offset	-	_	±0.003	70
+25°C	l _	±12	_	mV
-40 to +85°C	l _		±20	mV
-55 to +125°C	l _	_	±30	m۷
Pedestal				
+25°C	l –	±3	_	mV
–40 to +85°C	_	_	±20	mV
–55 to +125°C	_	-	±20	mV
Gain, +25°C	+0.98	+0.995	_	V/V
Gain Drift (±1V)				
-40 to +85°C	-	-	±20	ppm/°C
_55 to +125°C	-	_	±30	ppm/°C
Aperture Delay				
-40 to +85°C	-	2 2	_	ns
–55 to +125°C Aperture Jitter	-	2	_	ns
-40 to +85°C	l _	1 1	_	ps rms
-55 to +125°C	_		_	ps rms
Harmonic Distortion (±1V)				pormo
dc to 1MHz	l –	-72	_	dB
dc to 10MHz				
+25°C	_	-58	_	dB
–40 to +85°C	_	-	-50	dB
−55 to +125°C	-	-	-48	dB
Acquisition Time (±0.012%, ±2V)				
-40 to +85°C	-	25	_	ns
-55 to +125°C	-	35	_	ns
Acquisition Time (±0.024%, ±2V)			25	
-40 to +85°C	_	20 25	35 40	ns
-55 to +125°C	-	20	40	ns
Acquisition Time (±0.05%, ±2V) -40 to +85°C	_	19	30	no
-40 to +85°C -55 to +125°C	_	20	30 35	ns ne
-33 10 +123 0			33	ns

PERESTANAL (S. 1.)		T)/D				
PERFORMANCE (Cont.)	MIN.	TYP.	MAX.	UNITS		
Acquisition Time (±0.1%, ±2V)						
–40 to +85°C	_	10	16	ns		
–55 to +125°C	-	10	19	ns		
Hold Mode Settling (±0.012%)						
–40 to +85°C	-	12	_	ns		
–55 to +125°C	-	15	_	ns		
Hold Mode Settling (±0.024%)						
–40 to +85°C	_	7	18	ns		
–55 to +125°C	-	7	18	ns		
Hold Mode Settling (±0.05%)						
–40 to +85°C	—	6	16	ns		
–55 to +125°C	-	6	16	ns		
Hold Mode Settling (±0.1%)						
–40 to +85°C	-	5	12	ns		
–55 to +125°C	-	5	12	ns		
Slew Rate	±300	±430	_	V/µs		
Full Power Bandwidth (±1V)	45	70	_	MHz		
Small Signal Bandwidth	100	250	_	MHz		
Output Noise, Hold Mode	–	65	_	μVrms		
Feedthrough (2V Step)	-	-80	_	dB		
Droop Rate						
+25°C	-	±2	±6	mV/μs		
–40 to +85°C	-	±5	±15	mV/μs		
–55 to +125°C	–	±10	±30	mV/μs		
POWER SUPPLY REQUIREMENTS	POWER SUPPLY REQUIREMENTS					
Power Supply Range						
+5V Supply	+4.5	+5	+5.5	Volts		
–5V Supply	-5.5	-5	-4.5	Volts		
Power Supply Current						
+5V Supply	+17	+25	+30	mA		
–5V Supply	-17	-25	-30	mA		
Power Dissipation	170	250	300	mW		
Power Supply Rejection Ratio	40	60	_	dB		
ENVIRONMENTAL						
Operating Temp. Range, Case						
SHM-14S, SHM-14L	-40	_	+85	°C		
SHM-14LM	-55	_	+125	∘c		
Storage Temperature Range	-65	_	+150	∘c		
Package Type						
SHM-14S		16-Pin pla	astic SOIC			
SHM-14L, SHM-14LM		20-Pin cer				
	ZO-1 III COIRIIIC LOO					

Footnotes:

① Short circuit protection at ±50mA.

TECHNICAL NOTES

The SHM-14 employs an open loop architecture in order to achieve its superior high-speed characteristics. The first stage buffer amplifier, which charges the hold capacitor, incorporates the sample-and-hold switch into its design. This technique allows for a fast acquisition time which is not limited by slew current like the traditional Schottky diode bridge switch. The output amplifier uses a closed loop voltage feedback design which provides a low $(0.3\Omega, \rm typical)$ output impedance. Gain and linearity are not affected by heavy loads.

The design has been optimized to achieve the high accuracy associated with fast transient responses over the full military temperature range. During the track-to-hold transient, the integral nonlinearity is not affected and the pedestal remains constant over the full $\pm 2.5 V$ input range.

An external hold capacitor can be added to the 15pF internal hold capacitor to obtain a lower droop rate (the droop rate is proportional to the inverse of the total hold capacitor value) without increasing transient response times by more than few ns. Settling and acquisition times are typically increased by 5ns and 10ns respectively for 47pF and 100pF external hold capacitors. The external hold capacitor should not exceed 100pF.

GROUNDING AND LAYOUT

Obtaining fully specified performance from the SHM-14 requires careful attention to pc-board layout and power supply decoupling.

For optimal performance, tie all grounds directly to a large analog ground plane beneath and around the package. Bypass all power supplies to ground with $10\mu F$ tantalum capacitors in parallel with $0.1\mu F$ ceramic capacitors.

Locate the bypass capacitors as close to the unit as possible.

For best performance, controlled impedance transmission line techniques, such as microstrip, should be used. Mount all components as close to the required pins as possible. It is strongly recommended that the SHM-14 not be socket-mounted.

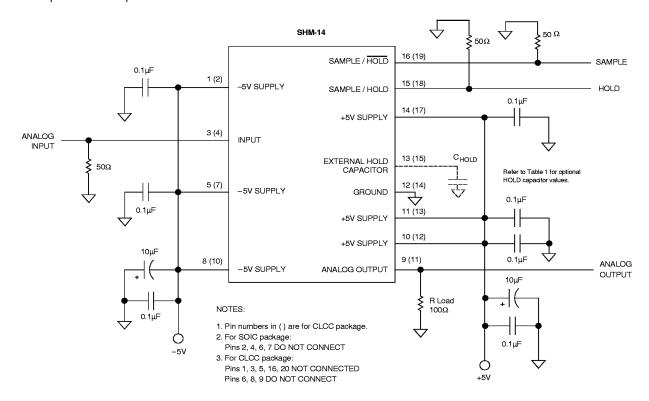


Figure 2. SHM-14 Simplified Connection Diagram

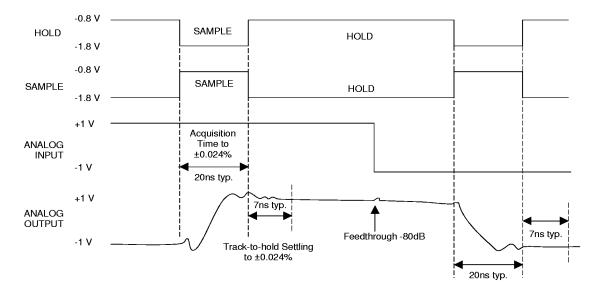


Figure 3. SHM-14 Control and Timing

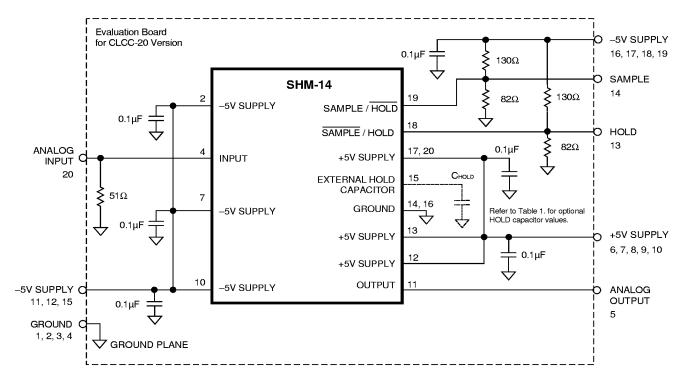
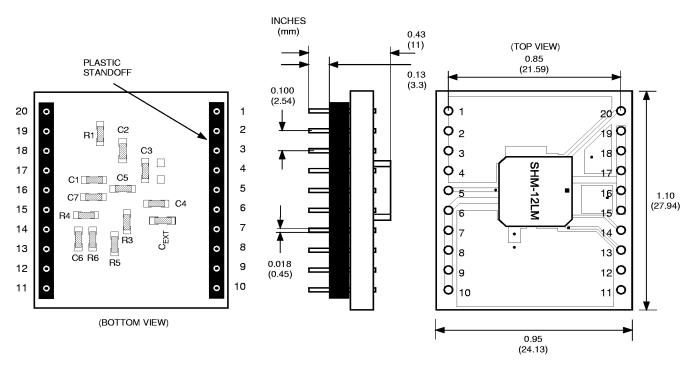
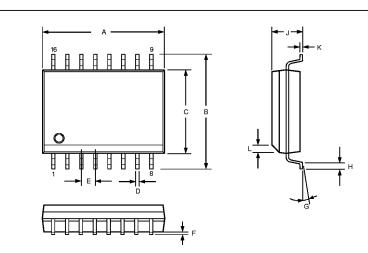


Figure 4. SHM-14 Evaluation Board Schematic

Table 1. Optional External HOLD Capacitor

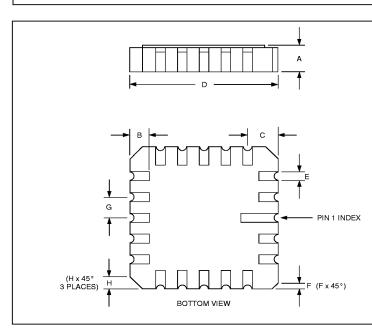
Model	Operating Temperature Range	Type of HOLD Capacitor (Ceramic, ≤100pF, ±10%)
SHM-14L, -14S	−40 to +85°C	Type I or II, NPO or X7R
SHM-14LM	−55 to +125°C	Type I or NPO




Figure 5. SHM-14 Evaluation Board Dimensions

SHM-14 Evaluation Board Connections

PIN	FUNCTION	
1	GROUND	
2	GROUND	
3	GROUND	
4	GROUND	
5	ANALOG OUTPUT	
6	+5V SUPPLY	
7	+5V SUPPLY	
8	+5V SUPPLY	
9	+5V SUPPLY	
10	+5V SUPPLY	
11	–5V SUPPLY	
12	-5V SUPPLY	
13	HOLD	
14	SAMPLE	
15	-5V SUPPLY	
16	-5V SUPPLY	
17	–5V SUPPLY	
18	-5V SUPPLY	
19	-5V SUPPLY	
20	ANALOG INPUT	



MECHANICAL DIMENSIONS INCHES (MM)

SOIC-16 Package

	INCHES		MILLIM	ETERS
SYMBOL	SYMBOL MIN. MAX.		MIN.	MAX.
Α	0.402	0.412	10.21	10.46
В	0.400	0.410	10.16	10.41
С	0.292	0.299	7.40	7.60
D	0.014	0.019	0.35	0.48
E	0.050	00 BSC	1.27 BSC	
F	0.0039	0.0112	0.10	0.30
G	0°	8°	0°	8°
Н	0.020	0.040	0.51	1.02
J	0.097	0.104	2.46	2.64
K	0.010	0.020	0.25	0.51
L	0.0091	0.0125	0.23	0.32

CLCC-20 Package

	INCHES		MILLIM	ETERS
SYMBOL	MIN.	MAX.	MIN.	MAX.
Α	0.064	0.100	1.63	2.54
В	0.045	0.055	1.14	1.40
O	0.075 REF		1.91	REF
D	0.342	0.358	8.69	9.09
Ш	0.022	0.028	0.56	0.71
F	0.020 REF		0.5	51
G	0.050 BSC		1.27	BSC
Н	0.040 REF		1.0)2

ORDERING INFORMATION

MODEL NUMBER	PACKAGE	TEMPERATURE RANGE
SHM-14S	SOIC-16	−40 to +85°C
SHM-14L	CLCC-20	−40 to +85°C
SHM-14LM	CLCC-20	-55 to +125°C
EVB-SHM14	Evaluation Boar	d (with SHM-14LM)

Contact DATEL for availability of high reliability models.

DS-0311 10/96

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 / Fax: (508) 339-6356

For immediate assistance: (800) 233-2765

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444

DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01

DATEL GmbH Munchen, Germany Tel: 89-544334-0

DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025

DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. The DATEL logo is a registered DATEL, Inc. trademark.